
1 

 

 

 

High-glucose levels reduce fatty acid oxidation and increase 1 

triglyceride accumulation in human placenta 2 

Francisco Visiedo1, Fernando Bugatto2, Viviana Sánchez1, Irene Cózar-Castellano3, Jose L. 3 

Bartha2 and Germán Perdomo1,4*. 4 

1Research Unit, University Hospital “Puerta del Mar”, Cádiz, Spain. 5 

2Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology. 6 

University Hospital “Puerta del Mar”, Cádiz, Spain. 7 

3Instituto de Genética y Biología Molecular (IBGM)-Universidad de Valladolid, Valladolid, 8 

Spain. 9 

4University of Castilla-La Mancha, School of Environmental Sciences and Biochemistry, 10 

Toledo, Spain. 11 

 12 

*Author for correspondence: 13 

Germán Perdomo, Ph.D. 14 

University of Castilla-La Mancha, School of Environmental Sciences and Biochemistry. 15 

Science-Technology campus in the old Weapons Factory. 16 

Sabatini Building. 17 

Avenue of Charles III, s/n 18 

45071. Toledo. Spain. 19 

Tel: (+34) 925268800 Extension 5411                         20 

e-mail: perdomogm@yahoo.com 21 

 22 

Word count: 242 in abstract; 4062 in main text.  23 

 24 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36199105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

 

 

 Abstract 25 

Aim/hypothesis: Placenta of women with gestational diabetes mellitus (GDM) exhibits an 26 

altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid 27 

metabolism remains obscure. We hypothesized that high-glucose levels reduce mitochondrial fatty 28 

acid oxidation (FAO) and increase triglyceride accumulation in human placenta. 29 

Methods: To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty 30 

acid synthesis, triglyceride levels and carnitine palmitoyltransferase activities (CPT) in placental 31 

explants of women with GDM or with no pregnancy complication. 32 

Results: In women with GDM, FAO was reduced by ~30% without change in mitochondrial 33 

content, and triglyceride content was 3-fold higher than control group. Likewise, in placental 34 

explants of women with no complication high-glucose levels reduced by ~20% FAO and 35 

esterification increased linearly with increasing fatty acids concentrations. However, de novo fatty 36 

acid synthesis remained unchanged between high-and–low glucose levels. In addition, high-glucose 37 

levels increased triglycerides content ~2-fold compared to low-glucose levels. Furthermore, 38 

etomoxir-mediated inhibition of FAO enhanced by ~40% esterification capacity, and elevated by 39 

1.5-fold triglycerides content in placental explants of women with no complications. Finally, high-40 

glucose levels reduced ~70% CPT-I activity, and ~25% phosphorylation levels of acetyl-CoA 41 

carboxylase in placental explants of women with no complications. 42 

Conclusion: We reveal an unrecognized regulatory mechanism on placental fatty acid 43 

metabolism by which high-glucose levels reduce mitochondrial FAO through inhibition of CPT-I, 44 

shifting flux of fatty acids away from oxidation towards the esterification pathway, leading to 45 

accumulation of placental triglycerides.  46 

Keywords:  Carnitine palmitoyltransferase I, de novo fatty acid synthesis, esterification of fatty 47 

acids, fatty acid oxidation, gestational diabetes mellitus, hyperglycemia, placenta, triglycerides. 48 
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Abbreviations: Acetyl-CoA carboxylase, ACC; Carnitine palmitoyltransferase I, CPT-I; 49 

Carnitine palmitoyltransferase II, CPT-II; Fatty acid oxidation, FAO; Free fatty acids, NEFA; 50 

GDM, Gestational diabetes mellitus. 51 

Introduction 52 

Pregnancies affected by gestational diabetes mellitus (GDM) are characterized by various 53 

degrees of maternal glucose intolerance, hyperglycemia and hyperinsulinemia (6). Several 54 

epidemiological studies have shown that GDM is independently associated with adverse perinatal 55 

outcomes (9, 36, 42). The main adverse outcome of maternal diabetes is fetal macrosomia, which is 56 

characterized by fetal fat accretion and overgrowth (27, 42). The HAPO (Hyperglycemia and 57 

Adverse Pregnancy Outcome) Study Cooperative Research Group has demonstrated an association 58 

between maternal hyperglycemia and fetal macrosomia (1, 26), suggesting that maternal 59 

hyperglycemia is a contributing factor to fetal macrosomia by enhancing substrate availability to the 60 

fetus, stimulating excessive growth and formation of adipose tissue (13, 34). 61 

The underlying mechanisms by which maternal hyperglycemia translate into fetal adiposity are 62 

incompletely understood. In 1954, Pedersen proposed that maternal hyperglycemia results in 63 

augmented transplacental glucose transfer leading to hyperglycemia in the fetus, which stimulates 64 

the production and secretion of insulin by the fetal pancreatic beta-cells. Hence, glucose surplus and 65 

hyperinsulinemia would play a direct role in the accumulation of fat in fetal adipose tissue (30, 31). 66 

