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Spatial patterns in mesic savannas: the local facilitation limit and the role of

demographic stochasticity.
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We propose a model equation for the dynamics of tree density in mesic savannas. It considers
long-range competition among trees and the effect of fire acting as a local facilitation mechanism.
Despite short-range facilitation is taken to the local-range limit, the standard full spectrum of
spatial structures obtained in general vegetation models is recovered. Long-range competition is
thus the key ingredient for the development of patterns. The long time coexistence between trees
and grass, and how fires affect the survival of trees as well as the maintenance of the patterns
is studied. The influence of demographic noise is analyzed. The stochastic system, under the
parameter constraints typical of mesic savannas, shows irregular patterns characteristics of realistic
situations. The coexistence of trees and grass still remains at reasonable noise intensities.

PACS numbers:

I. INTRODUCTION

Savannas ecosystems are characterized by the long-
term coexistence between a continuous grass layer and
scattered or clustered trees [1]. Occurring in many re-
gions of the world, in areas with very different climatic
and ecological conditions, the spatial structure, persis-
tence, and resilience of savannas have long intrigued ecol-
ogists [2–5]. However, despite substantial research, the
origin and nature of savannas have not yet been fully
resolved and much remains to be learned.

Savanna tree populations often exhibit pronounced,
non-random spatial structures [6–10]. Much research has
therefore focused on explaining how spatial patterning
in savannas arises [8–13]. In most natural plant systems
both facilitative and competitive processes are simulta-
neously present [2, 14] and hard to disentangle [15, 16].
Some savanna studies have pointed toward the existence
of short-distance facilitation [7, 9], while others have
demonstrated evidence of competition [6, 8, 10], with
conflicting reports sometimes arriving from the same re-
gions.

Different classes of savannas, which can be character-
ized by how much rainfall they typically receive, should
be affected by different sets of processes. For example, in
semiarid savannas water is extremely limited (low mean
annual precipitation) and competition among trees is ex-
pected to be strong, but fire plays little role because there
is typically not enough grass biomass to serve as fuel.
In contrast, humid savannas should be characterized by
weaker competition among trees, but also by frequent
and intense fires. In-between these extremes, in mesic
savannas, trees likely have to contend with intermediate
levels of both competition for water and fire [3, 11, 17–
20].

Competition among trees is mediated by roots that
typically extend well beyond the crown [4, 16]. Addi-
tionally, fire can lead to local facilitation due to a protec-

tion effect, whereby vulnerable juvenile trees placed near
adults are protected from fire by them [21]. We are par-
ticularly interested in how the interplay between these
mechanisms governs the spatial arrangement of trees in
mesic savannas, where both mechanisms may operate.
On the other side, it has frequently been claimed that
pattern formation in arid systems can be explained by
a combination of long-distance competition and short-
distance facilitation [22–28]. This combination of mecha-
nisms is also known to produce spatial structures in many
other natural systems [29]. Although mesic savannas do
not display the same range of highly regular spatial pat-
terns that arise in arid systems (e.g., tigerbush), similar
mechanisms might be at work. Specifically, the inter-
action between long-range competition and short-range
facilitation might still play a role in pattern formation in
savanna tree populations, but only for a limited range of
parameter values and possibly modified by demographic
stochasticity.

Although the facilitation component has often been
thought to be a key component in previous vegetation
models [9, 26, 28, 30], Rietkerk and Van de Koppel [31],
speculated, but did not show, that pattern formation
could occur without short-range facilitation in the par-
ticular example of tidal freshwater marsh. In the case
of savannas, as stated before, the presence of adult trees
favor the establishment of new trees in the area, pro-
tecting the juveniles against fires. Considering this ef-
fect, we take the facilitation component to its infinitesi-
mally short spatial limit, and study its effect in the emer-
gence of spatially periodic structures of trees. To our
knowledge, this explanation, and the interrelation be-
tween long-range competition and local facilitation, has
not been explored for a vegetation system. One of our
main results is that when considering the limit of local
facilitation and nonlocal competition, clustering of trees
appears.

