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Lafora disease fibroblasts exemplify the molecular interdependence between 
thioredoxin 1 and the proteasome in mammalian cells. 
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Abstract 

Thioredoxin 1, Trx1 is a key regulator of cellular redox balance and participates in 

cellular signaling events. Recent evidence in yeast have shown that members of the Trx 

family interact with the 20S proteasome, indicating redox regulation of proteasome 

activity. However, there is little information about the interrelationship of Trx proteins 

with the proteasome system in mammalian cells, especially in the nucleus. 

Here, we have studied this relationship in different cellular conditions of mammalian 

cells. We have showed that Trx1 levels and its subcellular localization (cytosol, 

endoplasmic reticulum and nucleus) depend on the proteasome activity during cell cycle 

in NIH3T3 fibroblasts or stress conditions, when proteasome was inhibited. In addition, 

we also studied how the main cellular antioxidant systems are stimulated when 

proteasome activity is inhibited in NIH3T3 cells. Finally, we describe how Trx1 levels 

are decreased in Lafora fibroblasts. In addition, nuclear co-localization of Trx1 with 20S 

proteasome in laforin deficient cells was altered compared with control cells. Our 

results indicate a close relationship between Trx1 and 20S nuclear proteasome and give 

a new perspective to study diseases or physiopathological conditions in which defects in 

the proteasome system are associated to oxidative stress. 
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Introduction 

Classically, the thioredoxin system has been considered a general disulfide reductase 

catalyzing NADPH-dependent reduction of S-S bridges in oxidized proteins. 

Thioredoxin (Trx) was also known as a hydrogen donor for ribonucleotide reductase, 

the essential enzyme that provides deoxyribonucleotides for DNA replication [1, 2]. 

However, nowadays Trx is known to be a multifunctional protein that, depending on the 

isoform or cellular stimuli [3, 4], has distinct roles in each of cellular locations [5, 6]. 

Thus, in the cytoplasm, Trx can regulate the redox environment of the cell and also the 

activity of certain proteins, such as the apoptosis signal-regulating kinase-1 (ASK-1) 

and hence controlling apoptosis [7, 8].  In the case of Trx1, it has been reported that it is 

localized mainly in the cytoplasm, although several factors such as radical oxygen 

species (ROS), ionizing radiations or UV light are able  to induce the migration of Trx1 

to the nucleus, despite the lack of a clear nuclear localization signal [3]. The nuclear 

translocation of Trx1 may be associated with the signaling molecules that connect the 

cytoplasm and the nucleus events [3], and suggests that Trx1 may be involved in 

nuclear processes. In fact, it has been described that Trx1 interacts with many 

transcription factors and thereby regulates gene expression (5, 8, 9). 

Proteasomes are responsible for most of the selective degradation of nuclear and 

cytosolic proteins [9, 10] and, therefore, control many essential processes such as cell 

proliferation, cell-cycle progression, transcriptional regulation, regulation of cell 

signalling, the unfolded protein response (UPR), and endocytosis [4, 11].  

Furthermore, a decrease in proteasome activity has been related with common diseases 

such as Alzheimer [12], Parkinson [13] and with rare diseases such as amyotrophic 

lateral sclerosis [14], Huntington disease [15] and Lafora disease, a fatal form of 
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progressive myoclonus epilepsy [16]. Interestingly, proteasome activity is also 

decreased during aging, as reviewed by Low et al. [17]. 

Recently, a direct link between proteasome activity and Thioredoxin-interacting protein 

(TrxINP) has been reported [18], and other authors have established an interaction of 

Txnl1 with some proteasome subunits in yeast [19, 20]. 

Thus, to gain a deeper insight into the relationship between Trx1 and proteasome 

activity in mammalian cells, we have used NIH3T3 fibroblasts to analyze changes in 

Trx1 and proteasome activity during cell cycle and the effect of the down-regulation of 

the proteasome activity in the expression of Trx1 and their subcellular localization. In 

this work we provide evidence for a relationship between proteasome activity and Trx1 

regulation and define pathways that could play important roles in the regulation of 

antioxidant enzymes and in the control of apoptosis.  

In addition, we have also analyzed the pathophysiological consequences of this 

interrelationship in a disease in which proteasomal activity is decreased; Lafora disease. 

In fibroblasts from patients suffering this disease we have observed changes in Trx1 

protein levels and also in the subcellular location of Trx1 and proteasomes, thus 

confirming a molecular interaction between both. 
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Material and Methods 

Cell culture 

NIH3T3 cells were grown in Iscove’s modified Dulbecco’s medium supplemented with 

10% foetal bovine serum and 1% penicillin/streptomycin at 37 °C and 5% CO2. Growth 

curves in NIH3T3 fibroblasts were obtained using a hemocytometer chamber at 6, 24, 

48 and 120 h after plating.  

Laforin-deficient fibroblasts were obtained from two patients with the clinical features 

of Lafora disease and with two different mutations, Y86X (Laf-1) and R241X (Laf-2), 

in the laforin gene (EPM2A) and control fibroblasts were obtained from healthy subjects 

matched by sex and age. Controls were kindly donated by Dra. Del Rio from the 

CIEMAT (Madrid, Spain) and Dra. Amparo Gimeno Universitat de València (Valencia, 

Spain). Fibroblasts were cultured at 37 ºC in a humidified 5% CO2 atmosphere in 

Dulbecco’s modified Eagle´s medium supplemented with 15% foetal bovine serum, 1% 

glutamine, 100 units/mL penicillin and 100 g/mL streptomycin (all from Invitrogen 

Life Technologies). 

 

Measurements of DNA synthesis 

Proliferation of cell lines was determined with the “Cell proliferation ELISA BrdU 

colorimetric assay” from Roche. Cells were cultured in 96 wells plates at 6, 24, 48 and 

120 h. The final reaction was measured with the spectrophotometer Spectra MAXPLUS 

384 from Molecular Devices, at wavelengths of 370-492 nm and 3 intervals of 5 min. 

