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Eukaryotic topoisomerases I and II efficiently remove

helical tension in naked DNA molecules. However, this

activity has not been examined in nucleosomal DNA, their

natural substrate. Here, we obtained yeast minichromo-

somes holding DNA under (þ ) helical tension, and in-

cubated them with topoisomerases. We show that DNA

supercoiling density can rise above þ 0.04 without dis-

placement of the histones and that the typical nucleosome

topology is restored upon DNA relaxation. However,

in contrast to what is observed in naked DNA, topoisome-

rase II relaxes nucleosomal DNA much faster than

topoisomerase I. The same effect occurs in cell extracts

containing physiological dosages of topoisomerase I and

II. Apparently, the DNA strand-rotation mechanism of

topoisomerase I does not efficiently relax chromatin,

which imposes barriers for DNA twist diffusion.

Conversely, the DNA cross-inversion mechanism of topo-

isomerase II is facilitated in chromatin, which favor the

juxtaposition of DNA segments. We conclude that topo-

isomerase II is the main modulator of DNA topology in

chromatin fibers. The nonessential topoisomerase I then

assists DNA relaxation where chromatin structure impairs

DNA juxtaposition but allows twist diffusion.
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Introduction

Helical tension in double-stranded DNA occurs during most

chromosomal transactions. During DNA transcription, the

template rotates relative to RNA polymerase, causing over-

winding ahead of the traversing complex and unwinding

behind it. Similarly, rotation of the duplex entering a replica-

tion complex overwinds DNA ahead of replication forks.

Chromatin assembly and remodeling also induce changes of

helical tension, as nucleosomes constrain DNA supercoils.

The scarcity of DNA free-ends inside the cell precludes simple

winding to dissipate helical stress. The enzymes responsible

for resolving this problem are the ubiquitous DNA topo-

isomerases, which produce temporary single- or double-

strand DNA breaks (reviewed in Champoux, 2001; Wang,

2002).

Eukaryotic cells have two classes of topoisomerases, type-

1B and type-2, to remove helical tension from DNA. The type-

1B, including the eukaryotic topo I (encoded by TOP1) and

poxvirus topo I, use an active-site tyrosine as a nucleophile

to cleave one strand of duplex DNA, generating a covalent

30-phosphotyrosyl bond. This reaction leaves a 50-hydroxyl

DNA end that can rotate in either direction around the

uncleaved strand, allowing relaxation of (þ ) and (�) helical

stress. In the rejoining reaction, the 50-hydroxyl group acts as

a nucleophile to attack the 30-phosphotyrosyl linkage and

restores the continuity of the double helix (Stewart et al,

1998; Krogh and Shuman, 2000). As this ‘strand rotation’

mechanism of type-1B topoisomerases functions without

energetic cofactor, only DNA torque and friction drive one

or several integral rotations of the duplex (Koster et al, 2005).

The type-2 topoisomerases, that is, the eukaryotic topo II

(encoded by TOP2), are functional homodimers that use ATP

to transport one DNA duplex through a transient double-

strand break in another duplex (Wang, 1998). The gated

duplex, termed G-segment, is cleaved with a four-base stag-

ger generating a 50-phosphotyrosyl bond with each dimer

subunit of the enzyme. The transported duplex, termed

T-segment, enters one side the dimer interface, crosses the

transiently gated G-segment, and exits the topoisomerase

through the opposite side (Roca et al, 1996). This ‘cross-

inversion’ mechanism allows topo II to remove (þ ) and (�)

DNA supercoils, as well as knot–unknot or catenate–decate-

nate DNA molecules, depending on the intra- or intermole-

cular location of the G- and T-segments.

Despite the advances in understanding the DNA relaxation

mechanism of eukaryotic topoisomerases I and II, their

relative contributions to the supercoiling of intracellular

DNA remain unclear. Topo I concentrates in the nucleolus

(Muller et al, 1985; Zhang et al, 1988) and in highly tran-

scribed regions (Fleischmann et al, 1984; Mao et al, 2002),

whereas topo II is more evenly distributed throughout the

interphase nucleus (Gasser et al, 1986; Klein et al, 1992;

Christensen et al, 2002). These observations had supported

a general view of topo I as the relaxase of helical tension

generated during transcription and other DNA-tracking pro-

cesses, and of topo II as devoted to unlinking replicated DNA

duplexes and preparing chromosomes for segregation (Holm

et al, 1985; Uemura et al, 1987; Adachi et al, 1991). However,

numerous observations argue against this simple partition of

roles and indicate that topo II participates also in DNA

relaxation tasks. Although topo I is required during develop-

ment in higher eukaryotes (Zhang et al, 2000; Takahashi et al,

2002), it is dispensable for cell viability in Saccharomyces

cerevisiae and Schizosaccharomyces pombe (Uemura and

Yanagida, 1984). In these cells, topo II relaxes DNA supercoils

in the absence of topo I (Saavedra and Huberman, 1986; Brill

and Sternglanz, 1988; Giaever and Wang, 1988). Accordingly,
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DNA replication can proceed in yeast cells as long as one

of the two topoisomerases is active (Kim and Wang, 1989b).