However, Szabo et al. proposed a different hypothesis to explain fetal macrosomia in diabetic 67 

women. The hypothesis postulates that high maternal plasma free fatty acids levels (NEFA), 68 

secondary to maternal insulin resistance, lead to increased transplacental transfer of NEFA to the 69 

fetus, which are subsequently transported to fetal adipocytes and esterified into triglycerides. In this 70 

scenario, maternal hyperglycemia does not contribute directly to fetal fat accretion in the form of 71 

energy oversupply, but rather maternal glucose is used as a source of the glycerol, necessary for 72 
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NEFA esterification (41). Several clinical studies have reinforced the idea that elevated maternal 73 

plasma triglyceride levels may account for fetal fat accretion (15, 22, 23, 28, 38). 74 

Recently, it has been shown that placental lipid metabolism is altered in placentas from diabetic 75 

women (16, 25, 34, 35). These findings have prompted the notion that placental lipid metabolism 76 

may represent a regulatory step towards fetal macrosomia (14, 34, 39, 41). In this study, we aimed 77 

to further understand the role of maternal hyperglycemia on the regulation of placental lipid 78 

metabolism. To this end, we tested the hypothesis that high-glucose levels inhibit placental fatty 79 

acid oxidation leading to enhanced NEFA esterification and accumulation of placental triglycerides. 80 

Methods 81 

Study subjects 82 

The study was performed on placentas from pregnancies monitored at the Department of 83 

Obstetrics and Gynecology, University Hospital “Puerta del Mar” (HUPM). Patient samples were 84 

obtained after written informed consent in accordance with the HUPM Ethics Committee 85 

requirements and the Declaration of Helsinki. Patients were eligible among consecutive pregnant 86 

women attending our antenatal clinic who were planned to deliver by an elective Caesarean section 87 

due to clinical reasons other than diabetes, and potentially not affecting placental metabolism 88 

(breech presentation or prior Caesarean section). This was so to rule out potential effects of labor on 89 

placental energy metabolism. Specific exclusion criteria included women under the age of 18, 90 

smokers or those with a history of long-chain 3-hydroxyacyl-CoA deficiency, hemolysis elevated 91 

liver function syndrome or acute fatty liver of pregnancy, preeclampsia, chronic hypertension, or 92 

other co-morbid disease. The diabetic group was composed of 8 gestational diabetic women. Only 93 

cases needing insulin therapy for metabolic control were eligible and offered to participate in the 94 

study in order to include only cases with clear metabolic impairment. Maternal diabetes mellitus 95 
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was defined as an abnormal glucose tolerance according the criteria defined by the National 96 

Diabetes Data Group (18), which have been accepted by the Spanish Group of Diabetes in 97 

Pregnancy (11). Screening was performed using a two-steps approach in pregnant women between 98 

24-28 weeks of gestation.  The initial screening procedure consisted of a 50-g glucose challenge 99 

test, with a 1-h blood glucose cut-off set at ≥7.76 mmol/l. Women with a positive screening test 100 

underwent a confirmatory 3-hour 100-g oral glucose tolerance test (fasting glucose ≥5.82 mmol/l; 101 

1-hour, ≥10.54 mmol/l; 2-hour, ≥9.15 mmol/l; and 3-hour, ≥8.04 mmol/l). Gestational diabetes 102 

mellitus was defined when two or more plasma glucose measurements were equal or higher than the 103 

cut-off points. Insulin therapy was indicated if more than one-third of capillary peripheral glucose 104 

measurements were higher than the targets (>5.27 mmol/l fasting, >5.82 mmol/l preprandrial and 105 

>7.76 mmol/l 1-hour postprandrial). In total, 14 women with no pregnancy complication 106 

participated in the control group. Randomly chosen subsets of either 6 or 8 controls were used for 107 

the experiments as indicated in the legend of Figures. Demographics and baseline data, as well as 108 

perinatal variables, are shown in Table 1. All Caesarean sections were performed at term. Placental 109 

samples and fasting maternal blood samples from control and GDM group were obtained at the time 110 

of the elective Caesarean section. At this time no significant differences were found in lipids, 111 

glycemia nor insulinemia levels. Neonatal anthropometric measurements were performed 112 

immediately at delivery as usual. Fetuses of women with GDM showed a slight tendency to have 113 

higher birthweight and placental weight was significantly higher in this group.  114 