The variation of absorbance is proportional to the incorporation of BrdU. This value 

was divided at each time by the total cell content, determined with the sulforhodamine 

B assay based on the spectrophotometric measurement of cellular protein [21].  
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RNA isolation and cDNA synthesis  

Total RNA was isolated from cells using the PARISTM Protein and RNA	 Isolation 

System (Ambion, Austin, TX, USA) according to the manufacturer’s instructions. For 

reverse transcription reactions (RT), 1 mg of the purified RNA was reverse transcribed 

using random hexamers with the High-Capacity cDNA reverse transcription kit 

(Applied Biosystems, P/N: 4322171; Foster City, CA, USA) according to the 

manufacturer’s instructions. RT conditions comprised an initial incubation step at 25oC 

for 10 min to allow random hexamers annealing, followed by cDNA synthesis at 37oC 

for 120 min, and a final 5 min inactivation step at 95ºC. 

 

Measurement of mRNA Levels 

The mRNA levels were determined by quantitative real-time PCR analysis using an 

ABI Prism 7900 HT Fast Real-Time PCR System (Applied Biosystems, Foster City, 

CA). Gene-specific primer pairs and probes for TRX1 (Thioredoxin 1) (Assay-on-

demand, Applied Biosystems), were used together with TaqManH Universal PCR 

Master Mix (Applied Biosystems, P/N 4304437, Foster City, CA) and reverse 

transcribed sample RNA in 20 l reaction volumes. PCR conditions were 10 min at 

95ºC for enzyme activation, followed by 40 two-step cycles (15 sec at 95ºC; 1 min at 

60ºC). The levels of glyceraldehyde-3-phosphate dehydrogenase expression were 

measured in all samples to normalize results differences in RNA input, RNA quality 

and reverse transcription efficiency. Each sample was analyzed in triplicate, and the 

expression was calculated according to the 2-ΔΔCt method [22].  
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Total protein and histone extraction  

Total protein extracts were obtained from approximately 106 cells lysed in ice for 15 

min using 100 µL of lysis buffer (20 mM Hepes, pH 7.4, 1% Triton X-100, 100 mM 

NaCl, 50 mM, NaF, 10 mM, β-glycerophosphate, 1 mM activated sodium 

orthovanadate, 1 mM PMSF and 2 µL/mL protein proteases inhibitor cocktail). Then, 

the suspension was spun-down at 13000 g for 10 min at 4 ºC and supernatants were 

collected and stored at -80 ºC until use.  

Nuclei and histones for gamma-H2AX analysis were isolated as described previously 

[23]. Protein content was determined by a modified Lowry´s method [24]. 

Western blot analysis 

Aliquots of cell lysates (30 g protein) were added to sample buffer containing 10% β-

mercaptoethanol and the mixture was immediately boiled for 5 min. Proteins were 

separated by electrophoresis in sodium dodecyl sulfate-polyacrylamide (12%) gels 

(SDS-PAGE), at 100 V during 2 h. After electrophoresis, the proteins were 

electroblotted (Bio-Rad) onto nitrocellulose membranes. Membranes were blocked with 

0.05 g/ml non-fat milk or with 0.05 g/ml BSA in TBS containing 0.2% Tween 20 

(TBST), depending on the antibody, washed three times at room temperature, and 

incubated for 2 h at room temperature with primary antibodies diluted in TBST with 

0.01 g/ml non-fat milk as follows: antioxidant enzymes as previously used [23], Trx1 

(1:1000, Abcam), TrxR1 (1:1000, Abcam), Trx2, Grx1 (1:1000, Abcam), Grx2 (1:1000, 

Bax, Bid and Bim (1:1000, GeneTex), ubiquitin-protein conjugates (1:1000, Enzo Life 

Sciences), PDI (1:1000, Cell Signaling), BIP (1.1000, Cell Signaling), ATF4 (1.1000, 

Santa Cruz Techonologies), CHOP (1.1000, ), c-myc (, ), Rpn7α (1:1000, ENZO). As 

loading controls, antibodies that recognize α-tubulin or -actin (1:1000, Santa Cruz 



8 

 

BioTech. USA) antibodies were used. Thereafter, the blots were washed again with 

TBST and further incubated for 1 h with a secondary mouse, rabbit or goat antibody 

conjugated with horseradish peroxidase. Blots were incubated with ECLTM Western 

Blotting Detection Reagents as specified by the manufacturer (Amersham GE 

HealthcareBio-Sciences AB, Uppsala, Sweden). Chemioluminescent signals were 

assessed using a General Electric´s scanning densitometer (LAS-4000). 

Preparation of recombinant c-myc-Trx1 and Co-Immunoprecipitation 

 Preparation of recombinant proteins for Co-IP assays was performed using E. coli. 

Briefly,  

 

The protein extracts containing c-myc-Trx1 (corresponding to three 100 cm2  dishes of 

cultured NIH3T3) were allowed to bind to sepharose beads overnight at 4 °C. Beads 

were then washed twice with PBS and twice with binding buffer (50 mM Tris-HCl, pH 

8, 150 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, and protease inhibitor mixture). 

The beads were then incubated for 45 min at room temperature under gentle rotation in 

200 μl of binding buffer containing 25 μg of BSA and 20 μg of purified protein extracs. 

Beads were recovered by centrifugation, washed six times in the binding buffer, 

resuspended in SDS-PAGE buffer, and loaded on a 12% denaturing polyacrylamide gel. 