In addition, inactivation of either topo I or topo II does not

significantly affect DNA transcription, whereas inactivation

of both enzymes markedly reduces rRNA synthesis (Schultz

et al, 1992) and, to a lesser extent, mRNA synthesis (Cavalli

et al, 1996; Collins et al, 2001). Finally, yeast Dtop1 top2-ts

double mutants, but not single mutants, show mitotic hyper-

recombination (Christman et al, 1988), increased excision

of rDNA as extrachromosomal rings (Kim and Wang, 1989a),

and multimerization of circular minichromosomes (Trigueros

and Roca, 2001).

The apparently exchangeable activities of topoisomerases I

and II indicate that either enzyme can relax the helical

tension of intracellular DNA. Yet, a deeper analysis of their

normal contributions is impaired by the complexity of

in vivo experimental systems and the multiple functions

in which they are involved. So far, the catalytic efficiency of

eukaryotic topoisomerases has been examined in vitro on

naked DNA molecules, by using supercoiled plasmids and

DNA single-molecule assemblies (Charvin et al, 2003; Koster

et al, 2005). However, their activities on nucleosomal DNA,

their natural substrate, have not been contrasted. Here, we

report the first comparative analysis of the extent to which

topoisomerases I and II relax (þ ) supercoiled DNA in native

yeast minichromosomes. We show that histones do not

dissociate from DNA under high (þ ) helical tension and

that DNA relaxation restores the typical nucleosome topol-

ogy. In contrast to what is observed with naked DNA,

however, topoisomerase II relaxes nucleosomal DNA more

efficiently than topoisomerase I. This finding highlights a

differential effect of chromatin hydrodynamics on the DNA

strand-passage mechanisms of topoisomerases I and II.

Functional implications to the supercoiling of intracellular

DNA are discussed.

Results

High DNA supercoiling density can be generated

in eukaryotic chromatin

DNA relaxation by topoisomerases I and II prevent the

accumulation of helical tension in circular minichromosomes

in TOP1 TOP2 yeast cells. However, when Escherichia coli

topo I, a type-1A topoisomerase that relaxes (�) supercoils by

acting on unwound regions of the duplex, is expressed in a

Dtop1 top2-ts mutant, (þ ) supercoils accumulate upon ther-

mal inactivation of topo II (Giaever and Wang, 1988). We

used this unbalanced relaxation of supercoils to determine a

threshold of (þ ) DNA helical tension that transcription or

other DNA-tracking processes can generate in vivo (Liu and

Wang, 1987). We transformed the strain JCW28 (Dtop1 top2–

4) with plasmid pJRW13, a vector for constitutive expression

of E. coli topo I; and with plasmid Yp4.4, our reporter

minichromosome. The cells were cultured at 261C (permis-

sive temperature) and shifted to 351C to inactivate topo II.

Native yeast minichromosomes were extracted at different

times, and their DNA was displayed by two-dimensional gel

electrophoresis to examine the linking number (Lk) of the

Yp4.4 circles (Figure 1).

By the electrophoresis conditions described in Figure 1A,

gel bands corresponding to Lk topoisomers of Yp4.4 are

distributed in an arch, in which higher Lk values migrate

clockwise. Yp4.4 minichromosomes extracted from cells cul-

tured at 261C (lane 1) had linking number difference (DLk)
near –22 relative to the Lk0 position determined in the relaxed

Yp4.4 plasmid (lane R). Since Lk0 is about 420 (4414/10.5),

the DNA supercoiling density (s) in these minichromosomes

is about �0.052 (�22/420). After thermal inactivation of topo

II (lanes 2–4), increasing amounts of the Yp4.4 circles mi-

grated toward one end of the topoisomer arch. An electro-

phoresis in the presence of high chloroquine concentration

(Figure 1B) confirmed that these circles were positively

supercoiled (Lk4Lk0). To resolve their Lk distribution, we

used electrophoresis at 41C and in the presence of magnesium

Figure 1 DNA supercoiling density in yeast circular minichromo-
somes. (A) Lanes1–4, DNA topology in Yp4.4 minichromosomes
extracted from JCW28 cells that expressed of E. coli topo I, and
were then shifted to 351C to inactivate topo II for the indicated
times (min). Lane R, Yp4.4 plasmid relaxed in vitro at 351C with
topoisomerase I. Two-dimensional electrophoresis of DNA was
carried at 251C in a 0.8% agarose gel in TBE buffer at 50V for
14 h in the first dimension (top to bottom), and TBE buffer plus
2mg/ml of chloroquine, at 60V for 8 h in the second dimension (left
to right). The gel-blot was probed for Yp4.4. The scheme depicts gel
migrations of Yp4.4 topoisomers, indicating DLk values relative to
relaxed DNA. (B) DNA samples (lanes 1 and 3 as in A) analyzed like
above but in TBE buffer plus 3mg/ml of chloroquine in the first
dimension, and TBE buffer plus 15mg/ml of chloroquine in the
second dimension. (C) DNA samples (all as in A) analyzed by two-
dimensional electrophoresis at 41C in a 0.8% agarose gel in TBE
buffer plus magnesium acetate 5mM at 33V for 40 h in the first
dimension (top to bottom), and TBE buffer alone at 60V for 4 h
in the second dimension (left to right). The scheme depicts gel
migrations of Yp4.4 topoisomers, indicating DLk values relative to
relaxed DNA.
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ions in the first gel dimension (Panyutin et al, 1989; Xu and

