
1 

 

 

 

 

 

Hepatocyte growth factor is elevated in amniotic fluid from obese 1 

women and regulates placental glucose and fatty acid metabolism 2 

Francisco Visiedo
1
 PhD, Fernando Bugatto

2
 MD-PhD, Cristina Carrasco-Fernández

3
 PhD, Ana 3 

Sáez-Benito
3
 PhD, Rosa María Mateos

1
 PhD,  Irene Cózar-Castellano

1,5
 PhD, José L. Bartha

2,4 
 MD-4 

PhD and Germán Perdomo
1,6*

 PhD 5 

1
Research Unit, Puerta del Mar University Hospital, Cádiz, Spain. 6 

2
Department of Obstetrics and Gynecology. Puerta del Mar University Hospital, Cádiz, Spain. 7 

3
Clinical Analysis Department, Puerta del Mar University Hospital, Cádiz, Spain. 8 

4
Department of Obstetrics and Gynecology, La Paz University Hospital, Madrid, Spain 9 

5 
Instituto de Genética y Biología Molecular (Universidad de Valladolid-CSIC), Valladolid, 10 

Spain. 11 

6
University of Castilla-La Mancha,

 
School of Environmental Sciences and Biochemistry, Toledo, 12 

Spain. 13 

Running title: Hepatocyte Growth Factor and placental metabolism 14 

*
Author for correspondence: 15 

Germán Perdomo, Ph.D. 16 

University of Castilla-La Mancha, School of Environmental Sciences and Biochemistry. 17 

Science-Technology Campus in the Old Weapons Factory. 18 

Sabatini Building. 19 

Avenue of Charles III, s/n 20 

45071. Toledo. Spain. 21 

Tel: (+34) 925268800 Extension 5480                         22 

e-mail: perdomogm@yahoo.com 23 

 24 

Word count: 214 in abstract; 4155 in main text. 25 

 26 

 27 

*Title Page and Abstract

mailto:perdomogm@yahoo.com


2 

 

 

 

 

 

Abstract 28 

Introduction: To evaluate the impact of the pro-inflammatory cytokine hepatocyte growth 29 

factor (HGF) on the regulation of glucose and lipid placental metabolism. 30 

Methods: HGF levels were quantified in amniotic fluid and placenta from control and obese 31 

women. 2-deoxy-glucose (2-DOG) uptake, glycolysis, fatty acid oxidation (FAO), fatty acid 32 

esterification, de novo fatty acid synthesis, triglyceride levels and carnitine palmitoyltransferase 33 

activities (CPT) were measured in placental explants upon addition of pathophysiological HGF 34 

levels.  35 

Results: In obese women, total- and -activated-HGF levels in amniotic fluid were elevated 36 

~24%, and placental HGF levels were ~3-fold higher than in control women. At a similar dose to that 37 

present in amniotic fluid of obese women, HGF (30 ng/mL) increased Glut-1 levels and 2-DOG 38 

uptake by ~25-30% in placental explants. HGF-mediated effect on 2-DOG uptake was dependent on 39 

the activation of phosphatidylinositol 3-kinase signaling pathway. In addition, HGF decreased ~20% 40 

FAO, whereas esterification and de novo fatty acid synthesis increased ~15% and ~25% respectively, 41 

leading to 2-fold triglyceride accumulation in placental explants. In parallel, HGF reduced CPT-I 42 

activity ~70%.  43 

Discussion: HGF is a cytokine elevated in amniotic fluid and placental tissue of obese women, 44 

which through its ability to stimulate 2-DOG uptake and metabolism impairs FAO and enhances 45 

esterification and de novo fatty acid synthesis, leading to accumulation of placental triglycerides. 46 

 47 

Keywords: Placental inflammation, fatty acid metabolism, glucose metabolism, Hepatocyte 48 

Growth Factor.  49 



Highlights 

Maternal obesity is linked with elevated placental HGF. 

The cytokine HGF is elevated in amniotic fluid and placenta of obese pregnant women. 

HGF regulates placental fatty acid and glucose metabolism. 

The mechanism relies on enhanced glucose uptake and inhibition of CPT-I activity. 

*Highlights (for review)
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Introduction 50 

Obesity is a growing health concern in women of reproductive age because is associated with a 51 

broad range of maternal and fetal complications, such as macrosomia, a condition characterized by 52 

excessive fetal fat accretion that predispose the newborn to suffer metabolic diseases later in life [1-53 

4]. 54 

The mechanistic link between maternal obesity and fetal macrosomia is poorly understood. 55 

Maternal obesity is usually associated with hyperglycemia and hypertriglyceridemia, which may 56 

result in augmented transplacental nutrient transfer to the fetus. In the obesogenic-diabetogenic 57 

hypothesis proposed by Catalano et al. [2], changes in maternal availability of lipid surplus would 58 

facilitate non-esterified free fatty acids delivery to the adipocytes of the fetus, whereas maternal 59 

hyperglycemia and hyperinsulinemia would enhance lipogenesis leading to fetal adiposity. Hence, 60 

maternal hyperinsulinemia, and excessive circulating levels of glucose and lipids would play a direct 61 

role in the accumulation of fat in fetal adipose tissue. However, in pregnancies complicated with 62 

obesity, the expression of placental pro-inflammatory cytokines and certain immune cell populations 63 

are elevated leading to a chronic inflammatory milieu in which the fetus develops [5-7]. These 64 

observations have propelled the question whether excessive fetal adiposity can be explained solely as 65 

a result of higher circulating nutrients in maternal blood. Thus, it has been proposed that placental 66 

inflammation observed in obese women may modify the availability of nutrient supply at the 67 

maternal-fetal interface leading to augmented transplacental nutrient transfer to the fetus  [2]. 68 