 

Confocal microscopy 

Confocal images were acquired using a Leica TCS-SP2 confocal laser scanning unit 

equipped with argon and helium-neon laser beams and attached to a Leica DM1RB inverted 

microscope (Leica Microsystems, Mannheim, Germany). NIH3T3 fibroblasts were plated in 

2 cm2 LAB-TEK II chambered cover glass (Nunc, Thermo Fischer Scientific, Waltham, 

MA, USA) and maintained in culture for 24 and 48 h before adding or not 0.2 μM MG132. 
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All treatment conditions and controls were processed and analyzed on the same day. Cells 

were fixed in 4% formaldehyde, washed in phosphate buffered saline (PBS) and 

permeabilized with PBS containing 0.5 % Triton X-100 for 20 min, washed twice with PBS 

and blocked in 2% BSA during 1 h at room temperature. Then, immunostaining was carried 

out, incubating the cells overnight at 4ºC first with anti-Trx1 (1:200, Abcam, Cambridge, 

MA, USA), anti-20S α7subunit (1:1000, Biomol, Pennsylvania, USA). The next day, the 

cells were washed twice with PBS and incubated in the dark with goat anti-rabbit secondary 

antibody Alexa Fluor 543 (1:350, Invitrogen) or Alexa Fluor 488 (1:350, Invitrogen) for 1 h 

at room temperature. Finally, nuclei were stained using 2 μg/ml Hoechst (Sigma-Aldrich, 

St. Louis, MO, USA).  

 

 

 

Flow cytometry analysis 

Cells (106 cells/100 µL) were stained with Annexin V Alexa Fluor® 488 Conjugate 

(Invitrogen Probes) in Annexin V binding buffer (10 mM Hepes, 140 mM NaCl, 25 

mM CaCl2) at room temperature for 15 min. In the last 5 min the cells were stained also 

with 60 g/ml of propidium iodide (Sigma-Aldrich, St. Louis, MO, USA). Single 

stained controls were prepared for spectral compensation. 

Images were obtained on the ImagesStream IS100 Flow cytometer (Amnis Corporation, 

Seattle, WA) using blue laser 488nm excitation at 20 mW. Cell classifier “area lower 

limit” was set to 100 pixels in the bright field imagery, to avoid the collection of debris 

with data and to ensure that events of interest were not lost. Typical files contained 

imagery for 5000-8000 cells using 4 channels: side scatter on channel 1, bright field on 

channel 2, channel 3 for Annexin V-Alexa fluor 488 staining, and channel 5 for 



10 

 

propidium iodide staining. Quantitative measurements were performed using IDEAS® 

4.0 (Image Data Exploration and Analysis Software). Compensated image files were 

created using the compensation matrix based on single stained controls acquired with 

no-bright field option. Subsequently, doublets and debris and cells out of focus were 

excluded from analysis using typical IDEAS features (Aspect ratio intensity vs. Area for 

channel 2, and gradient RMS for channel 2, respectively). On the dot blot created for 

Annexin V-Alexa fluor 488 vs PI staining, four cell populations were discriminated and 

gated: live cells: low presence and intensity of Annexin V-Alexa fluor 488  and PI 

fluorescence negative, dead cells: high PI staining and low Annexin V-Alexa fluor 488  

staining, cells in early apoptosis: high intensity and presence of Annexin V-Alexa fluor 

488  staining, and finally cells in late apoptosis: double positive cells, stained both with 

high Annexin V-Alexa fluor 488 and PI fluorescence. The same gating criteria were 

applied to all the samples, and the results from 2 experiments are presented in % vs. 

control, with the corresponding SD. 

Proteasome activities 

Proteasome activities were measured spectrofluorometrically using synthetic 

fluorogenic peptides. Human fibroblasts from controls and Lafora disease patients were 

incubated under high (Krebs-Henseleit medium: 118.4 mM NaCl, 4.75 mM KCl, 1.19 

mM KH2PO4, 2.54 mM MgSO4, 2.44 mM CaCl2.2H2O, 28.6 mM NaHCO3, 10 mM 

glucose with 10 mM Hepes, pH 7.4) and low (full medium) proteolysis conditions for 3 

h. Then, cells were washed two times with PBS and scraped from the culture plates in 

an ice-chilled buffer containing 50 mM Hepes pH 7.4, 150 mM  NaCl, 5 mM EDTA, 10 

M leupeptin, 1 g/ml pepstatin and 1 mM phenylmethylsulfonyl fluoride. 

Homogenization was performed by five cycles of freezing (-80 ºC) and thawing at 37 
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ºC. Crude extracts were centrifuged at 3,000 g for 10 min at 4 ºC. Supernatants were 

used to measure proteasome peptidase activities in a microplate reader with the 

following synthetic fluorogenic peptides: N-Suc-LLVY-MCA (50 μM) for 

chymotrypsin-like activity, Boc-LRR-MCA (50 μM) for trypsin-like activity and Z-

LLE-MCA (50 μM) for caspase-like activity. In all cases, activity was measured under 

linear conditions. As controls, parallel reactions were run containing epoxomicin (10 

μM) or lactacystin (10 μM). Protein was measured by a Lowry-deoxycholate procedure. 

Pulse-chase experiments 

Fibroblasts from controls and Lafora disease patients were cultured as described under 

Cell cuture. To label long-lived proteins, fibroblast were incubated for 48 h in fresh full 

medium containing 2 Ci/ml [3H]valine (Hartmann Analytic Gmbh), followed by a 24 h 

chase in fresh full medium plus 10 mM L-valine to degrade short-lived proteins [25]. 

Then, all cultures were washed and incubated for 4 h in Krebs-Henseleit medium (under 

high proteolysis conditions) with 10 mM Hepes, pH 7.4, containing 10 mM valine and 

the indicated additions. Intracellular protein degradation, which was analysed 1 h later 

to ensure maximal effects of the additions and for only 3 h to avoid possible secondary 

effects, was calculated at intervals of 1 h by measuring the net release of trichloroacetic 

acid-soluble radioactivity from the labelled cells into the culture medium and expressed 

as percentage of protein degraded per h. The contribution of proteasomes to intracellular 

protein degradation was calculated using 10 M lactacystin as previously described [26]  

 

Statistical analysis 

For the statistical analysis of the results, the mean was taken as the measurement of the 

main tendency, while standard deviation (SD) was taken as the dispersion measurement.  
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A one way analysis of variance was used to determine the difference between groups for 

DNA synthesis and expression analysis of Trx1 gene. When an interaction effect was 

found, multiple comparisons using the Student-Newman-Keuls method post hoc test 

were performed. When only two groups were analyzed, the one-tailed Student’s t-test 

was used. Each measurement was performed using independent experiments (for 

specific details, see the corresponbding text or legend to the figure). The alpha level for 

statistical significance was set at p < 0.05.  