Bremer, 1997). These conditions decrease the writhe of (þ )

supercoiled DNA and, as a result, the migration of Lk

topoisomers shifts counter-clockwise (Bednar et al, 1994;

Rybenkov et al, 1997). Although we achieved the largest

shift with the gel depicted in Figure 1C, the Lk distribution

of (þ ) supercoiled circles remained unresolved. Relative to

Lk0 (lane R), these molecules had a DLk above þ 18, which

translates into s greater than þ 0.042 (18/420). Similar

results were obtained for the yeast 2-mm circle and other

yeast circular minichromosomes, for which the Lk distribu-

tion of (þ ) supercoiled circles could not be resolved. Yet,

since E. coli topo I had to act on unwound regions of the

duplex to accumulate (þ ) helical tension, local values of s
in vivo must be substantially higher than þ 0.042. Thus far,

this s value establishes the helical tension against which

DNA-tracking ensembles still are able to move along

eukaryotic chromatin.

Nucleosomal organization is preserved in DNA under

positive helical tension

To examine whether DNA supercoiling generated in vivo

was constrained by chromatin, we incubated native yeast

minichromosomes, for which sB�0.05 and for which

s4þ 0.04, with catalytic amounts of type-1B topoisomerase

(S. cerevisiae topo I or vaccinia virus topo I) and type-2

topoisomerase (S. cerevisiae topo II). All reactions contained

also an excess of a (�) supercoiled plasmid, which had been

added during minichromosome extraction. This plasmid

served as internal control to calibrate the DNA relaxation

activity of the topoisomerases, as well as to quench

nonspecific protein–DNA interactions. DNA topology in

minichromosomes and their accompanying control plasmids

was then analyzed by two-dimensional gel electrophoresis

(Figure 2A). Incubation of minichromosomes for which

sB�0.05 (lane 1) with topo I (lane 2) or topo II (lane 3)

did not significantly change their DLk value and merely

induced slight broadening of the Lk distributions. In the

same mixtures, however, the control plasmid was fully

relaxed by the topoisomerases. Therefore, the DLk of

these minichromosomes reflects the (�) supercoils con-

strained by typical chromatin structure, in which each

nucleosome stabilizes roughly one (�) DNA supercoil.

Incubation of Yp4.4 minichromosomes for which s4þ 0.04

(lane 5) with topo I (lane 6) and topo II (lane 7) produced Lk

distributions that, surprisingly, were nearly identical to

those constrained by typical chromatin (compare lanes 2

and 3, with lanes 6 and 7). In the same reactions, the

control plasmid had no constrained supercoils and was

again fully relaxed by the topoisomerases. This complete

recovery of (�) supercoils was observed in different yeast

circular minichromosomes, was independent of the topo-

isomerase used, and persisted even when relaxations were

carried out in the presence of a large excess of control

plasmid (Figure 2B).

To corroborate the recovery of the typical chromatin

structure upon relaxation of (þ ) supercoiled minichromo-

somes, we used micrococcal nuclease to footprint nucleo-

some positions along the TRP1 ARS1 region of Yp4.4

(Figure 3). Minichromosomes for which sB�0.05 (B)

showed preferential DNA cleavage sites that were consistent

with the nucleosome positions determined by Thoma et al

(1984). Minichromosomes for which s4þ 0.04 (C) showed

few additional cleavage sites, which indicated an alteration of

chromatin structure. Following their incubation with topo I

(D) or topo II (E), however, such additional sites disappeared

and the footprints became nearly identical to those of the

typical chromatin (B). Therefore, when intracellular DNA

undergoes (þ ) helical tension, the bulk of histones seem to

remain bound to DNA and conformational changes of chro-

matin apparently revert by DNA relaxation.

Figure 2 Relaxation of yeast minichromosomes by DNA topoi-
somerases. (A) Yeast minichromosomes, for which sB�0.05
(lane 1) and for which sB4þ 0.04 (lane 5) were incubated at
301C for 30min with catalytic amounts of vaccinia virus topo I
(lanes 2 and 6), S. cerevisiae topo II (lanes 3 and 7) or no enzyme (7
and 8). Plasmids Yp4.4 and pHC624 were also relaxed in vitro (lane
R). Two-dimensional electrophoresis of DNA was carried out at
251C in a 0.8% agarose gel in TBE buffer plus 0.6mg/ml of
chloroquine at 50V for 14 h in the first dimension (top to bottom),
and TBE buffer plus 3mg/ml of chloroquine, at 60V for 8 h in the
second dimension (left to right). Gel-blots were probed for Yp4.4
(upper panel) and for the control plasmid pHC624 (lower panel).
(B) Yeast minichromosomes, for which sB�0.05 (lane 1) and for
which s4þ 0.04 (lane 4) were supplemented with an excess of
control plasmid pHC624 (1mg/ml), and incubated with catalytic
amounts of S. cerevisiae topo I (lanes 2 and 5) or S. cerevisiae topo II
(lanes 3 and 6) at 301C for 30min. After two-dimensional electro-
phoresis of DNA, gels were blotted and probed for the yeast 2-mm
circle (upper panel) or ethidium stained to visualize pHC624 (lower
panel).