Biochemical parameters 115 

All biochemical parameters were analyzed at the Clinical laboratory, HUPM, using reagents and 116 

modular systems from Roche Diagnostics. Plasma insulin was measured by 117 

electrochemiluminiscence immunoassay (ECLIA) by E-170 using 20 µl of sample. Plasma 118 

glucose, triglycerides, total cholesterol and high-density lipoprotein cholesterol (HDL-c) were 119 
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measured by standard enzymatic methods by C-711 using between 2-3 µl of sample. Low-120 

density lipoprotein cholesterol (LDL-c) was calculated using the Friedewald-Fredrickson 121 

formula.  122 

Placental explants culture 123 

Term placenta obtained from elective Caesarean section was placed on ice and arrived to the 124 

laboratory within 10-15 minutes of delivery. Then, decidual tissue and large vessels were removed 125 

from villous placenta by blunt dissection on aseptic culture conditions. Afterwards, small fragments 126 

of villous tissues (~100 mg wet weight) were rinsed twice in cold-PBS and 6 explants were 127 

transferred to each well of a 6-well plate containing 2 ml of culture medium (RPMI-1640 128 

supplemented with 5 mmol/l glucose, 10% FBS (vol/vol), 100 units/ml penicillin G, and 100 µg/ml 129 

streptomycin) and maintained at 37ºC in a humidified atmosphere of 5% CO2/ 95% O2 for 1h prior 130 

to experiments. Villous explant viability and morphological integrity was assessed by XTT (XTT 131 

kit, Roche) and haematoxylin-eosin staining respectively.  132 

Materials 133 

Cell culture reagents (RPMI-1640 medium without glucose and fetal bovine serum) were from 134 

Invitrogen/Gibco, California, USA. The [9,10-3H]-palmitic acid, [3H]-H2O, D-[14C(U)]-glucose and 135 

L-[N-methyl-14C]carnitineHCl were from PerkinElmer, Massachusetts, USA. Etomoxir and 136 

essentially fatty acid-free bovine serum albumin were from Sigma, St. Louis, USA. 137 

Fatty acid solution preparation 138 

Stock of fatty acid solution was prepared by conjugating palmitate with essentially fatty acid-139 

free bovine serum albumin (BSA) to generate a stock solution of 25% (wt/vol) BSA, 4 mmol/l 140 

palmitate in glucose-free culture medium. Stock solution was filtered-sterilized and diluted into the 141 

final culture medium to give concentrations of 1.25% BSA, 0.1 or 0.2 mmol/l palmitate. 142 
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Fatty acid oxidation assay in placental explants 143 

Mitochondrial FAO assays were performed ex vivo in placental explants as described 144 

previously (2, 32) with the following modifications. Freshly isolated villous explants were 145 

incubated in culture media supplemented with low (5 mmol/l) or high (11 mmol/l) glucose 146 

concentrations, and in the presence of 1.25% BSA, 0.1 mmol/l cold palmitate, and 18500 Bq/ml 147 

[3H]-Palmitate at 37ºC for 18h. The glucose concentration in culture medium for the experiments in 148 

which glucose was not an experimental factor was 5 mmol/l. Glucose was added to media from a 149 

sterile stock solution of 1 mol/l glucose. At the end of the incubation period, the medium was  150 

collected, and tritiated water determined by the vapor-phase equilibration method of Hughes et al 151 

(21). FAO was defined as nmol of palmitate per mg of tissue per hour.  152 

Esterification into total lipids in placental explants 153 

The esterification rate in placental explants was determined as previously described with some 154 

modifications (5). Briefly, after similar incubation conditions to those used for measurements of β-155 

oxidation, with low or high glucose levels in the presence of 1.25% BSA, 0.1 mmol/l cold 156 

palmitate, and 18500 Bq/ml [3H]-palmitate for 18h, explants were washed 3 times with 2 ml of ice-157 

cold PBS and homogenized in 500 µl of PBS. An aliquot of 100 µl was used to extract the lipid 158 

content from samples according to Bligh and Dyer (3). Afterwards, the radioactive content was 159 

determined by liquid scintillation counting. Esterification was defined as nmol of palmitate per mg 160 

of tissue per hour. 161 

De novo lipid synthesis in placental explants 162 

De novo lipid synthesis was determined using [14C]-glucose according to the procedure 163 

described by Brown et al. with some modifications (5). Villous Placental explants from control 164 

group were incubated in RPMI-1640 culture media with low- or high-glucose levels (5 mmol/l and 165 
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11 mmol/l respectively) and 37000 Bq/ml [14C]-glucose at 37ºC for 18h. At the end of the 166 

incubation period, culture media were discarded and explants collected, rinsed 3 times with 2 ml of 167 

ice-cold PBS, followed by homogenization in 500 µl of PBS. After a total lipid extraction (as 168 

described for measurements of placental esterification rate), the radioactive content was determined. 169 

De novo lipid synthesis is expressed as pmol per mg of tissue per hour. 170 

Placental triglyceride determination 171 

Placental triglyceride determination was determined as previously described (33).  Frozen 172 

placental explants from control and GDM group (~20 mg) were used for experiments showed in 173 

Figure 1. For the rest of the experiments, placental explants were preincubated in low or high-174 

glucose in the presence of 0.1 mmol/l palmitate for 18h as described above. Tissues were 175 

homogenized in 400 µl HPLC-grade acetone. After incubation with agitation at room temperature 176 

overnight, aliquots of 5 µl of acetone-extracted lipid suspension were used to determined 177 

triglyceride concentrations using a triglyceride reagent kit (Biosystems, Barcelona, Spain). Proteins 178 

were quantified using the bicinchoninic acid method (Thermo Scientific, Madrid, Spain). Placental 179 

lipid content was defined as mg of triglyceride per mg of total placental proteins. 180 