 

 

 

 

Results 

During DNA synthesis in NIH3T3 fibroblasts the expression of the Trx1 protein 

increases and co-localizes with the 20S proteasome  

Based on previous results [23], we decided to study the expression and cellular 

localization profiles of Trx1 and the 20S proteasome in NIH3T3 cells, an established 

mammalian cell line whose cell cycle, nuclear redox profile and proteasome activity 

have been extensively characterized by our group [23, 27]. Analysis of the cell 

proliferation profile in these cells by BrdU showed maximal DNA synthesis at 24 h of 

culture and the lowest at 120 h, when cells reached confluence (figure 1A). The 

expression of the TRX1 gene did not change significantly during these times (figure 

1B). However, the levels of the Trx1 protein increased at 24 and 48 h of cell culture, 

compared to initial (6 h) after seeding, but decreased when the cells reached confluence 

(120 h)   (figure 1C).  
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Since Trx1 has been found to localize differently depending on the redox environment 

or the cell culture conditions [28], we next analyzed the distribution of Trx1 in the cells 

at different times of cell proliferation and compared it to that of 20S proteasomes to 

identify a possible relationship of these proteins during cell proliferation. Our results 

(figure 2), indicate that Trx1 cellular distribution of Trx1 changes during cell 

proliferation. At 6 h of culture, Trx1 was mainly perinuclear. At 24 h and 48 h, a 

fraction of Trx1 was internalized into the nucleus, showing then a homogenous 

nuclear/cytosolic distribution. However, at 120 h of cell culture, just when cells reached 

confluence, Trx1 was mainly cytosolic. This pattern was very similar to that obtained 

for the 20S proteasome, which showed a perinuclear distribution at 6 h (figure 2), a 

nuclear/cytosolic localization at 24 and 48 h after cell culture and a redistribution to the 

cytosol when cells reach confluence at 120 h (figure 2). Therefore, our results indicate 

that in NIH3T3 fibroblasts Trx1 and 20S proteasomes follow a similar pattern of sub-

cellular distribution and that both co-localize in the nucleus during cell proliferation. 

To confirm the physical interaction of Trx1 and 20S proteasome, expression of c-myc-

Trx1 protein was induced in NIH3T3 cells. The Co-IP assays confirmed that Trx1 

interacts at least with 20S through the Rpn7α subunit (Figure XX). 

Changes in protein levels and sub-cellular localization of Trx1 under proteasome 

inhibition  

The results described above indicate that in mammalian cells Trx1 and 20S proteasomes 

are molecularly connected, as it has been also recently described in yeast [29]. In order 

to confirm this, we evaluated the effects of proteasome inhibition (using MG132, a N-

(benzyloxycarbonyl)leucinylleucinylleucinal peptide) on TRX1 gene and protein 

expression in NIH3T3 fibroblasts. In these experiments, we used a MG132 dose of 0.2 
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M, which is lower than the IC50 value (Figure S1A) and did not increase the number of 

dead cells (Figure S1B). We evaluated the number of cells in early apoptosis, late 

apoptosis and necrosis, after growing the cells with and without MG132 for 24 and 48 

h. Under these conditions, we did not observe any increase in the levels of apoptotic or 

necrotic cells (figure S2A).  

As expected, our results showed that incubation of NIH3T3 with MG132 at 0.2 M for 

24 and 48 h inhibits cellular proteasome activity (figure 3A, upper panel) and the 

proteasome activity of isolated nuclei from NIH3T3 fibroblasts (figure 3A, lower panel) 

and produces the accumulation of poly-ubiquitinated proteins (figure 3B). Under these 

conditions, the DNA synthesis was lower in the MG132-treated cultures (figure 3C), 

while cell viability, measured with the trypan blue exclusion test, was not affected (data 

not shown). These results indicate that although the 0.2 M MG132 treatment is non-

lethal, it inhibits the synthesis of DNA. Proteasome inhibition also reduced the protein 

levels of poly(ADP-ribose) polymerase (PARP), an essential enzyme for DNA synthesis 

progression involved in rejoining the Okazaki’s fragments of the lagging strand (figure 

3D). Furthermore, our results showed that DNA double strand breaks (DSBs) were 

increased at 24 and 48 h after treatment with MG132, as indicated by the increase in 

gamma-H2AX (figure S2B), suggesting that proteasome inhibition induces DSBs by 

blocking the DNA synthesis. 

Since Trx1 is an essential cofactor during cell proliferation, and given that DNA 

synthesis was decreased after proteasome inhibition, we decided to investigate the 

effects of MG132 on TRX1 gene expression. Analysis by RT-PCR revealed that TRX1 

mRNA levels were not affected by sub-lethal doses of MG132 (figure 4A). However, 

Trx1 protein levels decreased at 24 h (figure 4B), just when control cells should be 
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proliferating (see figure 1A and figure 3C), and at 48 h, when nuclear proteasome 

activation is required (see figure 3A, lower panel). In addition, we evaluated the sub-

cellular localization of Trx1 24 h after proteasome inhibition and found that MG132 

induces Trx1 migration to the nucleus (figure 4C), suggesting that Trx1 may have a 

nuclear function after proteasome inhibition. 

 

Proteasome inhibition directs Trx1 to the endoplasmic reticulum and prevent 

proteotoxic stress  

In NH3T3 fibroblasts, proteasome inhibition with MG132 also induces the localization 

of Trx1 in the extern membrane of the nuclear envelope. The Trx1 signal co-localizes 

with the endoplasmic reticulum at 24 h and 48 h after treatment, as judged by co-

localization with the endoplasmic reticulum marker calnexin (figure 5A). This 

association of Trx1 to the ER may be directed to decrease the ER stress produced in the 

cells by the MG132 treatment. In fact, ER stress response markers such as BIP/Grp78, 

CHOP and PDI were overexpressed (Figure 5B) after 24 and 48 h of proteasome 

inhibition at low doses of MG132. 

