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Information sharing in quantum complex networks
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We introduce the use of entanglement entropy as a tool for studying the amount of information shared between
the nodes of quantum complex networks. By considering the ground state of a network of coupled quantum
harmonic oscillators, we compute the information that each node has on the rest of the system. We show that the
nodes storing the largest amount of information are not the ones with the highest connectivity, but those with
intermediate connectivity, thus breaking down the usual hierarchical picture of classical networks. We show both
numerically and analytically that the mutual information characterizes the network topology. As a by-product,
our results point out that the amount of information available for an external node connecting to a quantum
network allows one to determine the network topology.
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I. INTRODUCTION

The advent of network science has influenced the research
in many fields of science in general and physics in particular,
in a pervasive way [1]. Since the discovery of the structural
features of real social, biological, and technological networks
[2,3], the development of the theoretical machinery of network
science has blossomed as an efficient framework to interpret
the many interaction patterns encoded in real-scale complex
systems of diverse nature [4] and to model correctly the
dynamical processes taking place on top of them [5,6].

One of the most important avenues of research in network
science is its connection with information theory. In this way,
different information-theoretical tools have been proposed to
characterize the complexity of networks beyond the typical sta-
tistical indicators such as their degree distribution, clustering
coefficient, and degree correlations [4]. For instance, Shannon
entropy, as shown in Refs. [7–12], has been successfully ap-
plied to characterize the complexity of ensembles of networks
sharing some structural features while information-theoretical
tools have been also applied to the study of diffusion processes
on top of networks, such as random walks [13–18].

The synergy between the field of complex networks and
that of information theory has recently appealed to the quantum
information community [19,20]. As a product, classical results
on percolation theory [21–24] and network science, such as
the small-world effect [25], have been revisited in networked
structures of coupled quantum systems as a first step for
designing quantum communication networks. Conversely, the
use of quantum dynamical processes, such as quantum random
walks [26,27] and their application to rank the importance of
network elements [28–31], has given new quantum informa-
tion perspectives to classical problems of the network realm.

The most fundamental characterization of a network is its
connectivity distribution P (k), i.e., the probability of finding a
node connected to k other nodes of the network. In addition to
P (k), many other statistical quantities in network science are
used to characterize the topology relying on the sampling of
the local measures (such as the degree k) of nodes [4]. On the

other hand, quantum mechanical states built as ground states of
many-body Hamiltonians rely on both local and global lattice
properties. As a consequence, the characterization of nodes’
states in quantum complex network offers the possibility of
extracting a novel characterization of nodes’ attributes, beyond
those present in their local neighborhood.

In this work we quantify the amount of mutual information
that a single node shares with the rest of the network. To
this aim, we compute the vacuum state of bosonic modes
harmonically coupled through the specific adjacency matrix
of a given complex network. We first show that the infor-
mation contained in each node or lattice point is particularly
characteristic (the precise meaning of which to be specified
later) of the whole topology and, second, that hubs (nodes
with the largest connectivity) become isolated in terms of
the mutual information shared with the rest of the network.
Both features are equally surprising from the point of view
of the classical network paradigm but, as we will discuss
here, natural when quantum effects are incorporated. It is
important to stress that both the models and the topologies
studied here are far from solely being a fundamental curiosity.
In fact, nonregular topologies in quantum models, as those
described here, are currently investigated in different contexts
such as quantum emergent gravity models [32], Anderson
localization [33,34], quantum phase transitions [35], or optical
communications [36].

II. THEORY AND MODEL

As usual, we define a network as a set of N nodes and
E edges (or links) accounting for their pairwise interactions.
The network “backbone” is usually encoded in the adjacency
matrix, A, such that Aij = 1 if an edge connects nodes i and
j while Aij = 0 otherwise. In this work we restrict ourselves
to undirected networks so that Aij = Aji . Although matrix
A stores all the structural meaning of a network it is more
convenient to rely on the so-called network Laplacian, L,
to analyze its structural and dynamical properties [37]. The
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Laplacian of a network is defined from the adjacency matrix
as Lij = kiδij − Aij , where ki = ∑

j Aij is the connectivity
of node i, i.e., the number of nodes connected to i.

