Live Demonstration: Gaussian Pyramid Extraction with a CMOS Vision Sensor

M. Suárez*, V.M. Brea*, J. Fernández-Berni^{†‡}, R. Carmona-Galán[†], D. Cabello* and A. Rodríguez-Vázquez^{†‡}

*Centro de Investigación en Tecnoloxías da Información (CITIUS)

University of Santiago de Compostela, Santiago de Compostela, Spain

Email: victor.brea@usc.es

[†]University of Seville, Instituto de Microelectrónica de Sevilla (IMSE-CNM), Seville, Spain [‡]CSIC, Instituto de Microelectrónica de Sevilla (IMSE-CNM), Seville, Spain

Abstract—This live demonstration showcases the Gaussian pyramid with a CMOS vision sensor. The chip features a 176 \times 120 pixel array in standard 0.18 μm CMOS technology. The sensing elements are designed as 3-Transistor Active Pixel Sensors (3T-APS) with in-pixel ADC and CDS. The Gaussian pyramid is extracted concurrently with a double-Euler switched-capacitor network on the same substrate, giving RMSE errors below 1.2% of FSO. The chip provides a Gaussian pyramid of 3 octaves with 6 scales each with an energy cost of 26.5 nJ/px at 2.64 Mpx/s.

I. INTRODUCTION

Gaussian pyramid provides feature detectors with the ability to give the same response regardless the distance of the object to the camera [1]. The construction of the Gaussian pyramid comprises several downscalings of the input scene, the socalled octaves. In so doing, octave O_i is the 1/4 downscaling of the former octave O_{i-1} . Every octave is a set of images called scales which are the result of applying Gaussian kernels with increasing widths. The Gaussian pyramid generation is a very time-consuming task, which, as reported in [2], might take up to 90% of the computing time of a feature detector.

II. CHIP FEATURES

This live demonstration presents a fast and power-efficient CMOS vision sensor chip with concurrent image acquisition and Gaussian pyramid extraction that comprises an array of 176×120 3T-APS in standard 0.18 μ m CMOS technology within an area of 5×5 mm². Photodiodes and processing circuitry are arranged in Processing Elements (PE) of 44 \times 44 μ m². Every PE contains 4 3T-APS, per-PE ADC and CDS circuitry, and the circuits of a double-Euler switched-capacitor network. The chip consumes 70 mW for scene acquisition and the extraction of a Gaussian pyramid of 3 octaves and 6 scales each. The Gaussian pyramid takes 8 ms (ADC included). This renders 26.5 nJ/px at 2.64 Mpx/s. The Gaussian pyramid is provided with less than 1.2% FSO error when compared to a software solution. Interested readers can probe references [3], [4], [5] for further details of the chip.

III. LIVE DEMONSTRATION SETUP

Fig. 1 shows a picture of the live demonstration setup. The system comprises the chip in a PGA120 package, the lens with a focal distance of 35 mm, f1/4 as focal and mount C type, a

Fig. 1. Live demonstration setup.

carrier board of $15 \times 6 \text{ cm}^2$, a DE0 Terasic FPGA to provide control signals for the chip, and a Raspberry-Pi with an ARM processor for visualization purposes.

IV. VISITOR EXPERIENCE

Real-time tests with the chip setup will be conducted during the conference. Visitors will interact with the system and see different scales across the Gaussian pyramid.

ACKNOWLEDGMENT

This work has been funded by ONR N000141410355 and Spanish government projects TEC2012-38921-C02 MINECO (FEDER), IPT-2011-1625-430000 MINECO, IPC-20111009 CDTI (FEDER), Junta de Andalucía TIC 2338-2013, EM2013/038 (FEDER), EM2014/012, AE CITIUS (CN2012/151, (FEDER)), and GPC2013/040 (FEDER).

REFERENCES

- D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints". International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
- [2] K. Mizuno et al., "Fast and Low-Memory-Bandwidth Architecture of SIFT Descriptor Generation with Scalability on Speed and Accuracy for VGA Video", FPL 2010, pp. 608-611, 2010.
- [3] M. Suárez et al., "CMOS-3D Smart Imager Architectures for Feature Dection", *IEEE Journal on Emerging and Selected Topics in Circuits* and Systems, vol. 2, no. 4, pp. 723-736, Dec. 2012.
- [4] M. Suárez et al., "A 176×120 Pixel CMOS Vision Chip for Gaussian Filtering with Massivelly Parallel CDS and A/D-Conversion", 2013 European Conference on Circuit Theory and Design (ECCTD 2013). *Third best student paper award.*
- [5] M. Suárez et al., "A 26.5 nJ/px 2.64 Mpx/s CMOS Vision Sensor for Gaussian Pyramid Extraction", 2014 Proceedings of the European Solid-State Conference (ESSCIRC 2014).