We study the activation of ER-associated proteotoxic stress pathway by measuring 

ATF4, BIM and BAX proteins. The overexpression of these proteins occurs after 24 anf 

48h of proteasome inhibition (Figure 5XX). 
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Trx1 down-regulation by proteasome inhibition induces antioxidant response 

Due to proteasome inhibition produces down-regulation of Trx1 and this protein is 

involved in the cellular redox regulation, we studied if the down-regulation of Trx1 by 

proteasome inhibition induces oxidative stress in the cells. The inhibition of 

proteasomes in NIH3T3 cells increased superoxide levels (Figure 6A), and also the 

GSSG/GSH ratio (Figure 6B) at 24 and 48 h after MG132 treatment. 

Trx1 migration to the nucleus (Figure 4C) has been considered as a possible marker for 

oxidative stress [30], thus we wonder if antioxidant enzymes levels were affected by 

proteasome inhibition. Our western blot results indicate that proteasome inhibition at 

sub-lethal doses of MG132 stimulates the overexpression of the antioxidant enzymes 

catalase, CuZnSOD and MnSOD (Figure 6C). Thus, we suggest that Trx1 migration to 

the nucleus could be a mediator in the antioxidant response. 

In order to complete the characterization of the antioxidant systems under conditions of 

proteasome inhibition, we analyzed the protein levels of the other members of the Trx 

and Grx family. Although an increase in Thioredoxin reductase (TrxR1) protein levels 

was found after proteasome inhibition (figure 6D), the mitochondrial and nuclear 

isoforms of Grx2 and the mitochondrial thioredoxin Trx2 were downregulated (Figure 

6D). Thus, our results provide new information about the dependence of the function of 

Trx and the Grx family members on proteasome activity. 

Trx1 levels and subcellular localization in a cell model with reduced proteasome 

activity: laforin-deficient fibroblasts from Lafora disease patients  

To analyze the pathophysiological consequences of the relationship between 

proteasomes and Trx1, we choose fibroblasts from patients with Lafora disease with 
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mutations in the EPM2A gene encoding the dual phosphatase laforin. First, we 

measured the three proteasome activities (chymotrypsin-, trypsin- and caspase-like) in 

these fibroblasts from two patients. The analysis was performed under high (starvation) 

and low (full medium) proteolysis (see Materials and Methods). Under low proteolysis 

(L), and although a tendency to down-regulation was observed, differences between 

controls and laforin-deficient cells were not significant (figure 7A). However, when 

high proteolysis conditions (H) were induced, the chymotrypsin- and trypsin-like 

activities were lower in laforin-deficient fibroblasts (figure 7A). No differences were 

observed in the caspase-like activity in any of the conditions tested (figure 7A, right 

panel).  

We also measured in pulse-chase experiments the degradation (total and proteasome-

dependent) of intracellular proteins. Results indicate that both total and proteasome-

dependent protein degradation was significantly decreased in laforin-deficient cells 

(figure 7B), corroborating the reduction in proteasome activity described above. 

 

In order to confirm our hypothesis about the molecular relationship between Trx1 and 

proteasome, we decide to analyze Trx1 expression in fibroblasts from Lafora disease 

patients with mutations in the laforin gene.  

As judged by RT-PCR analysis, laforin-deficient fibroblasts showed a lower TRX1 gene 

expression than control fibroblasts (figure 8A). In addition, the protein levels of Trx1 

determined by Western blot were decreased in fibroblasts from Lafora patients 

compared to fibroblasts of healthy subjects (figure 8B). This reduction seems specific 

for the Trx1 protein since no differences were observed for the thioredoxin reductase 
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protein TrxR1 (figure 8B). In addition, the reduction of Trx1 levels seems to be 

produced by low transcription of TRX1 gene. 

We then analyzed the co-localization of Trx1 with the 20S proteasome (figure 8C). Our 

results indicate that in control cells Trx1 was uniformly distributed in the cytosol, but 

with many foci in the nucleus. Interestingly, Trx1 nuclear foci co-localized with the 20S 

proteasome (figure 8C, yellow dots in the nucleus), supporting our hypothesis for a 

Trx1 and 20S proteasome association, not only in the cytosol but also in the nucleus. 

However, in laforin deficient fibroblasts the distribution of Trx1 and the number of 

nuclear Trx1 foci were different, with a lower number of Trx1 foci in the nucleus and 

with Trx1 concentrated around the periphery of the nucleus, probably at the 

endoplasmic reticulum (ER) since Trx1 colocalized with calnexin (a marker for 

endoplasmic reticulum). The 20S proteasome followed a similar pattern (figure 8C, 

zoom), suggesting a common function for Trx1 and proteasomes at this subcellular 

domain (figure 8C) in fibroblasts from lafora disease patients.  

As previously suggested, Trx1 migration to the nucleus has been considered as a 

possible marker for oxidative stress [30] and may mediate the antioxidant response in 

cells. Thus, we consider that control of antioxidant and UPR responses may be 

deregulated in Lafora fibroblasts. 

 

Discussion 

Trx1 is one of the most important antioxidant enzymes [31] and mediates other cellular 

events such as apoptosis [7] and regulation of transcription factors [6, 32, 33], among 

others. Its inhibition produces cell proliferation deregulation due to its importance for 
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DNA synthesis  [34]. On the other hand, the proteasome system is a central player for 

protein degradation and its inhibition has been shown to produce also cell proliferation 

inhibition, protein translation down-regulation, and sensitization to apoptosis in cells [4, 

11]. Targeting protein degradation through the proteasome dependent pathway 

represents a novel approach for the treatment of cancer [35]. It has been recently shown 

that the use of the proteasome inhibitor MG132 induces apoptosis via oxidative stress in 

C6 glioma cells [36]. These effects may be produced in a time- and dose-dependent 

manner and, although the effects of proteasome inhibition have been studied, the 

mechanisms involved in cell growth inhibition after proteasome down-regulation are 

not fully elucidated.  