A quite minimalistic manner to translate the features of
a given Laplacian into a quantum system is to consider
identical, unit mass, quantum harmonic oscillators with equal
on-site frequency (normalized to 1), and interacting via springs
as dictated by the adjacency matrix, the potential being
V = ∑

i,j cAi,j (xi − xj )2/2. The resulting Hamiltonian of the
quantum network can be written then:

Hnetwork = 1
2 [pTp + xT(I + 2cL)x], (1)

where xj = 1√
2
(aj + a

†
j ) and pj = i√

2
(aj − a

†
j ) with the

bosonic annihilation/creation operators satisfying the usual
commutation relations [ai,a

†
j ] = δij (we set h̄ = 1). As for a

spring coupling matrix, the Laplacian guarantees Hnetwork � 0
and therefore the existence of a ground state. Finally, we have
included in the model a global coupling strength c which is
somehow arbitrary. Our conclusions are independent of c and
it can be seen as a regularization term [38]. The problem,
despite quantum, is harmonic and therefore it is simple enough
to attack a complex topology and compute its ground state.
Almost any other Hamiltonian would make it impossible to
perform the exact calculation of its ground state in a complex
topology. Therefore Eq. (1) is a minimal numerically solvable
model. In particular its ground state, the vacuum, relies on the
eigenvectors of the Laplacian matrix and their corresponding
eigenvalues shifted by 1. As a final note, let us comment that
the classical limit of (1) has a trivial ground state: all the nodes
having xi = pi = 0 independent of the topology. Therefore
the quantum model, in this sense, is not trivial. Then all the
ground-state mutual information, if any, shared by a node with
the rest of the network is due to quantumness.

We now quantify the amount of information each of the
elements of a network shares with the rest of the system. To
this aim, we consider the partition of the network into a node,
say i, and its complement ic, i.e., the rest of the network. Then,
we compute the mutual information shared by the two parties
as

I(i|ic) = Si + Sic − Stot. (2)

Here Si and Sic are marginal (von Neumann) entropies and Stot

is the total entropy of the network.
Since the total network is in its ground (hence pure)

state we have Stot = 0 and Si = Sic = I(i|ic)/2. Therefore,
the information that a node shares with the network is
intrinsically due to quantum correlations. Equivalently, the
mutual information is itself a measure of the entanglement
(twice the entropy of entanglement, quantified by Si) between
a single node and the rest of the system. The marginal entropies
for i and ic read [39]

Si = Sic = (
μi + 1

2

)
ln

(
μi + 1

2

) − (
μi − 1

2

)
ln

(
μi − 1

2

)
, (3)

which is a monotonically increasing function of μi that is
characterized by the second moments of the positions and
momenta of nodes, μi =

√
〈x2

i 〉〈p2
i 〉. After some algebra (see

FIG. 1. (Color online) Connectivity distribution P (k) for scale-
free networks: configurational (SF-CONF) (a) and Barabási-Albert
scale free (SF-BA) (b). Panels (c) and (d) stand for Erdős-Rényi (ER)
and random regular graphs (RRG).

Appendix A) we are able to quantify the value of μi as

μ2
i = 1

4

∑
j,j ′

S2
ij S

2
ij ′

√
1 + 2cλj

1 + 2cλj ′
, (4)

where {λj } are the eigenvalues of the network Laplacian L

and matrix S accounts for the normal mode transformation
that diagonalizes the network Laplacian: Ld = ST LS with
ST S = I.

From Eq. (3) it is clear that each node has some mutual
information with the rest of the system provided μi > 1/2
whereas from Eq. (4) we conclude that the amount of infor-
mation depends on its contribution to each of the Laplacian
eigenvectors.

In the following we quantify the entanglement entropies
of nodes embedded in different network topologies. First,
we explore two homogeneous network substrates: (i) random
regular graphs (RRG), in which all the nodes have the same
number of contacts (ki = 〈k〉,∀i), and (ii) Erdős-Rényi (ER)
networks [40], for which the probability of finding a node with
k neighbors, P (k), follows a Poisson distribution so that most
of the nodes have a degree k close to the average 〈k〉. Besides,
we have analyzed networks having a scale-free (SF) pattern
for the probability distribution, P (k) ∼ k−3, constructed by
means of a configurational random model (SF-CONF) [41]
and the Barabási-Albert model (SF-BA) [42] (see Fig. 1).