Relaxation of nucleosomal DNA by topoisomerase II
J Salceda et al

&2006 European Molecular Biology Organization The EMBO Journal VOL 25 | NO 11 | 2006 2577



Topoisomerase II relaxes supercoiled chromatin more

efficiently than topoisomerase I

In the above experiments, we had noticed that more type-1B

than type-2 topoisomerase activity was required to comple-

tely relax the yeast minichromosomes. Hence, control plas-

mids added during minichromosome extraction allowed us to

normalize the catalytic amount of topo I and of topo II needed

to relax naked DNA at comparable rates and thereby compare

their relaxation kinetics on supercoiled chromatin. In these

conditions (Figure 4A), (þ ) supercoiled minichromosomes

were relaxed by topo II faster than by topo I. The same result

was found when comparing topo II with vaccinia virus topo I.

This kinetic divergence was also observed in the yeast 2-mm
circle and other yeast minichromosomes, and it persisted in

a broad range of ionic conditions: KCl or NaCl from 80 to

200mM, and MgCl2 from 2 to 12mM. Therefore, the differ-

ence in the efficiency with which type-1B than type-2 topo-

isomerases relax supercoiled chromatin was probably not

attributable to DNA sequences or reaction conditions.

As control plasmids were (�) supercoiled and minichro-

mosomes were (þ ) supercoiled, we also ruled out an effect

of DNA supercoiling handedness (Figure 4B). We deprotei-

nized (þ ) supercoiled Yp4.4 minichromosomes to obtain

(þ ) supercoiled Yp4.4 plasmid. This DNA was mixed with

the (�) supercoiled pHC624 and adjusted to the reaction

conditions used to relax minichromosomes. We then com-

pared the relaxation rates of (�) supercoiled DNA, (þ )

supercoiled DNA, and (þ ) supercoiled chromatin by topo-

isomerase I and II. Topo I (lanes 1–5) and topo II (lanes 6–10)

did not show any significant bias in relaxing (þ ) and (�)

supercoiled plasmids. This result was consistent with that

observed in previous studies on naked DNA (Charvin et al,

2003; Koster et al, 2005). However, in the same catalytic

conditions, topo I relaxed the supercoiled minichromosomes

(lanes 11–15) about 15 times slower than the control plas-

mids. This difference markedly contrasted with that of topo

Figure 3 Chromatin structure upon relaxation of yeast minichro-
mosomes. Preferential DNA cleavage sites by micrococcal nuclease
(MN) digestion along the TRP1-ARS1 region of Yp4.4 were mapped
on the following substrates: Yp4.4 plasmid (A), Yp4.4 minichromo-
some for which sB�0.05 (B), Yp4.4 minichromosomes for which
s4þ 0.04 (C), and after their relaxation by S. cerevisiae topo I (D)
or S. cerevisiae topo II (E). Digested DNA samples were restricted
with endonuclease EcoRI, separated on a 1% agarose gel, blotted
and probed with the radio-labeled 186 bp EcoRI–XbaI TRP1 frag-
ment (p). Lane 1, XbaI and HindIII site markers. Arrowheads denote
main DNA cleavage sites visible in (B, C, D, E). Asterisks denote
additional DNA cleavage sites visible in (C). The scheme depicts
nucleosome positions determined by Thoma et al (1984) along the
TRP1-ARS1 yeast DNA segment.

Figure 4 Relaxation kinetics of supercoiled chromatin. (A)
Positively supercoiled Yp4.4 minichromosomes and their accompa-
nying control plasmid pHC624 were incubated with catalytic
amounts of topoisomerase I or topoisomerase II (as indicated).
Reactions were quenched at the indicated periods (min).
Following DNA electrophoresis, the gel-blots were probed for
Yp4.4 (up) and for pHC624 (down). Note that topoisomerase I
and II activities were adjusted to relax the control plasmid at
comparable rates. (B) Mixtures containing (þ ) supercoiled Yp4.4
plasmid plus (�) supercoiled pHC624 plasmid, or containing (þ )
supercoiled Yp4.4 minichromosome plus (�) supercoiled pHC624
plasmid were relaxed with catalytic amounts of topoisomerase I or
topoisomerase II (as indicated). Reactions were quenched at the
indicated periods (min). DNA electrophoresis was carried at 251C in
a 0.9% agarose gel in TBE buffer at 40V for 14 h. Gel-blots were
probed for Yp4.4 plus pHC624. DNA relaxation rates, by topoisome-
rases I and II, for supercoiled minichromosomes (CHR S(þ )) and
supercoiled plasmids (DNA S(�), DNA S(þ )) were determined by
measuring the gain of relaxed topoisomers excluding nicked ones.
Graphs represent the average of four experiments with error bars
indicating s.d.’s from the mean.
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II, which relaxed the minichromosomes (lanes 16–20) only

1.5 times slower than the plasmids.