Previous studies have proposed that 26S proteasome was associated with thioredoxin 

proteins [37]. Furthermore, thioredoxin family members, like Trx1, Trx2 and Txnl1 

were found associated with the 26S proteasome in budding yeast [19, 38]. In addition, 

proteasome subunits Rpt3 (26S regulatory subunit 6B) and Rpn12 (26S non-ATPase 

regulatory subunit 8) have been shown to be targets of thioredoxins in plant cells and in 

a mammalian neuroblastoma cell line [39-41]. However, the intriguing mechanisms 

underlying the relationship between thioredoxins and proteasome are not completely 

understood, even less in the nucleus of mammalian cells. 

The thioredoxin related protein (32 KDa) Txnl1 could act as redox sensor that mediates 

signals of the cell to the proteasome [20]. These findings reflect the essential mission 

that may exert the Trx system on proteasome function because its oxidation and/or 

glutathionylation affect the proteasome activity [42-44]. This relationship between Trx 

proteins and proteasome may attenuate oxidative stress conditions to avoid protein 
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aggregation [44]. Thus, both systems may contribute to control cell proliferation and 

cell survival.  

The cellular situations in which proteasome and Trx1 may work together remain 

unknown. Thus, in this work we describe the important events that occur in TRX1 

expression and the changes in sub-cellular distribution and co-localization of the Trx1 

protein with the 20S proteasome during cell proliferation or stress conditions, when 

proteasome was inhibited using sub-lethal doses of MG132 in NIH3T3 cells, a cell line 

in which cell cycle, redox profile and total and nuclear proteasome activity have been 

well characterized. 

Trx1 protein levels in NIH3T3 were increased at 24 h (time of maximal DNA synthesis) 

and 48 h (time in which nuclear proteasome activity was increased, as we have 

previously shown [23]) (figure 1C). Our results suggest translational regulation of Trx1 

during cell proliferation because mRNA levels of TRX1 gene were not affected during 

cell cycle. We wonder if Trx1 co-localize with the 20S proteasome during proliferation 

of NIH3T3 cells. Our results showed a similar pattern of cellular distribution for Trx1 

and 20S proteasome (figure 2), observing a perinuclear distribution for both proteins 

after seeding (6 h) and a homogeneous distribution of Trx1 between nucleus and cytosol 

at 24 and 48 h of culture, just when cells were proliferating. However, when cells 

reached the confluence (120 h), both proteins left the nucleus and were completely 

redistributed in the cytosol (figure 2). All these results agree with the proteasome 

distribution reported by Palmer et al. [45] in other cell lines in which proteasome 

distributed to the nucleus during S phase, and redistributed towards cellular periphery 

during G2. Thus, we suggest that Trx1 and proteasomes may interact in mammalian 

cells, as it has been recently observed in yeast for Txnl1 protein [29].  
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To demonstrate this hypothesis we inhibited proteasome (cellular and nuclear 

proteasomes) using MG132 (figure 3A and figure 3B). Using sub-lethal doses of 

MG132, we blocked the DNA synthesis in NIH3T3 (figure 4C) in a process mediated 

by PARP-1 inhibition (figure 4D). These results agree with previous obtained by 

Awasthi N et al. [46] in HLE B-3 cells and in human lens epithelium explants, in which 

proteasome activity was demonstrated to be necessary for cell proliferation. But the 

most important observation was that Trx1 protein levels decreased at the cell 

proliferation times of 24 h and 48 h (figure 5B) when proteasome activity was inhibited, 

suggesting interdependence between proteasome and Trx1. 

This interrelationship was not only between levels of Trx and proteasome, but also at 

sub-cellular localization of both proteins. In that way, we observed that after 24 h of 

proteasome inhibition, Trx1 concentrates into the nucleus (figure 5C), underscoring the 

idea that Trx1 is involved in important nuclear signaling events after proteasome 

inhibition.  

It was demonstrated that Trx1 migrates to the nucleus in cells under oxidative stress 

conditions [3, 47, 48]. In our experiments Trx1 was also observed in ER at 24 h and 48 

h after inhibition of proteasome (Figure 5A). The distribution of Trx1 and calnexin (an 

ER marker) was mainly surrounding the nuclei, suggesting a possible role of Trx1 in the 

ER. In fact, analysis of ER stress markers, clearly showed that MG132 treatment 

induced overexpression of BIP, CHOP and PDI indicating ER stress conditions (Figure 

5B) [49, 50]. Furthermore, our results showed that superoxide levels (figure 6A) and 

GSSG/GSH ratio (figure 6B) were increased after MG132 treatment, suggesting that 

proteasome inhibition at sub-lethal doses induces oxidative stress.  
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Furthermore, ATF4 protein was detected after proteasome inhibition indicating the 

activation of proteotoxic stress.   

Provided that Trx1 is an essential component in the cellular antioxidant response and its 

translocation to the nucleus is necessary for transcription factors that contain regulatory 

cysteines in their DNA binding region, such as nuclear factor (erythroid-derived 2)-like 

2 (Nrf-2) involved in antioxidant enzymes expression [51, 52], we decided to evaluate 

cellular antioxidant defenses. We observed that catalase, CuZnSOD and MnSOD were 

up-regulated (figure 6C), as it was previously described in other cell lines by Meiners et 

al. [53]. Probably this up-regulation was induced to maintain the redox equilibrium in 

the cell, suggesting that migration of Trx1 to the nucleus may favor the expression of 

these antioxidant enzymes.  