Unfortunately, this question remains to be addressed, and the contribution of intrauterine pro-69 

inflammatory milieu on placental metabolism regulation has not been extensively investigated. 70 
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HGF is a pro-inflammatory cytokine elevated in serum of obese patients, which decline with 71 

weight loss and reduced body fat mass that occurs after gastroplasty [8-10]. The adipose tissue of 72 

these patients abnormally produces and secretes HGF, contributing to augmented serum HGF levels 73 

[9, 11]. HGF is activated by serine proteases, such as the HGF activator (HGFA), to exert its 74 

biological functions [12]. Although HGF was initially identified as a circulating factor that stimulates 75 

hepatocyte proliferation after liver injury [13], HGF exhibits pleiotropic biological functions in a 76 

broad range of cell types. Among them, HGF is a potent regulator of glucose and lipid metabolism in 77 

pancreatic β-cells, intestine epithelial cells, adipocytes and skeletal muscle cells [14]. 78 

HGF is also expressed in placental mesenchymal cells, syncytiotrophoblast cells of the chorionic 79 

villi and in amniotic epithelium cells [15]. The biological effects of HGF are mediated by its receptor 80 

(c-met) a transmembrane protein encoded by the MET proto-oncogene [16]. The receptor for HGF is 81 

primary localized in placental cytotrophoblast cells and to a lesser degree in syncytiotrophoblast cells 82 

[17]. In the literature, it can be found few and contradictory reports about plasma HGF levels during 83 

normal pregnancy and in pregnancies complicated with obesity. In normal pregnancy, HGF levels 84 

increased with gestational age until term [18, 19] or there was no change during pregnancy [20]. In 85 

pregnancies complicated with obesity, HGF levels were similar to normal women and remained 86 

unchanged with increasing BMI during the second trimester of pregnancy [21]. These results are in 87 

disagreement with the notion that in obese patients serum HGF associated with obesity [9, 11] and 88 

had a linear relationship with BMI [9]. Finally, total-HGF and activated-HGF blood levels in 89 

neonates are regulated in a time-dependent manner along fetal development [22]. 90 

In this study, we aimed to further understand the mechanistic link between maternal obesity, 91 

through its associated inflammatory uteroplacental environment, and the regulation of placental 92 
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metabolism. To this end, we tested the hypothesis that the pro-inflammatory cytokine HGF alters 93 

placental glucose and lipid metabolism leading to accumulation of placental triglycerides.  94 

Methods 95 

Study subjects 96 

The study was performed on placentas and amniotic fluid from pregnant women recruited at the 97 

Department of Obstetrics and Gynecology, University Hospital “Puerta del Mar” (HUPM). Patient 98 

samples were obtained after written informed consent in accordance with the HUPM Ethics 99 

Committee requirements and the Declaration of Helsinki. Specific exclusion criteria included women 100 

under the age of 18, smokers, a history of long-chain 3-hydroxyacyl-CoA deficiency, hemolysis 101 

elevated liver function syndrome or acute fatty liver of pregnancy, preeclampsia, chronic 102 

hypertension, pregestational diabetes, GDM, other co-morbid disease, abnormal karyotype, fetal 103 

malformations and multiple pregnancy. 104 

In the studies conducted using placental explants, pregnant women who planned to deliver by an 105 

elective Caesarean section due to clinical reasons such as breech presentation or prior Caesarean 106 

section were recruited. All Caesarean sections were performed at term. Placental samples and fasting 107 

maternal blood samples were obtained at the time of the elective Caesarean section. Neonatal 108 

anthropometric measurements were performed immediately at delivery as usual. In total, 26 women 109 

with no pregnancy complications (BMI 20-24.9) participated in the study for placental explants 110 

experiments. In addition, placentas from 10 obese women (pre-pregnancy BMI >30) were used in 111 

experiments showed in Figure 1. Randomly chosen subsets of placentas were used for the 112 
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experiments as indicated in the figure legends. In table 1 are listed demographics and baseline data, 113 

as well as perinatal variables. 114 

In the studies conducted using amniotic fluid, patients were eligible among pregnant women 115 

attending our antenatal clinic undergoing elective amniocentesis at 15-20 weeks of gestation for 116 

karyotype analysis, most of them due to advanced maternal age or combined screening showing high 117 

risk for trisomy 21. All fetuses were chromosomally and anatomically normal at delivery. Women 118 

were asked to give an extra amount of 3 mL of amniotic fluid for the study. Women were divided 119 

into two groups according to their pre-pregnancy BMI: the control group composed of 29 normal 120 

weight women (BMI 20-24.9); and the obese group, composed of 12 obese pregnant women (BMI 121 

>30). Demographics and baseline data, as well as perinatal variables, are shown in Table 2.  Specific 122 

exclusion criteria included women under the age of 18, smokers, a history of long-chain 3-123 

hydroxyacyl-CoA deficiency, hemolysis elevated liver function syndrome or acute fatty liver of 124 

pregnancy, preeclampsia, chronic hypertension, pregestational diabetes, GDM, other co-morbid 125 

disease, abnormal karyotype, fetal malformations and multiple pregnancy.  126 

Materials 127 

Cell culture reagents (RPMI-1640 medium without glucose) and fetal bovine serum were from 128 