Here we develop a minimalistic model of savannas
that considers two of the factors, as already mentioned,
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thought to be crucial to structure mesic savannas: tree-
tree competition and fire, with a primary focus on spa-
tially nonlocal competition. Employing standard tools
used in the study of pattern formation phenomena in
physics (stability analysis and the structure function)
[29], we explore the conditions under which the model
can produce non-homogeneous spatial distributions. A
key strength of our approach is that we are able to pro-
vide a complete and rigorous analysis of the patterns the
model is capable of producing, and we identify which
among these correspond to situations that are relevant
for mesic savannas. We further examine the role of demo-
graphic stochasticity in modifying both spatial patterns
and the conditions under which trees persist in the sys-
tem in the presence of fire, and discuss the implications
of these results for the debate on whether the balance
of processes affecting savanna trees is positive, negative,
or is variable among systems. This is the framework of
our study: the role of long-range competition, facilita-
tion and demographic fluctuations (in the second part of
the paper) in the spatial structures of mesic savannas.
To complete our work we include an appendix where we
study the effect of external fluctuations (mimicking for
e.g. rainfall) on savanna dynamics.
Our model is inspired by the one presented by Cal-

abrese et al. in [11]. It complements theirs by providing
further analytical results that clearly demonstrate that
this simple system, where we focus on the local limit of
facilitation, can produce the full spectrum of spatial pat-
terns reported from models employing both short-range
facilitation and long-range inhibition (competition).

II. THE DETERMINISTIC MODEL

In this section we derive the deterministic equation for
the local density of trees, such that dynamics is of the
logistic type and we only consider tree-tree competition
and fire. We study the formation of patterns via stability
analysis and provide numerical simulations of our model,
showing the emergence of spatial structures.

A. The nonlocal savanna model

Calabrese et al. [11] introduced a simple discrete-
particle lattice savanna model that considers the birth-
death dynamics of trees, and where tree-tree competition
and fire are the principal ingredients. These mechanisms
act on the probability of establishment of a tree once a
seed lands at a particular point on the lattice. In the dis-
crete model, seeds land in the neighborhood of a parent
tree with a rate b, and establish as adult trees if they are
able to survive both competition neighboring trees and
fire. As these two phenomena are independent, the prob-
ability of establishment is PE = PCPF , where PC is the
probability of surviving the competition, and PF is the
probability of surviving a fire event. From this dynamics,

we write a deterministic differential equation describing
the time evolution of the global density of trees (mean
field), ρ(t), where the population has logistic growth at
rate b, and an exponential death term at rate α. It reads:

dρ

dt
= bPE(ρ)ρ(t) (1− ρ(t))− αρ(t). (1)

Generalizing Eq. (1), we propose an evolution equation
for the space-dependent (local) density of trees, ρ(x, t):

∂ρ(x, t)

∂t
= bPEρ(x, t)(1 − ρ(x, t))− αρ(x, t). (2)

We allow the probability of overcoming competition to
depend on tree crowding in a local neighborhood, decay-
ing exponentially with the density of surrounding trees
as

PC = exp

(

−δ
∫

G(x− r)ρ(r, t)dr

)

, (3)

where δ is a parameter that modulates the strength of
the competition, and G(x) is a positive kernel function
that introduces a finite range of influence. This model
is related to earlier models of pattern formation in arid
systems [23], and subsequent works [24, 25], but it dif-
fers from standard kernel-based models in that the ker-
nel function accounts for the interaction neighborhood,
and not for the type of interaction with the distance.
Note also that the nonlocal term enters nonlinearly in
the equation.
Following [11], PF is assumed to be a saturating func-

tion of grass biomass, 1 − ρ(x.t), similar to the imple-
mentation of fire of Jeltsch et al. in [12]

PF =
σ

σ + 1− ρ(x, t)
, (4)

where σ governs the resistance to fire, so σ = 0 means
no resistance to fires. Notice how our model is close to
the one in [11] through the definitions of PC and PF ,
although we consider the probability of surviving a fire
depending on the local density of trees, and in [11] it
depends on the global density. The deterministic differ-
ential equation that considers tree-tree competition and
fire for the spatial tree density is

∂ρ(x, t)

∂t
= beff (ρ)ρ(x, t) (1− ρ(x, t)) − αρ(x, t), (5)

where

beff (ρ) =
be−δ

∫

G(x−r)ρ(r,t)drσ

σ + 1− ρ(x, t)
. (6)

Thus, we have a logistic-type equation with an effective
growth rate that depends nonlocally on the density itself,
and which is a combination of long-range competition
and local facilitation mechanisms (fire). The probability
of surviving a fire is higher when the local density of trees
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is higher, as can be seen from the definition in equation
(4).
In figure 1 we show numerical solutions for the mean

field equation (1) (lines) and the spatially explicit model
(equation 5) (dots) in the stationary state (t→ ∞) using
different values of the competition. We have used a top-
hat function as the competition kernel, G(x) (See section
II B for more details on the kernel choice). We observe a
very good agreement of both descriptions which becomes
worse when we get closer to the critical point σ∗, where
the model presents a phase transition from a tree-grass
coexistence to a grassland state. This disagreement ap-
pears because while the mean field equation describes an
infinite system, the Eq. (5) description forces us to choose
a size for the system.
The model reproduces the long-term coexistence be-

tween grass and trees that is characteristic of savannas.
To explore this coexistence, we study the long-time be-
havior of the system and analyze the homogeneous sta-
tionary solutions of Eq. (5), which has two fixed points.
The first one is the absorbing state representing the ab-
sence of trees, ρ0 = 0, and the other can be obtained, in
the general case, by numerically solving

beff (ρ0)(1− ρ0)− α = 0. (7)