Western blot analysis 181 

Placental explants from control group were preincubated in RPMI-1640 culture media 182 

containing low- or high-glucose levels for 18h. At the end of the incubation period culture media 183 

were discarded, explants were collected and washed with ice-cold PBS, followed by 184 

homogenization in lysis buffer (20 mmol/l Tris-HCl pH 7.5, 150 mmol/l NaCl, 1 mmol/l EDTA, 1 185 

mmol/l EGTA, 1% (v/v) Triton X-100, 2.5 mmol/l sodium pyrophosphate, 1 mmol/l β-186 

glycerophosphate, 1 mmol/l Na3VO4, 1 µg/ml leupeptin, 1 mmol/l phenylmethylsulfonyl fluoride) ) 187 

plus protease inhibitors (Protease Inhibitor Cocktail, Sigma, St. Louis, MO). After 10 min. on ice, 188 
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extracts were sonicated and centrifugated at 18,000 X g for 10 minutes at 4ºC. Pellets were 189 

discarded and solubilized proteins (40-60 µg/sample) were resolved by 5% SDS-PAGE for 190 

phospho-acetyl-CoA Carboxylase (p-ACC) and 10% SDS-PAGE for actin, and electrotransferred 191 

onto polyvinylidene difluoride filters for immunoblotting by conventional means. After probing 192 

with specific p-ACC antibody (1:1000, Cell Signaling, Barcelona, Spain), the membranes were 193 

stripped and reprobed with antibody against actin (1:3000, Sigma). Signals were detected by 194 

chemiluminiescence (Immun-Start western chemiluminiescence kit, Bio-Rad, Madrid, Spain), and 195 

band densitometry was quantified with the ImageJ software (NIH, USA.  196 

Mitochondrial citrate synthase assay 197 

As an index of mitochondrial content, citrate synthase activity was measured using the Citrate 198 

Synthase Assay kit (Sigma, St. Louis, USA) according to manufacturer’s instructions, in placenta 199 

from control and GDM group. Protein content was determined as above. Citrate synthase activity 200 

was defined as nmol/ml/min. 201 

CPT assay 202 

Activities of carnitine palmitoyltransferase I (CPT-I) and carnitine palmitoyltransferase II 203 

(CPT-II) were determined in the direction of acyl-carnitine formation, using [14C]-carnitine as 204 

substrate (4). Briefly, placental explants were preincubated in RPMI-1640 culture media containing 205 

low- or high-glucose levels at 37ºC for 18h. At the end of the incubation period culture media were 206 

discarded, explants were collected and washed with ice-cold PBS priory homogenization in lysis 207 

buffer (5 mmol/l Tris-HCl, pH 7.2, 150 mmol/l KCl) with a glass homogenizer. For assay of CPT-I, 208 

100 µl of cell homogenate, in which the mitochondria remain largely intact, was incubated in the 209 

presence of 50 µmol/l palmitoyl-CoA, 500 µmol/l carnitine and 9250 Bq/ml [14C]-carnitine,  in a 210 

30ºC shaking water bath for 10 min. For assay of CPT-II, a portion of the homogenate was adjusted 211 
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to 1 % (w/v) of the detergent octylglucoside, which solubilizes the mitochondrial membranes, 212 

inactivating CPT-I and releasing CPT-II from the mitochondrial matrix in active form. Afterwards, 213 

reactions were stopped by adding 500 µl 1.2 N HCl and palmitoyl-[14C]-carnitine was extracted by 214 

adding 500 µl of 1-butanol. Radioactive content was determined by liquid scintillation counting. 215 

Statistical analysis 216 

Statistical analysis of data was performed using the SPSS software (SPSS, Inc., Chicago, IL). 217 

Distributions were checked with a histogram and the Kolmogorov-Smirnov test. When a variable 218 

was distributed normally, data were presented as mean ± S.D. In cases of non-normal distribution, 219 

data were shown as median and interquartile range. Comparisons were done by using the Mann 220 

Whitney’s U test or ANOVA. Differences were considered significant at p<0.05. 221 

Results 222 

Reduced fatty acid oxidation and elevated triglyceride levels in placentas from women with 223 

gestational diabetes 224 

To reveal the metabolic characteristics of placentas from women with GDM, we determined the 225 

FAO capacity in placental explants from control and diabetic women. As shown in Figure 1A, FAO 226 

was reduced by ~30% in placentas of women with gestational diabetes compared with the control 227 

group. A reduction in FAO capacity could be explained by a lower mitochondrial number in the 228 