Invitrogen/Gibco, California, USA. The [9,10-
3
H]-palmitic acid, [

3
H]-H2O,  2-[1,2-

3
H]-deoxy-D-129 

glucose, [1-
14

C]-mannitol, [5-
3
H]-glucose, [1,2-

14
C]-acetic acid, L-[N-methyl-

14
C]-carnitine-HCl and 130 

liquid scintillation counting cocktail were from PerkinElmer, Massachusetts, USA. Methotrexate, 131 

Wortmannin, 2-deoxy-glucose (2-DOG) and cytochalasin B were purchased from Sigma-Aldrich 132 

(Madrid, Spain). Recombinant human HGF was purchased from Millipore Iberica (Madrid, Spain). 133 
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Biochemical parameters and HGF determination 134 

All biochemical parameters were analyzed at the clinical laboratory, HUPM, using reagents and 135 

modular systems from Roche Diagnostics as described previously [23]. Low-density lipoprotein 136 

cholesterol (LDL-c) was calculated using the Friedewald-Fredrickson formula.  137 

Human total-HGF (t-HGF) and activated-HGF (a-HGF) were measured by ELISA using a 138 

commercially available kit supply by IBL International GmbH (Hamburg, Germany). Each assay 139 

required 100 µL of amniotic fluid to determine the levels of t-HGF and a-HGF. 140 

Placental explants culture 141 

Term placenta obtained from elective Caesarean section was placed on ice and arrived to the 142 

laboratory within 10-15 minutes of delivery. Afterwards, placental villous explants (~100 mg wet 143 

weight) were dissected and cultured in 6-well plate containing 2 mL of culture medium (RPMI-1640 144 

supplemented with 5 mmol/l glucose, 10% FBS (vol/vol), 100 units/ml penicillin G, and 100 µg/ml 145 

streptomycin) as described previously [23].  146 

Fatty acid oxidation assay 147 

Stock of fatty acid solution was prepared by conjugating palmitate with essentially fatty acid-free 148 

bovine serum albumin (BSA) to generate a stock solution of 25% (wt/vol) BSA, 4 mmol/L palmitate 149 

in culture medium were prepared as described previously [23]. Mitochondrial fatty acid oxidation 150 

(FAO) assays were performed in placental explants as described previously [23-25]. Briefly, freshly 151 

isolated villous explants were incubated in culture media in the presence or absence of HGF, plus 152 

1.25% BSA, 0.1 mmol/l cold palmitate, and 18500 Bq/ml [
3
H]-palmitate at 37ºC for 18h. At the end 153 

of the incubation period, the medium was  collected, and tritiated water determined by the vapor-154 
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phase equilibration method of Hughes et al [26]. FAO was defined as nmol of palmitate per mg of 155 

tissue per hour.  156 

Esterification into total lipids assay 157 

Incorporation of [
3
H]-palmitate into total lipids was determined as previously described [23, 24]. 158 

Briefly, after similar incubation conditions to those used for measurements of β-oxidation, in the 159 

presence or absence of HGF, plus 0.1 mmol/L cold palmitate and 18500 Bq/mL for 18h, explants 160 

were washed 3 times with 2 mL of ice-cold PBS and homogenized in 500 µL of PBS. An aliquot of 161 

100 µL was used to extract the lipid content from samples according to Bligh and Dyer [27]. 162 

Afterwards, the radioactive content was determined by liquid scintillation counting. Esterification 163 

was plotted as % of control. 164 

De novo lipid synthesis assay 165 

De novo lipid synthesis was determined using [
14

C]-acetate in placental explants according to the 166 

procedure described previously [23, 24]. Villous placental explants were incubated in RPMI-1640 167 

culture media in the presence or absence of HGF plus 1850 Bq/mL [
14

C]-acetate at 37ºC for 18h. At 168 

the end of the incubation period, culture media were discarded followed by tissue homogenization in 169 

500 µL of PBS. After a total lipid extraction (as described for measurements of placental 170 

esterification rate), the radioactive content was determined.  171 

Glycolysis assay 172 

Glucose utilization (equivalent to glycolysis) was determined as the production of tritiated water 173 

(as for FAO experiments) after incubation of placental explants for 18h in the presence or absence of 174 

HGF, plus 240500 Bq/mL [5-
3
H]-glucose [24, 28].  175 
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Glucose transport assay 176 

Uptake of [
3
H]-2-DOG was performed ex vivo in placental explants, as described previously 177 

[14], with the following modifications. Freshly isolated placental explants were preincubated for 18h 178 

in culture medium in the presence or absence of HGF, plus cytochalasin B, a potent inhibitor of 179 

glucose transport mediated via facilitative glucose transporters. Afterwards, explants were washed in 180 

transport solution buffer (20 mmol/L Hepes-Na pH 7.4, 140 mmol/L NaCl, 5 mmol/L KCl, 2.5 181 

mmol/L MgSO4, 1 mol/L CaCl2 ) at room temperature, and  immediately incubated in transport 182 

solution buffer plus 10 µmol/L 2-DOG (18500 Bq/mL [
3
H]-2-DOG) and 39 mmol/L mannitol 183 