Thioredoxin reductase, TrxR1, was also over-expressed after MG132 treatment (figure 

6D), suggesting that the Cys residues of Trx1 are oxidized in agreement with the 

observed GSSG/GSH ratio. A similar mechanism has been described in S. cerevisiae 

[54]. However, other thiol systems were differentially affected after proteasome 

inhibition with MG132. The mitochondrial form Trx2, and Grx2, the mitochondrial and 

nuclear variant of glutaredoxin, were also down-regulated after proteasome inhibition 

(figure 6D). Grx accepts electrons from GSH and from TrxR1 [55]. Thus, the 

mammalian thiol-enzymatic systems may be seriously affected after proteasome 

inhibition at sub-lethal doses of MG132.  

To further study the molecular interdependence between Trx1 and proteasome we 

decide to analyze these systems in Lafora disease fibroblasts. In these cells, it has been 

described that proteasomal activity is reduced. Thus, ubiquitinated proteins and 

proteasome subunits accumulate in Lafora bodies [16, 56]. However, it is not 
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completely clear if these conditions can produce oxidative stress in the patients, and it is 

not know what happens with Trx systems. Thus, fibroblasts from Lafora disease 

patients with mutations in the EPM2A gene encoding laforin are an excellent model to 

evaluate the expression of Trx1and its sub-cellular localization in conditions in which 

proteasome activity is compromised. 

In agreement with these studies, we observed in our laforin-deficient cells under high 

proteolysis conditions, low proteasomal chymotrypsin-like and trypsin-like activities 

(figure 7A) and also decreased degradation of  intracellular proteins by proteasomes 

(figure 7B). In addition, as we show in figure 8, analysis of laforin-deficient fibroblasts 

from two Lafora disease patients indicate that TRX1 gene expression and Trx1 protein 

levels were clearly lower than in the control cell lines (figure 8B), the protein levels 

were also decreased in NIH3T3 when proteasome was inhibited. In that case, low 

protein levels are consequence of the down-regulation of TRX1 expression and may be 

affected in diseases in which proteasome activity was impaired. The analysis of Trx1 

and 20S proteasome localization in both, control and laforin deficient fibroblasts, 

suggested a different distribution for Trx1 in laforin-deficient and in control fibroblasts: 

Trx1 was uniformly distributed across the cytoplasm in control fibroblasts (figure 8C) 

while it was concentrated at the nuclear periphery in laforin-deficient cells (figure 8C). 

We analyzed the co-localization of Trx1 with the 20S proteasome and we observed 

areas with high intensity of both proteins around the nuclear periphery, suggesting that 

Trx1 and proteasome may cooperate in a common process (figure 8C), to facilitate the 

degradation of oxidized proteins by the proteasome or to recover proteasome activity by 

reducing cysteine residues, as it has been suggested for yeast [57].  
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In addition, we found co-localization of Trx1 with the ER marker, calnexin (figure 8D). 

Recent results indicated that Trx1 mediates responses after ER stress [58], and it was 

described that related members of Trx family are involved in the homeostasis of ER 

[31]. Under basal conditions, the analysis of expression of ER stress responsive 

proteins, like CHOP, BIP, including the Trx-family related protein PDI, did not show 

significant changes in laforin-deficient fibroblasts compared to control cells (data not 

shown). These results are in agreement with those previous obtained by Vernia et al. 

[16] in which these proteins did not change their levels unless the cells were incubated 

with ER stressors (e.g. thapsigargin). That results differ from those observed for 

NIH3T3, and suggest differences in cell physiology in Lafora fibroblasts. That results 

points out the possibility that Trx1 could exert a protective role mediating an 

antioxidant mission in the ER and, in fact, Vernia et al. [16], described the role of 

laforin/malin complex as protective proteins in ER-stress. It is known that prolonged 

conditions of ER-stress triggers apoptosis and brain samples of human LD patients 

lacking laforin showed increased levels of ER-stress markers. Previous results 

demonstrate that ER-stress induction by 2-deoxyglucose induces high levels of 

apoptosis in cells defective in laforin [59]. Trx1 is also known as a protector against 

apoptosis [60]. In consequence, we suspect that the low levels of nuclear Trx1 in the 

nucleus of laforin deficient cells may contribute to an aggravation of this process. That 

hypothesis agrees with the apoptosis levels observed in NIH3T3 cells after proteasome 

inhibition, in which Trx1 concentration in the nucleus may attenuate the apoptosis in 

NIH3T3 (figure S2A). 

Finally, our results indicate that proteasome activity regulates Trx1 protein levels. In 

addition, migration of Trx1 to the nucleus and ER may have an important mission, in 
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order to protect these cellular domains involved in essential responses to the stress as 

antioxidant enzyme expression, DNA damage response (DDR) and unfolded protein 

response (UPR). Recent findings indicate the importance of the proteasome activity 

during the DDR pathway [61]. Trx1 and proteasome coordination seems to be important 

in DNA repairing processes because proteasome plays an essential role in the DDR 

following DNA damage induction, by recycling DNA interacting proteins [62-65]. 

Recently, we have also described that nuclear proteasome activation is important during 

DNA synthesis in order to remove the excess of histones in the cells [23]. Now, we 

describe the importance of Trx1 migration to the nucleus after proteasome inhibition in 

the activation of antioxidant and UPR responses in mammalian cells. 

In conclusion, we propose that Trx1 contributes to the optimal activity of proteasome 

and this interaction is very relevant in the nucleus and the ER of mammalian cells. Low 

levels of Trx1 linked to low amount of Trx1-20S foci observed in the nucleus of laforin-

deficient cells may contribute to the disease phenotype. Thus, analyzing Trx systems in 

diseases in which the proteasome pathway is altered may offer valuable information 

about the origin of oxidative stress or Trx mediated functions, in these diseases. 
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Conclusions 

A proper interaction between Trx1 and proteasome in mammalian cells during cell cycle 

is essential for the physiological functions of cells. In addition, proteasome activity 

controls Trx1 protein levels and its sub-cellular distribution, contributing to the 

expression of antioxidant enzymes and proteins involved in the UPR.  