Intracellular topoisomerase II is the main relaxase

of supercoils in nucleosomal DNA

To assess the biological relevance of the high efficiency with

which topo II relaxes chromatin, we measured the specific

DNA relaxation activities of intracellular topoisomerases I and

II in yeast. We incubated (þ ) supercoiled minichromosomes

and control plasmids with serial dilutions of extracts from

Dtop1 TOP2 and TOP1 TOP2 yeast cells, and determined DNA

relaxation rates in the absence or presence of ATP (Figure 5A).

In the absence of ATP, topo I is the only cellular enzyme to

relax supercoiled DNA efficiently. Accordingly, extracts from

Dtop1 TOP2 cells showed no significant ATP-independent DNA

relaxase activity; whereas, in similar conditions, extracts from

TOP1 TOP2 cells relaxed the control plasmids and to a lesser

extent the minichromosomes. In the presence of ATP, however,

the minichromosomes and the control plasmids were relaxed

with comparable efficiency by the Dtop1 TOP2 yeast extracts,

as well as by the TOP1 TOP2 yeast extracts. This ATP-depen-

dent DNA relaxase is topo II; thus, no other relaxase activity is

detected in extracts from Dtop1 TOP2 cells containing the topo

II inhibitor ICRF-193, or extracts from Dtop1 top2-ts cells

inactivated at 351C. Therefore, ATP-independent and ATP-

dependent DNA relaxation rates allowed us to calculate rela-

tive specific activities of yeast topoisomerases I and II within

their physiological dosages (Figure 5B). The results indicated

that yeast topo I activity relaxed naked DNA twice as fast as

that of topo II. However, yeast topo II activity relaxed chroma-

tin five times as fast as that of topo I. These figures were

consistent with the relaxation rates determined with the pur-

ified enzymes, in which topo II relaxed chromatin about

10-fold faster than topo I.

Discussion

We have shown that DNA superhelical density can rise above

þ 0.04 in eukaryotic chromatin without displacement of the

Figure 5 Relative relaxase activities of intracellular topoisomerases I and II. (A) Positively supercoiled Yp4.4 minichromosomes (CHR) and
their accompanying control plasmid pHC624 (DNA) were supplemented with extracts from Dtop1 TOP2 or TOP1 TOP2 yeast cells, as indicated.
Incubations proceeded at 301C in the absence or presence of ATP, and were quenched at the indicated time periods (min). Two-dimensional
electrophoresis of DNA was as in Figure 2A and the gel blots were probed for Yp4.4 and pHC624. (B) Right, rates of chromatin and DNA
relaxation, in the presence and the absence of ATP, determined by measuring the gain of relaxed topoisomers excluding nicked ones. Left,
relative specific activities of topo I (ATP-independent rate) and topo II (ATP- dependent minus ATP-independent rate). Error bars denote the s.d.
from the mean of five different experiments.
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histones or disruption of the nucleosome organization. This

s value establishes an helical tension below which DNA-

tracking ensembles still operate in eukaryotic chromatin. We

have also shown that, in contrast to what occurs in naked

DNA, eukaryotic topo II is more efficient than topo I in

relaxing nucleosomal DNA. This divergence has biological

relevance, thus we found that topo II is the dominant relaxase

of nucleosomal DNA in cell extracts containing physiological

dosages of topoisomerase I and II. These findings reveal

novel interactions between DNA supercoiling, chromatin

dynamics and the functions of topoisomerases I and II.

The first question raised by our results is how DNA can

preserve its nucleosome organization under (þ ) helical

stress. Lee and Garrard (1991) had reported the presence of

bound histones in (þ ) supercoiled circles extracted from

yeast. We found that, indeed, the bulk of histones may remain

bound to (þ ) supercoiled DNA, and that the native nucleo-

some organization is recovered by relaxation alone. Although

histones can form nucleosome-like structures in (þ ) super-

coiled DNA in vitro (Clark and Felsenfeld, 1991), we do not

know whether such structures are comparable to those of the

supercoiled minichromosomes generated in vivo. In canon

nucleosomes, the core DNA (B145bp) has positive twist

(DTwCBþ 0.8) and negative writhe (DWrCB�1.8), whereas

linker DNA segments (30–90bp) do not bear significant twist

(DTwL) or writhe (DWrL) deformations. As DLk¼DWrþDTw,
a typical nucleosome stabilizes DNA helical tension equiva-

lent to about �1 DLk. Given that a nucleosome-like organiza-

tion is preserved at s4þ 0.04, each nucleosome had to

accommodate on average DNA deformations equivalent to

Bþ 0.8 DLk. Such deformations can hardly be confined to the

linker regions. As [DWrCþDTwC] is B�1, [DWrLþDTwL]

would be þ 1.8! Probably, torsion energy alters also the

conformation of the core DNA, by changing the phase of

histone–DNA superhelical interactions (DTwC), or the wrap-

ping of DNA around the histone octamer (DWrC).