(11840 Bq/mL [
14

C]-mannitol) with or without HGF for 1 min. Then, explants were removed 184 

rapidly, rinsed with cold 0,9% NaCl to stop reactions, blotted, digested in 1 mol/L NaOH and 185 

analyzed for 
14

C and 
3
H content.  Glucose uptake was defined as nmol of 2-DOG per mg of protein 186 

per minute. 187 

Quantification of triglyceride content 188 

Placental triglyceride content was determined, as previously described by Perdomo et al. [29], in 189 

explants preincubated in the presence or absence of HGF for 18h.  Placental tissues (~100 mg) were 190 

homogenized in 400 µl HPLC-grade acetone, and aliquots of 5 µl of acetone-extracted lipid 191 

suspension were used to determined triglyceride concentrations using a triglyceride reagent kit 192 

(Biosystems, Barcelona, Spain). Proteins were quantified using the bicinchoninic acid method 193 

(Thermo Scientific, Madrid, Spain). Placental lipid content was defined as mg of triglyceride per mg 194 

of total placental proteins. 195 
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Western blot analysis 196 

Placental explants from control and obese women were dissected and washed with ice-cold PBS, 197 

followed by homogenization in lysis buffer (20 mmol/l Tris-HCl pH 7.5, 150 mmol/l NaCl, 1 mmol/l 198 

EDTA, 1 mmol/l EGTA, 1% (v/v) Triton X-100, 2.5 mmol/l sodium pyrophosphate, 1 mmol/l β-199 

glycerophosphate, 1 mmol/l Na3VO4, 1 µg/ml leupeptin, 1 mmol/l phenylmethylsulfonyl fluoride) ) 200 

plus protease inhibitors (Protease Inhibitor Cocktail, Sigma, St. Louis, MO). After 10 min. on ice, 201 

extracts were sonicated and centrifugated at 18,000 X g for 10 minutes at 4ºC. Pellets were discarded 202 

and solubilized proteins (40-60 µg/sample) were resolved by 10% SDS-PAGE for HGF and 203 

electrotransferred onto polyvinylidene difluoride (PVDF) filters for immunoblotting by conventional 204 

means. After probing with specific antibodies [glucose transporter 1 (Glut-1; 1:2000, Abcam, 205 

Cambridge, UK) HGF antibody (1:1000, Santa Cruz Biotechnology, Inc., Heidelberg, Germany) and 206 

protein kinase B (PKB; 1:1000, Cell Signaling, Barcelona, Spain)], the membranes were stripped and 207 

reprobed against phospho-PKB at Ser473 (p-PKB; 1:1000, Cell Signaling, Barcelona, Spain), or 208 

actin (1:3000, Sigma, Madrid, Spain). Signals were detected by chemiluminiescence (Immun-Start 209 

western chemiluminiescence kit, Bio-Rad, Madrid, Spain), and band densitometry was quantified 210 

with the ImageJ software (NIH, USA). 211 

CPT assay 212 

Activities of carnitine palmitoyltransferase I (CPT-I) and carnitine palmitoyltransferase II (CPT-213 

II) were determined in the direction of acyl-carnitine formation, using [
14

C]-carnitine as substrate in 214 

placental explants as described previously [23, 25, 30]. Briefly, explants were preincubated in RPMI-215 

1640 culture media in the presence or absence of HGF (30 ng/mL) at 37ºC for 18h. At the end of the 216 

incubation period, culture media were discarded, and explants were washed with ice-cold PBS prior 217 
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to homogenization in lysis buffer (5 mmol/l Tris-HCl, pH 7.2, 150 mmol/l KCl) with a glass 218 

homogenizer. For CPT-I assay, 100 µl of cell homogenate, in which the mitochondria remain largely 219 

intact, was incubated in the presence of 50 µmol/l palmitoyl-CoA, 500 µmol/l carnitine, and 220 

9250Bq/ml [
14

C]-carnitine in a 30ºC shaking water bath for 10 min. For CPT-II assay, a portion of 221 

the homogenate was adjusted to 1 % (wt/v) of the detergent octylglucoside, which solubilizes the 222 

mitochondrial membranes, inactivating CPT-I and releasing CPT-II from the mitochondrial matrix in 223 

active form. Afterward, reactions were stopped by adding 500 µl of 1-butanol. Radioactive content 224 

was determined by liquid scintillation counting. 225 

Statistical analysis 226 

Statistical analysis of data was performed using the SPSS software (SPSS 20.0, Inc., Chicago, 227 

IL). Data were presented as mean ± SEM. Distributions were checked with a histogram and the 228 

Kolmogorov-Smirnov test. Comparisons between two groups were done by unpaired Student´s t-test, 229 

and comparisons between more than two groups were performed by ANOVA followed by Tukey's 230 

Multiple Comparison Test. Differences were considered significant at p<0.05.” 231 

Results 232 

HGF is elevated in amniotic fluid and placenta from obese pregnant women 233 

Obesity in pregnancy induces placental inflammation, which is associated with production of 234 

pro-inflammatory mediators [5]. To determine the presence of the pro-inflammatory cytokine HGF 235 

in the inflammatory milieu, in which the fetus develop, we measured t-HGF and a-HGF levels in 236 

amniotic fluid from control and obese pregnant women during early- mid pregnancy. As shown in 237 

Figure 1A-B, t-HGF and a-HGF are elevated up to ~30 ng/mL in amniotic fluid from obese women. 238 
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In addition, HGF levels in placentas from obese women were ~3-fold higher than in control women 239 