GDM group. However, as assessed by citrate synthase activity, mitochondrial content was similar 229 

between placental explants from control and diabetic women, suggesting that the molecular 230 

mechanism underlying reduced FAO capacity in diabetic group may be related to other factors 231 

rather than to mitochondrial number (Fig1B). Coinciding with reduced FAO, triglyceride levels in 232 

the GDM group were 3-fold higher compared to control group (Fig1C). Taken together, these 233 
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results indicate an association between reduced FAO capacity and accumulation of triglycerides in 234 

placentas from diabetic women. 235 

Effect of high-glucose levels on fatty acid oxidation and triglyceride levels in explants of 236 

human placenta. 237 

Maternal hyperglycemia is a hallmark of women with gestational diabetes. Therefore, it is 238 

reasonable to hypothesize that the impaired ability of placentas from women with GDM to oxidize 239 

fatty acids is a direct consequence of placental glucose surplus environment, leading to 240 

accumulation of placental triglycerides. To test this hypothesis, we measured the effect of low- or 241 

high-glucose levels on FAO in placental explants from control group. As shown in Figure 2A, high-242 

glucose levels significantly reduced the FAO rate in placental explants. In parallel, high-glucose 243 

levels enhanced fatty acid esterification in the presence of 0.1 and 0.2 mmol/l palmitate (Fig2B). 244 

Likewise, esterification augmented at increasing concentrations of palmitate from 0.1 to 0.2 mmol/l, 245 

(Fig2B). However, de novo fatty acid synthesis using [14C]-glucose as carbon source remained 246 

unchanged (Fig2C). Similar findings were found for de novo fatty acid synthesis using [14C]-acetate 247 

as carbon source (data not shown). High-glucose levels significantly increased by ~2-fold the 248 

placental triglyceride content (Fig2D), consistent with the expectation that fatty acids are 249 

preferentially directed towards esterification under that condition. Taken together, these data 250 

indicate that high glucose levels alter the placental triglycerides content through inhibition of FAO. 251 

Etomoxir-mediated inhibition of fatty acid oxidation increases triglyceride accumulation in 252 

placental explants 253 

To gain further insight into the molecular mechanism by which high glucose levels alter 254 

placental fatty acid partitioning, we used etomoxir, a specific and irreversible inhibitor of the 255 

carnitine palmitoyltransferase I (CPT-I), to evaluate the impact of inhibition of mitochondrial fatty 256 
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acid entry on FAO, fatty acid esterification and the storage pool of triglycerides in placenta from 257 

healthy women. Etomoxir treatment significantly inhibited FAO capacity in placental explants 258 

(Fig3A), resulting in augmented esterification (Fig3B), and higher placental triglyceride content 259 

(Fig3C). 260 

High-glucose levels decreases carnitine palmitoyltransferase I activity in placental explants 261 

We further investigated the mechanisms by which high-glucose reduced FAO capacity in 262 

human placental explants. To this end, we measured the activity of CPT-I and CPT-II in placental 263 

explants from control group preincubated in low- or high-glucose levels for 18h. As shown in 264 

Figure 4A-B, high-glucose levels reduced by ~70% the activity of CPT-I, whereas CPT-II activity 265 

remained unchanged as expected. Because malonyl-CoA is a physiological regulator of CPT-I 266 

activity, we quantified the phosphorylation levels of ACC, the enzyme that catalyzes the ATP-267 

dependent carboxylation of acetyl-CoA to form malonyl-CoA. Interestingly, phosphorylation levels 268 

of ACC were reduced by ~25% in the presence of high-glucose levels (Figure 4C), suggesting an 269 

increased production of malonyl-CoA in placental explants.  270 

Discussion 271 

The availability of maternal nutrients to the fetus is regulated by the placenta involving three 272 

main mechanisms: direct transfer of nutrients, placental consumption of nutrients and placental 273 

conversion of nutrients into alternative fuel sources (19). Direct transfer has been considered the 274 

main mechanism by which placenta regulates the nutrient-exchange between the mother and the 275 

fetus (19). However, the placenta exhibits a high metabolic activity, which is severely affected by 276 

the intrauterine milieu of diabetic and/or obese women. Specifically, studies performed on placentas 277 

from diabetic women have shown major changes in expression levels of genes involved up-278 

regulation of pathways of lipid synthesis and transplacental lipid fluxes (16, 25, 34, 35). These 279 
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findings have spurred the notion that alterations in placental lipid pathways perhaps contribute to 280 

fetal fat accumulation and adiposity in diabetic women (8, 34). 281 

The FAO pathway has not been evaluated in placenta from GDM women. In this study, we 282 

demonstrated that these women exhibited lower FAO oxidation capacity without change in 283 

mitochondrial content. To explain these observations, we hypothesized that lower FAO capacity 284 

may be related to maternal hyperglycemia, a hallmark of GDM women. However, the metabolic 285 

environment of women with GDM is characterized also by the presence of excessive NEFA levels 286 

and pro-inflammatory cytokines (6, 35), which makes difficult to tease apart the causing factor 287 

involved in reduced placental FAO observed in these women. Thus, we attempted to mimic 288 

maternal milieu of women with GDM in our ex vivo studies, using low-and-high glucose levels, and 289 

low-and-high NEFA levels. Therefore, a limitation of this study is that although our ex vivo culture 290 

conditions for placental explants clearly allowed mechanistic studies; they may not accurately 291 