Our results demonstrate that chromatin adapts to (þ )

helical tension with a conformation that reverts upon relaxa-

tion. On that basis, we modeled plausible conformations that

could support s values4þ 0.04 while preserving most native

histone–DNA interactions (Figure 6). In model a, entry and

exit DNA segments in each nucleosome flip to form a (þ )

instead of the typical (�) crossing, as proposed by Sivolob

and Prunell (2003). This model, however, could hardly sup-

port s values greater than þ 0.05. In model b, core DNA

unwraps by roughly one turn in each nucleosome and then

folds in left-handed plectoneme branches. In model c, further

unwrapping of DNA is associated with unfolding of the

histone octamer and a switch in the helical handedness of

the histone (H3–H4)2 tetramer, as proposed by Hamiche et al

(1996). The presence of additional micrococcal nuclease

cleavage sites in (þ ) supercoiled chromatin supports DNA

unwrapping conformations b and c. However, a general model

is difficult to assess experimentally. Intermediate states might

occur, and individual nucleosomes may equilibrate differently

according to their DNA sequences and histone modifications.

The second question raised by our results is why topo II

relaxes chromatin more efficiently than topo I. This difference

is unlikely to be related to DNA-binding hindrance. Both

enzymes interact with DNA segments of comparable length

(Figure 7A). If access to DNA were impaired by chromatin

structure, one would expect topo II, which is larger and

interacts with two DNA segments, to have more restrictions

than topo I. The different efficiencies of topoisomerases I and

II in relaxing nucleosomal DNA are more likely attributable to

their mode of interaction and manipulation of DNA strands.

In the first place, chromatin structure may differently affect

their substrate availability. Torsional elasticity of chromatin

could be smaller than for naked DNA, leading to a smaller

driving torque and thus to a low activity of topo I. Conversely,

chromatin might favor DNA transport activity of topo II by

increasing the juxtaposition probability of DNA segments

(Sun et al, 2005). Such increase may be significant in (þ )

supercoiled chromatin. Numerous (þ ) DNA crossings can

occur if chromatin hydrodynamics deviates the normal parti-

tion between twist and writhe deformations of DNA (Boles

et al, 1990). Moreover, as seen in Figure 6, many (þ ) DNA

crossings may also happen to overcome twist saturation and

residual wrapping of DNA around histone octamers. In the

second place, chromatin structure may affect the efficiencies

of topoisomerases I and II during their strand passage step.

Topo I cleaves one DNA strand allowing the duplex to

complete one or more rotations around the intact phospho-

diester bond on the uncleaved strand. For naked DNA in free

solution, axial rotation is fast, allowing the duplex to spin like

a speedometer-cable. Only DNA bends increase the effective

hydrodynamic volume of the duplex and, hence, the viscous

drag against axial rotation (Nelson, 1999). However, in a

nucleosomal DNA, axial rotation of the duplex comes up

against friction barriers. Twist diffusion is delayed because

the interaction of DNA with histone octamers converts chro-

matin into a bundle of DNA bends. Alternatively, rotation of

entire nucleosomes implies large hydrodynamic volumes,

especially when the angle between the entry and exit DNA

segment in each nucleosome is small. Finally, other protein–

DNA interactions or clashes may further increase viscous

Figure 6 Plausible chromatin conformations that accommodate
positive helical tension of DNA. The topology of DNA in the
canon nucleosome and in models a, b, and c is explained in the
text. To calculate approximate s values supported in each model,
the ratio of the change in writhe to the change in twist was fixed at
B2.6:1 in histone-free DNA regions (Boles et al, 1990). For s over
þ 0.03, the twist regime tends to saturate and deformation occurs
mainly by the writhe regime (Koster et al, 2005). We then took DTw
values no higher than 1-U/200 bp and DWr values by averaging (�)
and (þ ) crossings in several planar projections of a given con-
formation. For simplicity, we depicted histone octamers as spheres,
although partial unfolding of octamers may occur in models b and c.
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friction and restrict twist diffusion. Therefore, when DNA is

folded in chromatin, topo I must encounter kinetic limitations

to complete axial rotations of the cleaved duplex. Conversely,

the DNA cross-inversion mechanism of topo II only involves

a short and unidirectional translocation of the T-segment

across the G-segment (Roca, 2004). This ATP-dependent

process might be barely perturbed by friction outside the

enzyme–DNA complex. Hence, we envisage that the spatial

arrangement and hydrodynamics of DNA in chromatin fibers

affect the efficiencies of type-1B and type-2 topoisomerases,

but in opposite ways (Figure 7B).

Further inference from the relaxation of chromatin by

eukaryotic topoisomerases concerns the cleavage-religation

equilibrium of DNA. Because transiently cleaved-DNA com-

plexes can be converted into DNA lesions (Liu, 1989), the

assignment of cellular functions of topo I and II must mini-

mize the risk of genome damage. For topo II, ATP-driven

conformational changes enforce a very transient DNA gating

step (Roca, 2004). For topo I, however, cleavage-religation

equilibrium is governed by DNA torque and friction (Koster

et al, 2005). Then, the religation of DNA could be stalled

owing to twist diffusion barriers imposed by chromatin. In

our experiments, however, we could not detect an increase

of cleaved-DNA intermediates when topo I interacted with

supercoiled chromatin. Hence, we augur that topo I-DNA

friction might create an energy landscape that prevents non-

productive releases of the cleaved strand when the duplex

is unlikely to complete a full turn.