(Fig. 1C).  240 

HGF increases glucose transport and metabolism in human placental explants 241 

HGF is a potent stimulator of glucose transport and metabolism in different cell types [14]. 242 

Because HGF is elevated in placental explants and amniotic fluid from obese women, we 243 

hypothesized that HGF stimulates glucose uptake in human placenta. To test our hypothesis, we 244 

preincubated placental explants, from pregnancies without complications, in the presence or absence 245 

of HGF for 18h, and measured glucose transport and glycolysis. HGF significantly increased 2-DOG 246 

uptake in human placental explants and the effect was maximal (~30%) at 30 ng/mL (Fig. 2A). 247 

Interestingly, in the presence of 10µM cytochalasin B (CB; an inhibitor of facilitative glucose 248 

transport), 2-DOG uptake was suppressed by ~60%, whereas in the presence of 50µM CB B by 249 

~90% (Fig. 2B). Likewise, CB completely abolished the effect of HGF on 2-DOG uptake, suggesting 250 

that HGF-mediated 2-DOG uptake in human placental explants was likely mediated by a facilitative 251 

glucose transport (Fig. 2B).   Finally, HGF-mediated effect on 2-DOG uptake was accompanied by a 252 

significant augment (~20%) on glycolysis in placental explants (Fig. 2C). Collectively, these results 253 

demonstrate a novel role of HGF in the regulation of placental glucose metabolism. 254 

HGF-mediated glucose uptake in human placental explants is Glut-1 and phosphatidylinositol 255 

3-kinase (PI3K) dependent 256 

Glucose transport is mainly regulated by Glut-1 in human placenta [31]. Consequently, we 257 

hypothesized that pathophysiological levels of HGF stimulates glucose uptake in human placental 258 

explants through up-regulation of Glut-1. To test this hypothesis, we analyzed Glut-1 levels in 259 
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protein extracts prepared from explants after chronic exposure to HGF for 18h. As shown in Figure 260 

3A, treatment with HGF increased by ~25% Glut-1 levels.  261 

To gain further insight into the molecular mechanism by which HGF regulates glucose transport 262 

and Glut-1 levels, we analyzed the possible signaling pathways downstream of c-met in placental 263 

explants. To this end, explants were preincubated in the presence or absence of HGF (30 ng/mL) in a 264 

time dependent manner (from 0 to 60 min), and PI3K signaling pathway was studied by immunoblot 265 

analysis. HGF potently and rapidly stimulated PKB phosphorylation in a time-dependent manner 266 

(Fig. 3B).  To reveal whether the inhibition of this signaling pathway could reverse the effect of HGF 267 

on glucose transport, we preincubated placental explants with 100 nM wortmannin (WM; a PI3K 268 

inhibitor) for 30 min before and during chronic (18h) incubation with HGF (30ng/mL). At the end of 269 

the incubation period, the 2-DOG uptake was measured in these cells. As shown in Figure 3C, 270 

wortmannin completely abolish the effect of HGF on glucose transport. Taken together, these results 271 

indicate that PI3K signaling pathway is involved in HGF-mediated 2-DOG uptake in human 272 

placental explants.  273 

HGF alters the metabolic partitioning of fatty acids in human placental explants 274 

We showed above that HGF enhanced glucose transport and utilization in placental explants. 275 

Therefore, it is reasonable to hypothesize that HGF-mediated accelerated glucose metabolism would 276 

inhibit fatty acid oxidation leading to accumulation of placental triglycerides. To test this hypothesis 277 

we measured the effect of chronic exposure (18h) to pathophysiological levels of HGF (30 ng/mL) 278 

on FAO in placental explants. As shown in Figure 4A, HGF significantly reduced the FAO rate by 279 

~20% in placental explants. In parallel, HGF enhanced fatty acid esterification by ~15% (Fig. 4B). 280 

Surprisingly, HGF also augmented de novo fatty acid synthesis by ~25% (Fig. 4C). Finally, 281 
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consistently with the expectation that fatty acids are preferentially directed towards esterification, 282 

and that HGF stimulated de novo fatty acid synthesis, placental triglyceride content significantly 283 

increased 2-fold in placental explants (Fig. 4D). Taken together, these data indicate that HGF alters 284 

the metabolic partitioning of fatty acids towards triglyceride accumulation through inhibition of FAO 285 

and stimulation of esterification and de novo fatty acid synthesis. 286 

HGF decreases carnitine palmitoyltransferase I activity in human placental explants 287 

Because HGF increased glucose transport and utilization, in parallel with diminished FAO, we 288 

hypothesized that the mechanistic link between accelerated glucose metabolism and lower FAO was 289 

inhibition of CPT-I activity by its physiological inhibitor malonyl-CoA, which is synthesized from 290 

glucose-derived acetyl-CoA by acetyl-CoA carboxylase (ACC) activity. Therefore, to gain further 291 

insight into the molecular mechanism by which HGF inhibits FAO in placental explants, we 292 

measured the activity of CPT-I and CPT-II in placental explants preincubated without (control) or 293 

with HGF (30 ng/mL) for 18h. As shown in Figure 7, HGF reduced by ~70% the activity of CPT-I 294 

(Fig. 5A), whereas CPT-II activity remained unchanged as expected (Fig. 5B).  295 