In the regime where ρ0 is small (near the critical point),
if competition intensity, δ, is also small, it is possible to
obtain an analytical expression for the critical value of
the probability of surviving a fire, σ∗,

σ∗ =
α

b− α
. (8)

Outside of the limit where δ ≪ 1, we can solve Eq. (7)
numerically in ρ0 to show that the critical value of the
fire resistance parameter, σ∗, does not depend on compe-
tition. A steady state with trees is stable for higher fire
survival probability (Fig. 1).
The model, then, shows a transition from a state where

grass is the only form of vegetation to another state where
trees and grass coexist at σ∗. In what follows, we fix
α = 1, so we choose our temporal scale in such a way
that time is measured in units of α. This choice does not
qualitatively affect our results.

B. Linear stability analysis

The spatial patterns appearing in the nonlocal savanna
model can be studied by performing a linear stability
analysis [29] of the stationary homogeneous solutions of
equation (5), ρ0 = ρ0(σ, δ). The stability analysis is
performed by considering small harmonic perturbations
around ρ0, ρ(x, t) = ρ0 + ǫeλt−ik·x, ǫ ≪ 1. After some
calculations (A), one arrives at the dispersion relation

λ(k;σ, δ) = beff (ρ0)
1+σ(1−2ρ0)

σ−ρ0+1

−beff (ρ0)
ρ0[2−ρ0+δĜ(k)(ρ0−1)(ρ0−1−σ)]

(σ−ρ0+1) − 1, (9)
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FIG. 1: Grass-coexistence phase transition. Stationary tree
density, ρ0, as a function of the resistance to fires parameter,
σ. The lines come from the mean field solution, Eq. (7),
and the dots from the numerical integration of Eq. (5) over
a square region of 1 ha. We have chosen α = 1, and b = 5.
In the case of the spatial model, ρ0 involves an average of the
density of trees over the studied patch of savanna.

where Ĝ(k), k = |k|, is the Fourier transform of the ker-
nel,

Ĝ(k) =

∫

G(x)e−ik·xdx. (10)

The critical values of the parameters of the transition
to pattern, δc and σc, and the fastest growing wavenum-
ber kc are obtained from the simultaneous solution of

λ(kc;σc, δc) = 0, (11)
(

∂λ

∂k

)

kc;σc,δc

= 0. (12)

Note that kc represents the most unstable mode of the
system, which means that it grows faster than the others
and eventually dominates the state of the system. There-
fore, it determines the length scale of the spatial pattern.
These two equations yield the values of the parameters δ
and σ at which the maximum of the curve λ(k), right at
kc, starts becoming positive. This signals the formation
of patterns in the solutions of Eq. (5). As Eq. (12) is
explicitly written as

λ′(kc) = beff (ρ0)δρ0Ĝ
′(kc)(ρ0 − 1), (13)

the most unstable wavenumber kc can be obtained by
evaluating the zeros of the derivative of the Fourier trans-
form of the kernel.
Equation (9) shows that competition, through the ker-

nel function, fully determines the formation of patterns
in the system. The local facilitation appears in beff (ρ0)
and it is not relevant in the formation of spatial struc-
tures. If the Fourier transform of G never takes positive
values, then λ(k;σ, δ) is always negative and only the ho-

mogeneous solution is stable. However, when Ĝ can take
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negative solutions then patterns may appear in the sys-
tem. What does this mean in biological terms? Imagine
that we have a family of kernels described by a parameter
p: G(x) = exp(−|(x)/R|p) (R gives the range of compe-
tition). The kernels are more peaked around x = 0 for
p < 2 and more box-like when p > 2. It turns out that
this family of functions has non-negative Fourier trans-
form for 0 ≤ p < 2, so that no patterns appear in this
case. A lengthy discussion of this property in the context
of competition of species can be found in [32]. Thus, the
shape of the competition kernel dictates whether or not
patterns will appear in the system. If pattern formation
is possible, then the values of the fire and competition
parameters govern the type of solution (see below).
Our central result for nonlocal competition is that,