III. MUTUAL INFORMATION

We move to the numerical study and discussion of our
results in all those different complex network topologies. To
this aim, we collect the entanglement entropies of the Nk nodes
having connectivity k and define the average entanglement of
the degree class k as 〈Sk〉 = ∑

i|ki=k Si/Nk . One would expect
that the larger the connectivity k of a node the more correlated
it is with the rest of the network, and thus the larger the value
of 〈Sk〉.

The panels in Figs. 2 and 3 summarize our findings for the
behavior of 〈Sk〉. In Fig. 2 we explore ER [panel (b)], SF-CONF
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FIG. 2. (Color online) In (a) we show the microscopic picture:
a particular node and its boundary (first neighbors) with the rest of
the system (blurred). The rest of the panels show the average entropy
of nodes with degree k, 〈Sk〉, for the following topologies: (b) ER,
(c) SF-CONF, and (d) SF-BA networks. Each symbol refers to a
value of the coupling strength c. In particular, we have that circles,
squares, diamonds, and triangles correspond to c = 0.2, 0.4, 0.6, and
0.8, respectively. All the networks have the same average degree
〈k〉 = 4. Solid lines represent the theoretical curves calculated using
the mean-field formulation. The fitted values for κ are κ = 3.8,3.5,4.2
for the ER, SF-BA, and SF-CONF, respectively. All the results are
averaged over 30 realizations of each kind of network.

[panel (c)], and SF-BA [panel (d)] networks for different values
of the coupling c = 0.2,0.4,0.6, and 0.8. For ER networks
we observe that the value of 〈Sk〉 increases with k although
we note that the growing trend seems to saturate for large
values of k pointing out that entanglement is bounded. On the

FIG. 3. (Color online) Average entropy of nodes with degree
k, 〈Sk〉, for all the topologies under study: (a) RRG, (b) ER,
(c) SF-CONF, and (d) SF-BA networks. All the oscillators are
coupled with the same strength c = 0.6. Each symbol represents
a different value of the average degree 〈k〉 of the system. Solid
lines represent the theoretical behavior calculated with the mean-field
formulation. The fitted values for κ for ER κ = 2.6,3.8,5.5, for
SF-BA κ = 1.8,3.5,5.2, and SF-CONF κ = 2.5,4.2,5.8. All the
results are averaged over 30 realizations of each kind of network.

other hand for SF networks, displaying a larger heterogeneity
for the collection of degrees, the growing trend of 〈Sk〉 only
holds for small to moderate connectivities k; then 〈Sk〉 reaches
a maximum and starts to decrease. Eventually, those nodes
with sufficiently large k would drop its entanglement entropy.
As a result hubs are not the most entangled nodes, but there
is an optimally correlated class of nodes having moderate
connectivity. The plots in Fig. 3 confirm the above results.
In these cases, we have fixed c = 0.6 and changed the mean
connectivity of the RRG [panel (a)], ER [panel (b)], SF-CONF
[panel (c)], and SF-BA [panel (d)] networks. Notice that in
the RRG the mean connectivity and the connectivity are the
same (all the nodes have the same connectivity; see Fig. 1).
Therefore, considering a net with some 〈k〉 would provide only
one point in the curve 〈Sk〉, so we merge in one plot different
networks with different connectivities.

IV. MEAN-FIELD FORMULATION

In the following we develop a minimal model aimed at
capturing the rise-and-fall behavior of 〈Sk〉 in SF networks.
The simplest framework to deal with bipartite entanglement
is sketched in Fig. 2(a). Rather than selecting a site i and
replacing the interaction with each of its neighbors by a
mean value (standard mean field), we consider both i and
its neighbors. The mean-field approximation enters when
replacing the interaction of the neighbors of i with their
corresponding neighbors by its mean value. This mean-field
assumption is equivalent to a renormalization of the frequency
of the k neighbors of i. In this way, the mean-field Hamiltonian
for a node i with k neighbors yields

Hk
MF = 1

2

(
p2

i + x2
i

) + 1

2

k∑
j=1

p2
j + ν2

κx
2
j + c(xi − xj )2, (5)

where the renormalized frequency of the neighbors reads ν2
κ =

1 + 2cκ , and κ is a fitting parameter (see below).
This model is analytically solvable (see Appendix B).