Discussion 296 

In obese women, the risk of macrosomia is 2-fold higher than in control women [2], leading to 297 

heavier neonates because of an increase in fat but not lean body mass [32]. Excessive fat 298 

accumulation in adipose tissue of newborns predispose them to suffer from metabolic diseases later 299 

in life [4], which perpetuates a vicious cycle of obesity and diabetes. At first glance, 300 

hypertriglyceridemia in plasma from obese women, secondary to maternal insulin resistance, would 301 

facilitate non-esterified free fatty acids delivery to the adipocytes of the fetus through potential 302 
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mechanisms such as alteration of concentration gradients across the placental barrier, and changes in 303 

the levels and/or activity of lipoprotein lipase, fatty acid-binding proteins and fatty acid transporters 304 

in syncytiotrophoblast cells [33]. Thus, it has been shown that maternal obesity modulates placental 305 

fatty acid transporters and placental fatty acid transport and metabolism [34, 35].  306 

Maternal obesity during pregnancy is also associated with placental accumulation of immune 307 

cells, such as macrophages and neutrophils, lipid accumulation in the placental villi stroma and 308 

syncytium, and elevated pro-inflammatory cytokines leading to lipotoxicity and inflammation [5-7, 309 

33, 36]. In this work, we showed that HGF is elevated in placental tissue and amniotic fluid of obese 310 

women during early- mid pregnancy, and identified mechanisms by which HGF regulated placental 311 

lipid accumulation. However, the molecular and biochemical mechanisms by which obesity is related 312 

to enhance pro-inflammatory cytokines expression in placenta have not been entirely clarified. A 313 

conceivable mechanism by which placental HGF production is augmented could be related to the 314 

lipotoxic and pro-inflammatory placental environment. Excessive circulating maternal free fatty 315 

acids and/or elevated glucose levels, which reduce fatty acid oxidation and enhance esterification 316 

through inhibition of carnitine palmitoyltransferase I [23], would lead to the accumulation of 317 

triglycerides in placenta. This accumulation of lipids may trigger activation of toll-like receptors 318 

(TLR) in trophoblast and/or macrophages, which would signal through phosphorylation of the c-Jun 319 

N-terminal kinase (JNK) and the inhibitor of κB  (IκB), leading to activation of the nuclear factor-kB 320 

(NF-κB) and activator protein 1 (AP-1), the primary mediators of inflammatory responses. This 321 

signaling pathway could be further stimulated by interleukin 1-beta (IL-1β), tumor necrosis alpha 322 

(TNF-α) and interleukin 6 (IL-6), constituting a vicious cycle. Nonetheless, signaling pathways 323 

involved in the production/ secretion of HGF in placentas from obese women remains unknown. 324 



16 

 

 

 

 

 

Using placental explants from women with no pregnancy complications, we demonstrate that at 325 

similar concentration to that present in amniotic fluid of obese women during early- mid pregnancy, 326 

HGF inhibited FAO and increased triglyceride accumulation. A limitation of this study is that we 327 

performed a cross-sectional study regarding HGF levels in amniotic fluid. Thus, in the absence of a 328 

longitudinal study, we cannot assume that HGF levels during the third trimester are similar to those 329 

measured during the second trimester. Nonetheless, these HGF levels augmented Glut-1 protein 330 

levels, glucose transport and metabolism. We evaluated whether the mechanistic link between HGF 331 

and lower FAO was inhibition of CPT-I activity by its physiological inhibitor malonyl-CoA, which 332 

is synthetized from glucose-derived acetyl-CoA by ACC.  This mechanism results in a shift of fatty 333 

acid partitioning away from the β-oxidation pathway toward esterification, allowing the 334 

accumulation of triglycerides in placenta. This notion is in agreement with our findings in placentas 335 

from pregnancies complicated by GDM, where we showed that accelerated glucose metabolism in 336 

placental explants lowered FAO [23]. The impact of other pro-inflammatory cytokines on lipid 337 

metabolism has not been extensively studied. In human trophoblast cell cultures IL-6, but not TNF-α, 338 

stimulated fatty acid accumulation [37]. This effect was not explained by an increased expression of 339 

lipoprotein lipase or fatty acid binding proteins. Although the mechanism by which IL-6 stimulates 340 

trophoblast fatty acid accumulation remains to be established, it is plausible to hypothesize that 341 

would be mediated by inhibition of FAO and/or stimulation of de novo fatty acid synthesis. Finally, 342 

this knowledge about HGF-mediated accelerated glucose metabolism and its impact on placental 343 

lipid metabolism, may offer new therapeutic targets for clinical management of pregnancies 344 

complicated by obesity. 345 
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Earlier studies suggested that de novo fatty acid synthesis pathway plays a minor role on 346 

accumulation of triglycerides in placentas from pregnancies complicated with diabetes [23, 38]. 347 