contrary to conventional wisdom, it can, in the limit of
infinitesimally short (purely local) facilitation, promote
the clustering of trees. Whether or not this occurs de-
pends entirely on the shape of the competition kernel.
For large p we have a box-like shape, and in these cases
trees compete strongly with other trees, roughly within
a distance R from their position. The mechanism behind
this counterintuitive result is that trees farther than R
away from a resident tree area are not able to invade

the zone defined by the radius R around the established
tree (their seeds do not establish there), so that an ex-
clusion zone develops around it. For smaller p there is
less competition and the exclusion zones disappear.
For a more detailed analysis, one must choose an ex-

plicit form for the kernel function. Our choice is deter-
mined by the original PC taken in [11], so that it decays
exponentially with the number of trees in a neighborhood
of radius R around a given tree. Thus, for G we take the
step function (limit p→ ∞)

G(|r|) =







1 if |r| ≤ R

0 if |r| > R.
(14)

As noticed before, the idea behind the nonlocal compe-
tition is to capture the effect of the long roots of a tree.
The kernel function defines the area of influence of the
roots, and it can be modeled at first order with the con-
stant function of equation (14). Thus the parameter R,
which fixes the nonlocal interaction scale, must be of the
order of the length of the roots [4]. Since the roots are the
responsible for the adsorption of resources (water and soil
nutrients), a strong long-range competition term implies
strong resource depletion. For this kernel the Fourier
transform is [33] Ĝ(k) = 2πR2J1(kR)/kR and its deriva-

tive is Ĝ′(k) = −2πR2J2(kR)/k, where k ≡ |k|, and Ji
is the ith-order Bessel function. Since Ĝ(k) can take pos-
itive and negative values, pattern solutions may arise in
the system, that will in turn depend on the values of δ and
σ. The most unstable mode is numerically obtained as
the first zero of λ′(k), Eq. (13), which means the first zero
of the Bessel function J2(kR). This value only depends
on R, being independent of the resistance to fires and
competition, and it is kc = 5.136/R. Because a pattern

of n cells is characterized by a wavenumber kc = 2πn/L,
where L is the system size, the typical distance between
clusters, dt = L/n, using the definition of the critical
wavenumber is given by dt ≈ 1.22R. In other words, it is
approximately the range of interaction R. This result is
also independent of the other parameters of the system.
Since we are interested in the effect of competition and

fire on the distribution of savanna trees, we will try to fix
all the parameters but σ and δ. We will explore the ef-
fect of different values of these parameters on the results.
First, we have chosen (as in [11]) the death rate α = 1,
and solving Eq. (7) we will roughly estimate the birth
rate, b. We will work in the limit of intermediate to high
mean annual precipitation, so water is non-limiting and
thus we can neglect the effects of competition (δ = 0). At
this intermediate to high mean annual precipitation the
empirically observed upper limit of savanna tree cover
is approximately ρ0 = 0.8 [3, 20]. To reach this upper
limit in the tree cover, disturbances must also be absent,
implying no fire (σ → ∞). In this limit, the mean field
equation (1) is quantitatively accurate, as it is shown in
Figure 1, and the stationary mean field solution of the
model depends only on the birth rate

ρ0(σ → ∞) =
b− 1

b
. (15)

It can be solved for b for a fixed ρ0 = 0.8, and it yields b =
5 [11]. In the following we just consider the dependence
of our results on δ and σ. In particular, ρ0 = ρ0(σ, δ).
The phase diagram of the model, computed numeri-

cally, is shown in Fig. 2, where we plot the spatial char-
acter of the steady solution (homogeneous or inhomoge-
neous) as a function of δ and σ. Note that increasing
competition enhances the inhomogeneous or pattern so-
lution. This is because, as we are now in the case of a
kernel giving rise to clusters, increasing δ makes it more
difficult to enter the exclusion zones in-between the clus-
ters. For very strong competition (high, unrealistic, δ),
fire has no influence on the pattern.
The critical line separating these two solutions (pat-

tern and homogeneous)can be analytically computed as

a function of the parameters δ, σ, ρ0 and Ĝ(kc) (see
Eq. (B1) in B). In Figure 2 we have plotted (with crosses)
this critical line separating homogeneous and pattern so-
lutions for the step kernel. Note that the stationary
density of trees, ρ0, must be computed numerically from
Eq. (7).
With b = 5, in the absence of fire (σ → ∞), and for

weak competition, we can take the limits δ → 0 and
σ → ∞ of the dispersion relation Eq. (9), leading to

λ(k; δ → 0, σ → ∞) = 4− 10ρ0. (16)