Therefore, we can find the entropy of the central node 〈Sk〉MF

analytically as a function of its connectivity k and κ . In Figs. 2
and 3 we plot with solid lines the curves 〈Sk〉MF obtained
after tuning the single parameter κ for each of the curves. Our
mean-field approximation agrees fairly well with the numerics.
The values of κ for the different topologies under study are
shown in Table I. As observed, in the case of Erdős Rényi (ER)
networks with average degree 〈k〉 = 2 results are missing. This
is due to the fact that for average degrees less than 2.5 the
resulting ER networks are not made by a unique connected
component. Importantly, we observe that κ only depends on
the average degree and on the considered underlying topology
as it is independent of the coupling parameter c (see Figs. 2
and 3).

In addition to the quantitative agreement, the analytical
estimation 〈Sk〉MF allows us to explain the rise and fall of
entropy across degree classes. As shown in Appendix B, this
phenomenon lies in the fact that hubs are almost eigenvectors
of the Laplacian and thus normal modes of the Hamiltonian
(uncoupled from the rest of the system and therefore not
entangled). The progressive localization of the eigenvectors
with k balances the growth of the correlations associated with
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TABLE I. Fitting parameter κ for all the different network
topologies with respect to each pair of parameters, namely, average
degree 〈k〉 and coupling c.

〈k〉, c RRG ER SF-BA SF-CONF

2, 0.2 2.6 1.8 2.5
2, 0.4 2.6 1.8 2.5
2, 0.6 2.6 1.8 2.5
2, 0.8 2.6 1.8 2.5
4, 0.2 3.4 3.8 3.5 4.2
4, 0.4 3.4 3.8 3.5 4.2
4, 0.6 3.4 3.8 3.5 4.2
4, 0.8 3.4 3.8 3.5 4.2
6, 0.2 5.2 5.5 5.2 5.8
6, 0.4 5.2 5.5 5.2 5.8
6, 0.6 5.2 5.5 5.2 5.8
6, 0.8 5.2 5.5 5.2 5.8

the increase of k. It is the competition between these two effects
that explains the peak for 〈Sk〉 in SF networks at moderately,
rather that maximally, coupled nodes.

V. ATTACHING AN EXTERNAL NODE

Let us now tackle the problem from a different perspective.
Up to this point we have assumed that we have access to any
of the nodes and thus computed their corresponding mutual
information to characterize the network. Now, we consider
the network as an unknown system and aim at recovering the
above results by using a single node that can be attached to the
network with as many links as desired. If such node (or probe)
could get further information about its own entropy, say by
measuring its purity, it could sequentially connect to more and
more nodes in a random way so as to reproduce a curve 〈Sk〉.
We have represented this situation in Fig. 4, for an ER graph,
as compared to the situation in which no probe is present. As
shown, the external probe realizes, by launching more than
k � 15 links, that the amount of information it can extract
from the network is bounded and its maximum is reached by

FIG. 4. (Color online) Entropy share by an external (blue) node
coupled to an ER graph. In the plot we show (filled dots) the
entanglement entropy 〈Sk〉 of the nodes of the ER network as a
function of their connectivity. In addition, we show (empty squares)
the evolution of the entanglement of the external node as a function
of its connectivity, i.e., the number of links launched to the target
network.

0 20 40 60 80 100
k

0.04

0.06

0.08

0.10

0.12

S
k

FIG. 5. (Color online) Rise and fall behavior for finite tem-
perature. We plot the expected Sk for our mean-field description
with the values c = 0.6 and κ = 2 and temperatures T = 0.001
(green triangles), 0.1 (purple squares), 0.25 (orange circles), 0.3
(red diamonds).

means of a moderate number of connections. We note that this
individual entropy fairly coincides with the entropy that any
internal node of the same connectivity would measure.

VI. ROBUSTNESS AGAINST TEMPERATURE

We use our mean-field approach to explore the effect of
temperature on the observed behavior at zero temperature.
Instead of assuming the ground state of the network, we take a
Gibbs density matrix ρ = exp(−Hnet/T )/Z with temperature
T , Z = Tr[exp(−Hnet/T )] the partition function and we
have set kB = 1. Figure 5 shows the result for c = 0.6 and
fitting parameter κ = 2: The rise-and-fall behavior survives
for T = 0.1 and starts to disappear only when T > 0.25.
Furthermore, nodes with high connectivity are left almost
unaffected by a temperature increase. Indeed, highly connected
nodes become almost eigenmodes of the system and their
frequency gets renormalized by k, meaning that their frequency
is very high as compared to temperature. Effectively they do
not feel the temperature increase. In contrast, nodes with low
connectivity do not feel this renormalization so much, thus
leading to the typical increase of entropy due to temperature.
In conclusion, the fact that for T = 0.1 the curve matches the
zero temperature one confirms the desired stability for our
results and conclusions.