However, we demonstrated that HGF stimulated de novo fatty acid synthesis in placental explants 348 

from women with no pregnancy complication. If this HGF-mediated regulation on fatty acid 349 

synthesis would translate directly into the in vivo situation of placentas from obese women, the 350 

glucose-derived malonyl-CoA, synthesized by the activity of ACC, would not merely serve as a 351 

regulator of FAO pathway; but in addition, it would serve as a regulator of the de novo fatty acid 352 

synthesis. Consequently, de novo fatty acid synthesis pathway in placenta from pregnancies 353 

complicated with obesity would significantly contribute to placental triglycerides accumulation and 354 

augmented transplacental fatty acids delivery to fetal adipocytes.  355 

Although it is known that HGF participates in the regulation of glucose transport in different 356 

cells types [14], no study has addressed weather HGF might regulate glucose metabolism in human 357 

placenta. The current study demonstrates for the first time that HGF increases glucose uptake and 358 

utilization in human placental explants ex vivo. Our studies establish that, in addition to behaving as 359 

a growth factor, HGF has additional biological features as a modulator of glucose metabolic flux in 360 

placental cells engaged in glucose homeostasis control. Interestingly, HGF significantly increased 361 

total Glut-1 expression in human placental explants, which is associated with augmented glucose 362 

uptake. Furthermore, inactivation of PI3K signaling pathway completely abolished HGF-mediated 363 

effect on glucose uptake. We have previously showed that HGF also activates PI3K and ERK1/2 364 

signaling pathways in parallel with up-regulation of Glut-1 levels in skeletal muscle cells [14]. 365 

Likewise, pharmacological inhibition of these pathways also abolished glucose uptake in these cells 366 

[14]. Also, Di Simone et al. showed that resistin, a cytokine elevated in serum of third trimester 367 
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normal pregnancies, stimulated glucose uptake and Glut-1 levels in trophoblast cells through 368 

activation of ERK1/2 pathway [39]. Collectively, these results highlight an underappreciated role for 369 

cytokines in the control of glucose transport and metabolism in human placenta. 370 

In conclusion, HGF is a mechanistic link between the intrauterine pro-inflammatory milieu of 371 

pregnancies complicated with obesity and its associated placental lipotoxicity. Because most of 372 

maternal cytokines do not cross the human placental barrier, we propose that synthesized HGF 373 

within the placenta itself exacerbates lipotoxicity through biochemical mechanisms involving 374 

augmented glucose transport, fatty acid esterification and de novo fatty acid synthesis, which lead to 375 

placental triglyceride accumulation.  Finally, our results suggest that placental inflammation may 376 

play an indirect role on fetal macrosomia modifying the availability of nutrient supply to the fetus. 377 
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 488 

Figure legends 489 

Figure 1. HGF levels in amniotic fluid and placentas from obese pregnant women. HGF 490 

levels in amniotic fluid. t-HGF (A) and a-HGF (B) were measured in amniotic fluid from control 491 

(n=29) and obese (n=12) women by ELISA (see details in Table 2). Values are means ± SEM.  492 

*p<0.05 relative to control group by unpaired t-test. (C) Western blot analysis of HGF in placental 493 
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tissue from control and obese women. Frozen placental tissues (~100 mg) from control (n=8) and 494 

obese (n=10) groups (see details in Table 1) were used to quantify placental HGF content. β-actin 495 

expression was determined to ensure similar protein loading. Top: the y-axis represents the ratio of 496 

HGF vs. β-actin in arbitrary units (A.U). Bottom: a representative picture of the western blot is 497 

shown. Data are means ± SEM.*p<0.05 relative to control group by unpaired t-test.  498 

Figure 2. HGF stimulates glucose uptake and metabolism in human placental explants. (A) 499 

Stimulation of glucose uptake in placental explants. Placental explants from control women (n=3; 500 

Table 1) were incubated with different concentrations of HGF for 18h, and 2-DOG uptake was 501 

measured. Values are means ± SEM for 3 independent experiments in triplicate. *p<0.05 relative to 502 

control without HGF by ANOVA. (B) Effect of cytochalasin B (CB) on 2-DOG uptake mediated by 503 

HGF. Placental explants from control women (n= 4; Table 1) were treated with HGF (30 ng/ml) for 504 

18h in the presence or the absence of CB at 10 µM or 50 µM. Afterward, 2-DOG uptake was 505 

determined. Values are means± SEM for 4 independent experiments in triplicate. *p<0.05 relative to 506 

control without CB and without HGF; 
†
p<0.05 relative to HGF without CB by ANOVA. (C) Effect 507 

of HGF on glycolysis in placental explants. Placental explants from control women (n=7; Table 1) 508 

were treated with HGF (30ng/ml) for 18h. Afterward, glycolysis was determined. Values are 509 

represented as percentage of control for 7 independent experiments in triplicate. *p<0.05 relative to 510 

control by unpaired t-test. 511 

Figure 3. Augmented Glut-1 protein levels and activation of PI3K signaling pathway are 512 

required for HGF-mediated stimulation of glucose transport in human placental explants. (A) 513 

Western blot analysis of Glut-1 in placental explants. Explants from control women (n=4; Table 1) 514 

were preincubated with or without HGF (30 ng/mL) for 18h, and protein extracts were subjected to 515 
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immunoblot analysis using anti-Glut-1 antibody. Top: the y-axis represents the ratio of Glut-1 vs. β-516 

actin in arbitrary units (A.U). Bottom: a representative picture of the western blot is shown. Data are 517 

means ± SEM for 4 independent experiments. *p<0.05 relative to control by unpaired t-test. (B) 518 

Western blot analysis of PI3K-signaling pathway activation mediated by HGF in placental explants. 519 

Explants from control women (n=4; Table 1) were preincubated without (time 0) or with HGF 520 

(30ng/mL) for the indicated times. Afterward, protein extracts were subjected to immunoblot 521 

analysis using anti-PKB or anti-p-PKB antibody. Top: the y-axis represents the ratio of p-PKB vs. 522 