reflect a GDM milieu and replicate in vivo pathology. Thus, our findings in placenta from women 292 

with GDM may be explained by other factors related to obesity, such as elevated NEFA and/or pro-293 

inflammatory cytokines, rather than maternal hyperglycemia. However, obesity is not a 294 

confounding factor in the phenotype of the GDM women group in our study population (BMI was 295 

similar between both groups), which supports the notion that only GDM related factors, such as 296 

higher glucose levels, may trigger the observed modifications. Although glycemia and insulinemia 297 

levels were only determined in the fasting state, it may be highlighted that the absence of 298 

differences between the two groups may be also attributed to the prescription of a strict metabolic 299 

control in patients with GDM. Along this line, there were no differences in the levels of 300 

glycosylated haemoglobin between the two groups. Nevertheless, further studies are warranted to 301 

investigate regulation of FAO pathways using placental explants from women with type I diabetes, 302 

type II diabetes, and obese non-diabetic women. 303 
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 306 

Using placental explants from women with no pregnancy complication, we demonstrated that 307 

high-glucose levels inhibited FAO and increased triglyceride accumulation. These results are in 308 

agreement with our findings in placentas from GDM women. Because de novo fatty acid synthesis 309 

remained unchanged, and because etomoxir-mediated inhibition of CPT-I recapitulated the effects 310 

of high-glucose on FAO and esterification pathways, we thought that the mechanistic link between 311 

high-glucose levels and lower FAO was inhibition of CPT-I activity by its physiological inhibitor 312 

malonyl-CoA, which is synthesized from glucose-derived acetyl-CoA by ACC. Following this 313 

rationale, we demonstrated that CPT-I activity and phosphorylation of ACC was significantly 314 

decreased by high-glucose levels. Because phosphorylation of ACC inhibits its enzymatic activity, 315 

our results support the notion that FAO is diminished by high-glucose levels through decreased 316 

ACC phosphorylation and enhanced production of malonyl-CoA levels in placental explants, which 317 

resulted in lower CPT-I activity. Interestingly, this mechanism results in a shift of fatty acid 318 

partitioning away from the β-oxidation pathway towards esterification, allowing the accumulation 319 

of triglycerides in human placenta. 320 

These alterations in lipid metabolism mediated by high-glucose levels beg for two important 321 

questions: 1) What are the consequences of triglycerides accumulation in placenta? 2) Is placental 322 

storage of triglycerides a contributing factor to fetal macrosomia? Several studies have 323 

demonstrated that maternal serum triglyceride levels are associated with abnormal fetal growth in 324 

women with GDM, type 1 and type 2 diabetes (17, 38), spurring the notion that increased maternal 325 

lipid availability results in fetal fat accretion. In a hypothetical scenario of maternal triglycerides 326 

oversupply and elevated lipolysis rate at the maternal-placental side, esterification of NEFA into 327 
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triglycerides in placental cells may indicate a regulatory system to limit maternal fatty acids transfer 328 

to the fetus, and serve as a protective mechanism against fetal macrosomia. However, there is no 329 

data about the lipolysis rate of very low-density lipoproteins and chylomicron remnants in placentas 330 

from women with GDM. Thus, although placental lipid metabolism has been proposed as a 331 

regulatory step towards fetal macrosomia (14, 34, 39, 41), it is still missing a direct evidence 332 

demonstrating that unbalanced triglycerides storage in placental cells results in augmented 333 

transplacental delivery of adipogenic substrates to the fetus. On the other hand, accumulation of 334 

triglycerides or its harmful intermediaries, such as ceramide and diacylglycerol, in trophoblast cells 335 

may exacerbate the basal pro-inflammatory state of pregnancy. In this hypothetical scenario, 336 

accumulation of triglycerides in placental cells would trigger inflammatory pathways in trophoblast 337 

cells and deleterious effects on placental and fetal metabolism. Several studies support the idea that 338 

GDM and/or obesity induces inflammatory pathways in placenta (7, 12, 24, 35). 339 

 Our results on fatty acid partitioning contrast with early studies performed by Pathmapeura et 340 

al. in trophoblast isolated from normal term human placentas. They showed that low- or high-341 

glucose (0,5-18 mmol/L) levels had not significant effects on FAO and esterification processes in 342 

cultured trophoblast exposed to short (2h) or longer (24h) periods of time (29). The differences 343 

between both studies may be explained by the experimental models employed. Firstly, Pathmapeura 344 

et al. used cultured trophoblast isolated from human placentas, whereas we used placental explants. 345 

The latter technique allows the possibility to investigate trophoblast function in a context that 346 

contains other cell types (fibroblasts, macrophages, endothelial cells, etc.) and retains the cellular 347 

architecture of the tissue in vivo. Secondly, trophoblast cells were maintained in culture media for 348 

16h prior initiation of experimental procedures, whereas placental explants were only maintained in 349 

culture media for 1h. Finally, they investigated the effects of glucose levels on fatty acid 350 
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partitioning for 24h in the presence of 0.25 mmol/l non-esterified fatty acids (palmitate:oleate ratio 351 