VII. CONCLUSIONS

The entropy of entanglement of nodes in quantum oscillator
networks reveals a novel and nontrivial characterization of
single-node attributes. In particular, the decay of the entangle-
ment for large connectivity nodes is seen as the fingerprint of
the localization of some of the Laplacian eigenvectors around
hubs which turns them into normal modes of the system.
This effect balances the increase of the entanglement with
the connectivity, analogously to an area law in regular lattices,
thus causing the rise and fall of the entanglement entropy
across connectivity classes. We further stress that the results
presented here survive in the presence of a finite but small
temperature.
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In addition to their interest for the emerging field of
quantum information on networks, our results show an
interesting connection with fundamental concepts of quantum
gravity in complex spatial connectivities. In fact, the setup
used here can be seen as the discretized version of real
massive Klein-Gordon fields far from the usual Minkowsky
or curved space-time situations, suggested from emergent
gravity concepts as intermediate topologies in the transition
from a highly connected (high-energy) quantum geometric
phase of the universe to the low-energy, largely homogeneous,
actual phase [43]. If the links of the network (related to the
quantum gravitational field) are seen as a heat bath for quantum
fields “living” on it, the effect of different entropy densities
could lead to entropic forces, and therefore to preference of
some topological configurations over others. Although the
connection between complex space-time topologies and the
field of network science has recently attracted attention [44],
any result coming from this synergy has to be considered
preliminary and thought provoking.
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APPENDIX A: ENTANGLEMENT ENTROPY

Let us start by deriving Eq. (4) in the text. Given �, the
quantum state of the network, its associated von Neumann
entropy is given by

S = −Tr(� ln �), (A1)

where Tr accounts for the trace operation. The marginal
entropy for the node i, Si , is obtained by replacing � in Eq. (A1)
by the reduced density matrix,

�i = Tric�, (A2)

where Tric is the partial trace, i.e., the trace over the
complement of i (the rest of the nodes).

In our work, the state of the network considered is the
ground state of the Hamiltonian [Eq. (1) in the text]:

Hnetwork = 1
2 [pTp + xT(I + 2cL)x]; (A3)

here I is the N × N identity matrix, c is the coupling
strength between connected oscillators, and L is the network
Laplacian. The operators pT = (p1,p2, . . . ,pN ) and xT =
(x1,,x2, . . . ,xN ) are the momenta and positions of nodes,
respectively, satisfying the usual commutation relations:
[x,pT] = ih̄ I. We are interested in analyzing the ground state
of the system, which is a pure state, thus having S = 0. On
top of that, this state is Gaussian (since the Hamiltonian is
quadratic) so that the reduced density matrices �i and Si can

be computed by means of the covariance matrix:

σ =
( 〈

x2
i

〉
1
2 〈xipi + pixi〉

1
2 〈xipi + pixi〉

〈
p2

i

〉
)

, (A4)

where the averages are calculated via the reduced den-
sity matrix, �i , as 〈x2

i 〉 = Tr(x2
i �i). It was Agarwal [39]

who derived an explicit formula for the marginal entropies
[Eq. (3) in the text]:

Si = Sic = (
μi + 1

2

)
ln

(
μi + 1

2

)− (
μi − 1

2

)
ln

(
μi − 1

2

)
, (A5)

with μi =
√
〈x2

i 〉〈p2
i 〉.