Given that nucleosomal DNA is an optimal substrate for

relaxation by topoisomerase II, what is then the role of

topoisomerase I? We believe that topo I contributes to DNA

relaxation in chromatin regions where topo II is not proficient.

As topo II activity depends on the juxtaposition probability

of DNA segments (Roca and Wang, 1996), topo II will relax

helical tension as long as there is substantial deformation of

DNA by the writhe regime. In regions where the transcription

rate is high, however, molecular crowding and DNA-pulling

forces may preclude the local formation of supercoils. Helical

tension would then deform DNA mostly by the twist regime,

allowing topo I to be more efficient than topo II. This scheme

is consistent with the preferential localization of topo I in

highly transcribed regions (Fleischmann et al, 1984; Mao et al,

2002) and mainly in the nucleolus (Muller et al, 1985; Zhang

et al, 1988), where topo I interacts directly with the RNA

polymerase I holoenzyme (Christensen et al 2004). These

interactions may induce topo I to function where full turn

rotations of the duplex are fast, thereby increasing the overall

efficiency of DNA relaxation and avoiding the stall of cleaved-

DNA intermediates. Another scenario where topo I may be

efficient is chromatin assembly. Either topo I or topo II can

provide the relaxation activity required for replication-inde-

pendent nucleosome assembly in budding yeast (Garinther

and Schultz, 1997). Furthermore, nucleosome assembly in

Xenopus egg extracts have suggested that in this system DNA

relaxation is largely performed by topo I (Almouzni and

Mechali, 1988). During chromatin assembly, histones are

deposited on naked DNA and (þ ) helical tension rises locally

to balance the (�) writhe of DNA in nucleosomes. Thus,

global supercoiling density is never positive. Therefore, the

initial conformation of this substrate is not equivalent to that

of the (þ ) supercoiled chromatin (s4þ 0.04) reported here.

Hence, DNA relaxation by topo I may be efficient, especially

in early stages of chromatin assembly when rotations of the

duplex can be fast. Topo I, however, is dispensable for cell

viability in budding and fission yeast (Uemura and Yanagida,

1984; Saavedra and Huberman, 1986; Brill and Sternglanz,

1988; Giaever and Wang, 1988). This observation was surpris-

ing because no other cellular topoisomerase uses a DNA

strand-rotation mechanism. Hence, topo I, rather than topo

II, was considered the proficient relaxase of DNA in eukar-

yotic cells. Now, our results clarify why topo II suffices to

modulate supercoiling of DNA in the absence of topo I. The

molar amount of topo I and topo II in S. cerevisiae had been

estimated to about 3000 and 5000 copies per cell, respectively

(Ghaemmaghami et al, 2003). These quantities are consistent

with our results showing that the topo II activity relaxing

nucleosomal DNA in yeast extracts dominates by a factor of

five that of topo I. Therefore, topo II is not only more efficient

than topo I in relaxing chromatin, but probably accounts for

the bulk of this cellular activity.

Numerous observations had denoted that topo II might

have cellular roles other than unlinking newly replicated DNA

strands. For example, Topo II alleviates transcription repres-

sion by chromatin (Mondal and Parvin, 2001) and affects

Figure 7 Comparative mechanics of topoisomerases I and II in
relaxing nucleosomal DNA. (A) DNA segment lengths required
for the function of eukaryotic topoisomerases are represented
according to structural and biochemical data. Topo I clamps around
8 bp of DNA up to the cleavage site. Then, about 20 bp of duplex (R)
should be free to rotate without colliding with the protruding
domains of the enzyme (Stewart et al, 1998). Topo II interacts
with the gated duplex (G) along 26 bp of DNA. The transported
duplex (T) must cross the 50-Å wide dimer interface of the enzyme
(Fass et al, 1999). (B) In nucleosomal DNA, bending of the duplex
slows twist diffusion, and rotation of entire nucleosomes implies
high viscous friction. Consequently, driving torque is small and a
duplex cleaved by topo I comes up against kinetic limitations to
complete axial rotations. Conversely, chromatin folding may favor
the juxtaposition of DNA segments. Then, the cross-inversion
mechanism of topo II involves a short translocation of the
T-segment across the G-segment.
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nucleosome positioning (Germe and Hyrien, 2005). Topo II,

rather than topo I, cleaves DNA ahead of replication forks

(Holm et al, 1989; D’Arpa et al, 1990). Topo II, rather than

topo I, is active in post replicative spermatogenic cells that

undergo the nucleo-histone nucleo-protamine transition (Roca

and Mezquita, 1989). The b-isoform of topo II found in higher

eukaryotes is not required for cell proliferation, but involved

in the regulation of cell fate (Lyu and Wang, 2003). The

topological interconversions of DNA underlying these mole-

cular processes are largely unknown. Our results suggest that,

in addition to relaxing DNA supercoils, topo II can be an

efficient modulator of chromatin structure by altering the

topology of nucleosomal DNA. This role of topo II may be

as relevant for the topology of cellular DNA, as that of other

type-2 topoisomerases in bacterial cells. In most bacteria, both

topo IV and DNA gyrase modulate the supercoiling of DNA

(Champoux, 2001; Wang, 2002). Remarkably, bacteria do not

have a type-1B topoisomerase to assist the relaxation of (þ )