Since Trx1 levels and its sub-cellular localization are related to proteasome function, 

analyzing Trx1 in diseases in which the proteasome pathway is deregulated, like occurs 

in Lafora disease, will offer valuable information about the origin of some of the 

features of these diseases. 
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Figure legends 

Figure 1. Measurement of Trx1 mRNA and protein levels during cell proliferation of 

NIH3T3 fibroblasts A) DNA synthesis in NIH3T3 fibroblasts measured by the BrdU 

incorporation assay. B) Trx1 mRNA levels measured at different times of cell culture 

by RT-PCR. Results of BrdU incorporation are the mean and S.D. from two separate 

experiments with triplicated samples and Trx1 mRNA levels represent the mean and 

S.D. from two separate experiments with duplicated samples. Stars indicate statistically 

significant differences from control values at *p<0.05. C) Trx1 protein levels 

determined at different times of cell culture by Western blot.  

Figure 2. Sub-cellular localization by immunofluorescence of Trx1 and the 20S 

proteasome in NIH3T3 fibroblasts after 6 h, 24 h, 48 h and 120 h of cell culture. Images 

show the sub-cellular distribution of Trx1 (red) and of the 20S proteasome (green) and 

the merge images for each time. 

Figure 3. Effects of the proteasome inhibitor MG132 at 0.2 µM in NIH3T3 fibroblasts. 

A) Total (upper panel) and nuclear (lower panel) chymotrypsin-like activity was 

measured after 24 and 48 h of cell culture in presence or absence of MG132. B) 

Western blot of poly-ubiquitinated proteins after 24 and 48 h of cell culture in the 

presence or absence of MG132. C) DNA synthesis evaluated by the BrdU incorporation 

assay after 24 and 48 h of cell culture in the presence or absence of MG132. D) 

Analysis of PARP levels by Western blot after MG132 treatment at 24 and 48h of cell 

culture. Results of  chymotrypsin-like activity and BrdU incorporation represent the 

mean and S.D. from two separate experiments with triplicated samples. Stars indicate 

statistically significant differences from control values at *p<0.05. 



34 

 

Figure 4. Changes in Trx1 levels and its cellular localization after incubation of 

NIH3T3 fibroblasts with MG132.  A and B) Trx1 mRNA levels evaluated by RT-PCR 

(A) and Western blot analysis of Trx1 (B) in NIH3T3 control and MG132 treated 

fibroblasts after 24 and 48 h of cell culture. C) Localization of Trx1 evaluated by 

immunofluorescence and confocal microscopy after proteasome inhibition with MG132 

and 24 h of cell culture. Arrows indicate nuclear concentration of Trx1. Trx1 mRNA 

levels represent the mean and S.D. from two separate experiments with triplicated 

samples. Stars indicate statistically significant differences from control values at 

*p<0.05. 

Figure 5. Localization of Trx1 in the ER and expression of unfolded protein response 

chaperones. A) Co-localization of Trx1 with the ER marker calnexin evaluated by 

confocal microscopy. B) Effect of proteasome inhibition with MG132 on the levels of 

the chaperones BIP (Brp78), CHOP and PDI at 24 and 48 h of cell culture. Arrows 

indicate localization of Trx1 in the ER. 

Figure 6. Changes in the redox profile and in the expression of antioxidant enzymes of 

NIH3T3 cells levels after MG132 treatment. A) Superoxide levels. B) GSSG/GSH ratio. 

C and D) Western blot analysis of the levels of antioxidant enzymes catalase, 

CuZnSOD and MnSOD (C) and of  Trx2, TrxR1 and Grx2 (D) in NIH3T3 treated with 

0.2 µM MG132 for 24 and 48 h. Results of superoxide levels and GSSG/GSH ratio 

represent the mean and S.D. from two separate experiments with triplicated samples. 

Stars indicate statistically significant differences from control values at *p<0.05. 

Figure 7. Proteasomes are impaired in laforin-deficient fibroblasts. A) Chymotripsin-, 

trypsin- and caspase-like activities were measured in extracts from control and laforin-

deficient fibroblasts under high (H) and low (L) proteolysis conditions as described in 
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Materials and Methods. Results are shown as the percentage relative to the control value 

under high proteolysis conditions and represent the mean and S.D. from three to five 

separate experiments with triplicated samples. B) Human fibroblasts from controls and 

from patients of Lafora disease were labelled with [3H] valine and the total and 

proteasome-dependent degradation of long-lived proteins under high proteolysis 

conditions was measured and calculated as described in Materials and Methods. Results 

represent the percentage of the labelled protein that is degraded per h and are the mean 

and S.D. from five to seven separate experiments with duplicated samples. Stars 

indicate statistically significant differences from control values at *p<0.05, **p<0.005 

and ***p<0.0005 

Figure 8. Analysis of Trx1 levels and cellular distribution in control and in fibroblasts 

from  Lafora’s patients fibroblasts. A) mRNA levels for TRX1 gene in fibroblasts from 

controls (C1 and C2)  and from patients of Lafora disease (L1 and L2) were analyzed by 

RT-PCR.  B) Western blot analysis Trx1 and TrxR1 levels C and D) Cellular 

distribution of Trx1 and 20S proteasomes (C) and Trx1 and the ER marker calnexin (D) 

evaluated by confocal microscopy. Results of mRNA levels represent the mean and 

S.D. from two separate experiments with duplicated samples. Stars indicate statistically 

significant differences from control values at *p<0.05. Arrows indicate co-localization 

of Trx1 and 20S proteasomes in the cytoplasm and the nucleus. 
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Supplementary figures 

Figure S1. Effect of an MG132 treatment on the survival and morphology of NIH3T3 

cells. A) IC50 determination by the sulforhodamine B assay. B) Cell morphology. 

Figure S2. Evaluation of the apoptosis in NIH3T3 fibroblasts after incubation with 

MG132 for 24 and 48 h. A) Analysis of the apoptosis with Annexin V/propidium iodide 

and AMNIS technology. B) Western blot analysis of the levels of gamma-H2AX.  

 