We are able to find these quadratures by working with
normal modes, i.e., those diagonalizing the potential energy
matrix V = I + 2cL:

x = S Q so that STV S = Vd, (A6)

whose quadratures are those of a set of uncoupled oscillators
at their individual ground state:

〈Qi〉 = 〈Pi〉 = 0, (A7)

〈QiQj 〉 = δij

h̄

2	j

, (A8)

〈PiPj 〉 = δij

h̄	j

2
, (A9)

1
2 〈QiPj + QjPi〉 = 0, (A10)

with 	i = √
1 + 2cλi the eigenfrequencies, and λi the eigen-

values of the Laplacian matrix L. The latter relation is
obtained from simple inspection of the eigenvalue equation
V u = 	2u = (I + 2cL)u, so that Lu = 	2−1

2c
u ≡ λu. That is,

u is an eigenvector of both V and L, with 	 = √
1 + 2cλ.

Then we obtain

〈xi〉 =
∑

j

Sij 〈Qj 〉 = 0, (A11)

〈pi〉 =
∑

j

Sij 〈Pj 〉 = 0, (A12)

〈pixj 〉 =
∑
k,l

SikSjl〈PkQl〉 = 0, (A13)

〈
x2

i

〉 =
∑

j

(Sij )2〈Q2
j

〉 =
∑

j

(Sij )2 h̄

2	j

, (A14)

〈
p2

i

〉 =
∑

j

(Sij )2
〈
P 2

j

〉 =
∑

j

(Sij )2 h̄	j

2
. (A15)

Finally, we arrive at the expression for the quadratures:

μ2
i = 〈

x2
i

〉〈
p2

i

〉 − 1

2
〈xipi + pixi〉

= 〈
x2

i

〉〈
p2

i

〉 = 1

4

∑
j

(Sij )2(Sij ′)2 	j

	j ′
, (A16)

as stated in the main text.

APPENDIX B: ENTANGLEMENT MEAN-FIELD
APPROXIMATION

In this section we sketch the solution for the mean-
field approximation presented in the main text. The mean-
field Hamiltonian for a node surrounded by k neighbors

052312-5
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[cf. Fig. 1(a)] can be rewritten in matrix form as

H = 1
2 (pT I p + xT V̂ x) (B1)

with the (k + 1)-tuples:

p =

⎛
⎜⎜⎜⎜⎝

p0

p1

...

pk

⎞
⎟⎟⎟⎟⎠ , x =

⎛
⎜⎜⎜⎜⎝

x0

x1

...

xk

⎞
⎟⎟⎟⎟⎠ ; (B2)

note that we have named the 0 node the central one. The
potential then reads

V̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + c k −c −c · · · −c

−c 1 + c κ 0 · · · 0

−c 0 1 + c κ · · · 0
...

...
. . .

...

−c · · · · · · 0 1 + c κ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B3)

The equilibrium properties of (B1), in particular the von
Neumann entropy, is characterized by the eigenvalues and
eigenvectors of V̂ , as explained in the previous section. It turns
out that the spectrum of V̂ given by (B3) can be analytically
computed:

(i) The (k + 1) × (k + 1) matrix V̂ in Eq. (B3) has
(k + 1) − 2 eigenvectors of the form

|λj 〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

1i

...

−1j

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

with degenerated eigenvalues

λj = 1 + cκ (B5)

as can be easily checked.

(ii) The other two eigenvectors are of the form

|λ〉 = 1√
z2 + k

⎛
⎜⎜⎜⎜⎝

z

1
...

1

⎞
⎟⎟⎟⎟⎠ , (B6)

where the eigenvalues and eigenvectors are found from the
equations

(ω + ck2) − kc = λz, (B7)

−cz + ω + cκ = λ, (B8)

with eigenvalues

λ± = 1
2 {c[κ ±

√
κ2 − 2κk + k(k + 4) + k] + 2ω} (B9)

and

z± = 1
2 [κ − k ∓

√
κ2 − 2κk + k(k + 4)]. (B10)

The latter are the only ones entering in the formula for the
marginal entropy of the node 0; see (A5) and Eq. (3) in main
text. Thus, the quadratures can be written as

〈
x2

0

〉 =
∑
i=±

z2
i

z2
i + k

1

2
√

λi

, (B11)

〈
p2

0

〉 =
∑
i=±

z2
i

z2
i + k

√
λi

2
, (B12)

from which the entropy is obtained.
We finally note that z+ → −k for large enough k. There-

fore in this limit the corresponding eigenvector approaches
(1,0, . . . ,0) with frequency ω = √

λ+ → √
1 + 2ck. There-

fore, in the limit of large connectivity the node is a normal
mode and its corresponding marginal entropy approaches
zero.
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