1:1), whereas we used 0.2 mmol/l palmitate as a source of non-esterified fatty acids. 352 

We showed that placenta from healthy women can incorporate [14C]-glucose into lipids, 353 

corroborating previous studies concerning the de novo fatty acid synthesis capacity of human 354 

placenta (10, 20, 40). Whereas high-glucose did not result in a significant increase in de novo lipid 355 

synthesis in placental explants, FAO was decreased, suggesting an increase in glucose-derived 356 

malonyl-CoA. Under these experimental conditions ACC activity appeared to function primarily as 357 

a regulator of the FAO pathway, rather than a regulator of the de novo fatty acid synthesis pathway. 358 

A similar role for ACC has been described in tissues with low de novo fatty acid synthesis capacity, 359 

such as skeletal and cardiac muscle (37). Early studies suggested that de novo fatty acid synthesis 360 

pathway plays a minor role in triglyceride accumulation in diabetic placenta, consistent with our 361 

observation on ex vivo metabolism (10, 20, 39, 40). Finally, we acknowledge that a limitation of our 362 

study is that placental explants were preincubated in the absence of insulin, which is present in the 363 

in vivo milieu and it is required for de novo lipid synthesis. Therefore, taken into consideration our 364 

experimental conditions without insulin and given the non-significant trend towards increased 365 

[14C]-glucose incorporation into lipid in the presence of high glucose, we cannot conclude that 366 

elevations in glucose do not increase placental de novo lipid synthesis in vivo.  367 

In conclusion, we demonstrate that high-glucose levels alter the metabolic partitioning of fatty 368 

acids in human placenta, shifting flux of fatty acids away from oxidation towards the esterification 369 

pathway, leading to accumulation of placental triglycerides. The mechanistic link between high-370 

glucose levels and lower FAO capacity is through reduced activity of the enzyme CTP-I, which 371 

regulates the first step of the entry of long-chain acyl-CoA into the mitochondrial matrix for β-372 

oxidation. These findings shed light on the biochemical mechanisms by which maternal 373 

hyperglycemia may regulate placental lipid pathways in diabetic mothers.  374 
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Figure legends 505 

Figure 1. Fatty acid oxidation is reduced in placenta from women with gestational 506 

diabetes. (a) Mitochondrial fatty acid oxidation. A subset of 8 placentas from women with no 507 

pregnancy complication (control group, n=8) and gestational diabetic women (GDM, n=8) were 508 

used to obtain villous explants as described in “Methods” section. The explants were preincubated 509 

with 0.1 mmol/l (18500 Bq/ml) palmitate for 18 hours, and the production of [3H]-water was 510 

determined as described in the “Methods” section. Values are Mean ± S.D. for 8 independent 511 

experiments in triplicate. Significance is indicated (*p<0.05) relative to control group. (b) 512 

Mitochondrial content. Citrate synthase activity, an indicator of mitochondrial content, was assayed 513 

in placental explants from control and GDM group. Values are Mean ± S.D. for 8 independent 514 

experiments in duplicate. p=0.845 relative to control group. (c) Placental triglyceride content. 515 

Frozen placental tissues (~100 mg) from control (n=8) and GDM group (n=8) were used to quantify 516 

placental triglyceride content as described in the “Methods” section. Values are Mean ± S.D. for 8 517 

independent experiments in triplicate. *p<0.05 relative to control group. 518 

Figure 2. High-glucose levels inhibit fatty acid oxidation in placentas from healthy women. 519 

(a) Effect of high-glucose levels on fatty acid oxidation. A subset of 6 placentas from women with 520 

no pregnancy complication described in table 1 was used to obtain villous explants. Placental 521 

explants from control group were incubated at 5 (5 Gl) or 11 (11 Gl) mmol/l glucose in the presence 522 

of 0.1 (0.1 Pa) mmol/l palmitate for 18 hours. Afterwards, [3H]-water was determined as described 523 

in the “Methods” section. Values are Mean ± S.D. for 6 independent experiments in triplicate. 524 

Significance is indicated (*p<0.05) relative to 5 mmol/l glucose. (b) Effect of high-glucose levels 525 

on fatty acid esterification. A subset of 6 placentas from women with no pregnancy complication 526 

described in table 1 was used to measure the esterification capacity. Placental explants from control 527 

group were incubated at 5 (5 Gl) or 11 (11 Gl) mmol/l glucose in the presence of 0.1 (0.1 Pa) or 0.2 528 
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(0.2 Pa) mmol/l palmitate for 18 hours. Afterwards, [3H]-palmitate incorporation into total lipids 529 

was determined as described in the “Methods” section. Mean ± S.D. for 6 independent experiments 530 

in triplicate. *p<0.05 relative to 5 mmol/l glucose; †p<0.05 relative to 0.1 mmol/l palmitate. (c) 531 

Effect of high-glucose levels on de novo lipid synthesis. A subset of 4 placentas from women with 532 

no pregnancy complication described in table 1 was used to obtain villous explants. Placental 533 

explants were incubated at low (5 mmol/l) or high (11mmol/l) glucose levels in the presence of 534 