PKB in arbitrary units (A.U). Bottom: a representative picture of the western blot is shown. Data are 523 

means ± SEM for 4 independent experiments. *p<0.05 relative to time 0 by ANOVA. (C) Effect of 524 

wortmannin-mediated inhibition of PI3K signaling pathway on 2-DOG uptake. Placental explants 525 

from control women (n=4; Table 1) were preincubated with 100 nmol/L wortmannin (WM) for 30 526 

min before and during chronic (18h) incubation with HGF (30 ng/mL). At the end of the incubation 527 

period, the 2-DOG uptake was measured. Values are means ± SEM for 4 independent experiments in 528 

triplicate. *p<0.05 relative to control without HGF; 
†
p<0.05 relative to HGF without WM by 529 

ANOVA.  530 

Figure 4. HGF inhibits fatty acid oxidation and increases triglycerides content in human 531 

placental explants. (A) Effect of HGF on fatty acid oxidation. Placental explants from control 532 

women (n=7; Table 1) were incubated in the absence (control) or presence of HGF (30 ng/mL) for 533 

18h. Afterward, [
3
H]-water was determined. Values are means ± SEM for 7 independent experiments 534 

in triplicate. Significance is indicated *p<0.05 relative to control by unpaired t-test.  (B) Effect of 535 

HGF on fatty acid esterification. The same subset of placental explants described in panel A was 536 

used to assess esterification into total lipids. Values are represented as percentage of control for 7 537 
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independent experiments in triplicate. Significance is indicated *p<0.05 relative to control by 538 

unpaired t-test. (C) Effect of HGF on de novo lipid synthesis. Placental explants from control women 539 

(n=7; Table 1) were used to assess de novo fatty acid synthesis in the absence (control) or presence 540 

of HGF (30 ng/mL) plus [
14

C]-acetate for 18h. Afterward, [
14

C]-acetate incorporation into total lipids 541 

was determined. Values are represented as percentage of control for 7 independent experiments in 542 

triplicate. Significance is indicated *p<0.05 relative to control by unpaired t-test. (D) Placental 543 

explants from control women (n=4; Table 1) were used to assess the effect of HGF on placental TG 544 

accumulation. Values are means ± SEM for 4 independent experiments in triplicate. Significance is 545 

indicated *p<0.05 relative to control by unpaired t-test. 546 

Figure 5. HGF inhibits carnitine palmitoyltransferase I activity. (A) Effect of HGF on CPT-I 547 

activity. Placental explants from control women (n=4; Table 1) were incubated in the absence 548 

(control) or presence of HGF (30ng/mL) for 18h. Afterward, CPT-I activity was determined. Values 549 

are means ± SEM for 4 independent experiments in duplicated. Significance is indicated *p<0.05 550 

relative to control by unpaired t-test. (B) Effect of HGF on CPT-II activity. The same placental 551 

explants used in panel A were used to assess CPT-II activity. Values are means ± SEM for 4 552 

independent experiments in duplicated. Significance is indicated *p<0.05 relative to control by 553 

unpaired t-test.  554 
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Table 1. Placental explants samples. Maternal and fetal characteristics from 

the studied population used for placental explants experiments. 

 

 Control group (n=26) Obese group (n=10) 

Delivery mode 
Caesarean section 

No labour 

Caesarean section 

No labour 

Maternal age (yr) 30.0 ± 5.7 31.8 ± 4.0 

Gestational age at delivery (wk) 38.3 ± 1.81 38.6 ± 0.9 

Maternal pregravid BMI (kg/m2) 21.4 ± 1.5 34.2 ± 4.1* 

Maternal plasma glucose (mg/dL) 72.8 ± 6.6 80.6 ± 15.3 

Maternal plasma insulin (pmol/L) 6.5 ± 3.7 16.1 ± 9.4* 

Maternal plasma triglycerides (mg/dL) 182.0 ± 35.8 226.5 ± 48.6 

Maternal plasma total cholesterol (mg/dL) 249.8 ± 32.0 288.4 ± 35.1* 

Maternal plasma HDL-cholesterol (mg/dL) 73.3 ± 21.2 68.0 ± 18.0 

Maternal plasma LDL-cholesterol (mg/dL) 144.9 ± 24.3 158.7 ± 40.5 

Placental weight (g) 528 ± 106 617 ± 42* 

Birthweight (g) 3225 ± 309 3235 ± 279 

 

Data are given as mean ± SEM. BMI, Body mass index;  HDL, High-density 

lipoprotein; LDL, Low-density lipoprotein. *p<0.05 vs. control group by unpaired 

t-test.  
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Table 2. Amniotic fluid samples. Maternal and fetal characteristics from the studied 

population used for amniotic fluid collection. 

 Control  group (n=29) Obese group (n=12) 

Maternal age (yr) 35.61 ± 5.02 35 ± 1.1 

Gestational age at amniocentesis (wk) 16 (15-17) 16 (16-17) 

Gestational age at delivery (wk) 40.0 ± 1 39 ± 1.7 

Body mass index (kg/m2) 22.69 ± 1.3 34.6 ± 2.56* 

Newborn weight (g) 3258.52 ± 475 3357 ± 579 

 

Data are given as mean ± SE. Gestational age at amniocentesis is listed as median 

(interquartile range).  *p<0.05 vs. control group by unpaired t-test.  

Table-2
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