helical tension under the twist regime. However, unlike topo

II, bacterial gyrase enforces the juxtaposition of DNA seg-

ments to invert (þ ) crossings. In light of our results, we

anticipate that eukaryotic chromatin may configure optimal

DNA crossings to be inverted by topo II. Further studies may

decipher whether this prospect has deeper implications for the

eukaryotic gene regulation.

Materials and methods

Strains, plasmids, and enzymes
S. cerevisiae strains JCW27 (Dtop1 TOP2) and JCW28 (Dtop1 top2–
4), carrying the null mutation Dtop1 or the thermo-sensitive
mutation top2–4, are derivatives of FY251 (TOP1 TOP2 MATa his3-
D200 leu2-D1 trp1-D63 ura3–52) (Roca et al, 1992). Plasmid JRW13,
a derivative of YEp13, carries the E. coli topA gene under
constitutive pGPD yeast promoter. Plasmid Yp4.4 (4414 bp) carries
the 1.4 kbp EcoRI TRP1ARS1 chromosomal fragment of S. cerevisiae.
Plasmid pHC624 (2065 bp) is a derivative of pBR322 containing the
ampR-oriC sequences. DNA Topoisomerase I of vaccinia virus was
purified from E. coli cells harboring the expression clone pET11vv-
top1 (Shuman et al, 1988). DNA topoisomerase I of S. cerevisiaewas
purified from yeast cells harboring the expression clone YCpGAL-
TOP1 (Bjornsti and Fertala, 1999). DNA topoisomerase II of
S. cerevisiae was purified from yeast cells harboring the expression
clone YEpTOP2GAL1 (Worland and Wang, 1989).

Extraction of minichromosomes
Yeast cells were grown at 261C in synthetic selective media.
Thermal inactivation of topo II was carried out during exponential

growth (OD B0.8) by shifting cell cultures to 351C. Cells from a
100ml culture were harvested and washed in Tris–HCl 10mM (pH
8), EDTA 1mM, at 41C. Cells were resuspended at 41C in 1ml of
buffer L (Tris–HCl 10mM pH 8.0, EDTA 1mM, EGTA 1mM, NaCl
150mM, DTT 1mM, Triton –X-100 0.1%, pepstatin 1 mg/ml,
leupeptin 1 mg/ml, PMSF 1mM, and 10 mg/ml of supercoiled
plasmid pHC624). About 1ml of glass beads was added and the
suspension was stirred six times by 30-s pulses at 41C. Supernatants
were recovered after two successive centrifugations (20 000 g at
41C) and then loaded on a Sephacryl S-300 column equilibrated
with buffer L at 41C. Yeast circular minichromosomes and super-
coiled plasmids were eluted in the first filtration volume.

Micrococcal nuclease digestions
Plasmids and minichromosomes were solubilized in buffer L plus
CaCl2 adjusted to 5mM. Following preincubation at 371C for 5min,
micrococcal nuclease was added at 2–250U/ml and digestions
proceeded at 371C for 2min. Reactions were terminated by the
addition of one volume of buffer K (EDTA 40mM, SDS 1%,
proteinase K, RNAse A). After 1 h at 601C, samples were extracted
by phenol and DNA was recovered by EtOH precipitation.

Topoisomerase reactions
Mixtures containing yeast minichromosomes and control plasmids
were adjusted to 8mM MgCl2 and 1mM ATP (when indicated),
preincubated at 301C for 5min, and then supplemented with
catalytic amounts of topoisomerases. Mixtures were also supple-
mented with serial dilutions of cell extracts of JCW27 or FY251
obtained by physical cell disruption, as described above. Following
incubations at 301C, reactions were quenched at indicated times by
adding one volume of buffer K (EDTA 40mM, SDS 1%, proteinase
K, RNAse A). Following 1 h incubation at 601C, samples were
extracted by phenol and DNAwas recovered by EtOH precipitation.

DNA electrophoresis and topology analysis
DNA was analyzed by agarose gel electrophoresis in the conditions
specified in figure legends. Gel-blot hybridization was carried out
using 32P-labeled DNA probes obtained by random priming on
purified DNA sequences. DNA linking number (Lk) distributions
was analyzed by quantifying the amount of every given topoisomer
by phosphorimaging the probed gel-blots. DNA supercoiling density
(s) was calculated with s¼DLk/Lk0 (Wang et al, 1982). Linking
number difference (DLk) was determined with DLk¼Lk�Lk0, in
which Lk0¼N/h0, where N is the DNA circle size (in bp) and h0

(10.5 bp/turn) the most probable helical repeat of DNA in the
relaxation conditions used (Horowitz and Wang, 1984).
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