[14C]-glucose for 18 hours. Afterwards, [14C]- glucose incorporation into total lipids was determined 535 

as described in the “Methods” section. Mean ± S.D. for 4 independent experiments in triplicate. 536 

*p<0.05 relative to low glucose. (d) Effect of high-glucose levels on placental triglyceride content. 537 

The same subset of placentas used for fatty acid oxidation and esterification experiments described 538 

above was used to measure triglyceride content. Placental explants were incubated as described 539 

above and the triglyceride content was determined as described in the “Methods” section. Mean ± 540 

S.D. for 5 independent experiments in triplicate. *p<0.05 relative to 5 mmol/l glucose.  541 

Figure 3. Etomoxir-dependent inhibition of fatty acid oxidation increases triglyceride 542 

accumulation in placentas from healthy women. (a) Fatty acid oxidation in placental explants 543 

treated with various concentrations of etomoxir. A subset of 6 placentas from women with no 544 

pregnancy complication described in table 1 was used to asses FAO capacity. Placental explants 545 

were incubated in the absence or presence of 50 µmol/l, 100 µmol/l or 200 µmol/l etomoxir with 546 

0.1 mmol/l (18500 Bq/ml) palmitate for 18 hours, and the production of [3H]-water was determined 547 

as described in the “Methods” section. Mean ± S.D. for 6 independent experiments in triplicate is 548 

shown. *p<0.05 relative to untreated placental explants; †p<0.05 relative to 200 µmol/l etomoxir-549 

treated placental explants. (b) Fatty acid esterification in placental explants treated with various 550 

concentrations of etomoxir. The same subset of placental explants described in panel A were used 551 

to assess esterification into total lipids as described in the “Methods” section. Mean ± S.D. for 6 552 
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independent experiments in triplicate. *p<0.05 relative to untreated placental explants. (c) The same 553 

subset of placental explants described in panel A were used to assess triglycerides content as 554 

described in the “Methods” section. Mean ± S.D. for 6 independent experiments in triplicate. 555 

*p<0.05 relative to untreated placental explants.  556 

Figure 4. High-glucose levels inhibit carnitine palmitoyltransferase I activity and reduce 557 

phosphorylation levels of acetyl-CoA carboxylase. A subset of 6 placentas from women with no 558 

pregnancy complication described in table 1 was used to obtain villous explants and perform the 559 

following experiments. Carnitine palmitoyltransferase I activity (a) and carnitine 560 

palmitoyltransferase II activity (b) were determined as described in the “Methods” section in 561 

placental explants incubated at low (5 mmol/l) or high (11 mmol/l) glucose concentrations for 18 562 

hours. Mean ± S.D. for 6 independent experiments in duplicate is shown. *p<0.05 relative to 5 563 

mmol/l glucose. (c) Western blot analysis of phospho-acetyl-CoA carboxylase (p-ACC) in protein 564 

extracts from placental explants incubated at low (5 mmol/l) or high (11 mmol/l) glucose 565 

concentrations for 18 hours. In the upper panel is shown a representative picture of the western blot. 566 

In the lower panel the y-axes represents the ratio of phosphorylated acetyl-CoA carboxylase versus 567 

β-actin in arbitrary units. Mean ± S.D. for 4 independent experiments in triplicate. *p<0.05 relative 568 

to 5 mmol/l glucose. 569 
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Table 1. Anthropometrics and metabolic data of the study population. 

 
Control group 

(n=14) 

GDM 

Group (n=8) 

Delivery mode 
Caesarean section

No labour 

Caesarean section

No labour 

Maternal age (yr) 33.4 ± 4.6 36.3 ± 2.0 

Gestational age (wk) 37.4 ± 1.81 39 ± 1.0 

Maternal pregravid BMI 23.7 ± 4.8 25.8 ± 5.3 

Maternal glucose (mg/dL) 77.8 ± 14.6 78,6 ± 10,2 

Maternal insulin (pmol/L) 8.8 ± 4.6 8.6 ± 1.4 

Maternal triglycerides (mg/dL) 185.8 ± 66.5 195 ± 12.2 

Maternal Total Cholesterol (mg/dL) 252.8 ± 64.2 233 ± 47.6 

Maternal HDL Cholesterol (mg/dL) 101,2 ± 54.4 62,33 ± 10.2 

Maternal LDL Cholesterol (mg/dL) 121.8 ± 48,9 135.6 ± 37.8 

Maternal HbA1c (%) 5.3 ± 0.3 5.3 ± 0.1 

Placental weight (g) 510 ± 75 612 ± 74* 

Birthweight (g) 3048 ± 591 3186 ± 362 

 

When a variable is normally distributed, data are given as mean ± SD. GDM, 

Gestational diabetes mellitus; BMI, Body mass index; HbA1C, hemoglobin A1c. 

HDL, High-density lipoprotein; LDL, Low-density lipoprotein. *p<0.05 vs control 

group.  
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