In Fig. 1, for large σ, it can be seen that typically ρ0 >
0.4, so Eq. (16) becomes negative. This result means
that in this limit, trees are uniformly distributed in the
system as there is no competition, and space does not
play a relevant role in the establishment of new trees.
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FIG. 2: Phase diagram of the mean field equation (5) for
b = 5.0, α = 1.0, and a step kernel. The absorbing-active
transition is shown at σ∗ with circles (o). The homogeneous-
pattern transition (Eq. (B1)) is indicated with crosses (x).
The diamond, the square, and the up-triangle show the value
of the parameters σ and δ taken in Figures 3(a)-(c) respec-
tively. The stars point out the transition to inhomogeneous
solutions in the stochastic model as described in Section III,
with Γ = 0.2.

Such situation could be interpreted as favorable to forest
leading to a fairly homogeneous density of trees. This
result agrees with the phase plane plotted in Figure 2.
In biological terms, there are no exclusion zones in the
system because there is no competition.

C. Numerical simulations

The previous analysis provides information, depending
on the competition and fire parameters, about when the
solution is spatially homogenous and when trees arrange
in clusters. However, the different shapes of the patterns
have to be studied via numerical simulations [34] of the
whole equation of the model. We have taken a finite
square region of savanna with an area of 1 ha., allowed
competition to occur in a circular area of radius R = 8m,
and employed periodic boundary conditions and a finite
differences algorithm to obtain the numerical solution.
Similarly to what has been observed in studies of semi-
arid water limited systems [26, 28], different structures,
including gaps, stripes, and tree spots, are obtained in
the stationary state as we increase the strength of com-
petition for a fixed value of the fire parameter or, on the
other hand, as we decrease the resistance to fires for a
given competition intensity. In both equivalent cases, we
observe this spectrum of patterns as far as we go to a
more dry state of the system, where resources (mainly
water) are more limited (see Figs. 3(a)-3(c)) and compe-
tition is consequently stronger. This same sequence of
appearance of patterns has been already observed in the
presence of different short-range facilitation mechanisms
[26, 35]. It indicates that, when δ is increased (i.e. the
probability of surviving competition is decreased), new
trees cannot establish in the exclusion areas so clustering

FIG. 3: (a) Grass spots (δ = 7.0), (b) striped grass vs. tree
(δ = 8.0), and (c) tree spots (δ = 11.0) patterns in the deter-
ministic model in a square patch of savanna of 1 ha. σ = 2.9,
R = 8.0 m, b = 5.0 and α = 1.0 in all the plots.

is enhanced.
On the other hand, in the case of fire-prones savannas,

previous works had only shown either tree spot [36] or
grass spots [37]. Therefore, at some values of the param-
eter space (see Fig. 3b), the patterns in our determin-
istic approach are not observed in mesic savannas, and
should correspond to semiarid systems. However, we will
show in the following sections that under the parame-
ter constraints of a mesic savanna, and considering the
stochastic nature of the tree growth dynamics in the sys-
tem (i.e. demographic noise), our model shows realistic
spatial structures.
A much more quantitative analysis of the periodicity in

the patterns can be performed via the structure function.
This will be helpful to check the previous results and, es-
pecially, for the analysis of the data of the stochastic
model of the next section, for which we will not present
analytical results. The structure function is defined as
the modulus of the spatial Fourier transform of the den-
sity of trees in the stationary state,

S(k) =

〈
∣

∣

∣

∣

∫

dxeik·xρ(x, t → ∞)

∣

∣

∣

∣

〉

, (17)

where the average is a spherical average over the wavevec-
tors with modulus k. The structure function is helpful to
study spatial periodicities in the system, similar to the
power spectrum of a temporal signal. Its maximum iden-
tifies dominant periodicities, which in our case are the
distances between tree clusters. Note that the geometry
of the different patterns cannot be uncovered with the
structure function, since it involves a spherical average.
In Fig. 4, we show the transition to patterns using the
maximum of the structure function as a function of the
competition parameter. A peak appears when there are
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FIG. 4: Maximum of the structure function for different val-
ues of the competition parameter δ at long times. The fire
parameter is fixed at σ = 2.9. Black circles refers to the de-
terministic model and red squares to the stochastic model,
Γ = 0.20.
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FIG. 5: Numerical computation of the structure function de-
fined in equation (17) for different values of the demographic
noise intensity. δ = 9.8, σ = 2.9, R = 8 m, α = 1.0, b = 5.0.

spatial structures in the system, soMax[S(k)] 6= 0. How-
ever, we do not have information about the values where
the shapes of the patterns change. Taking R = 8 m, the
peak is always at λc = 10m for our deterministic savanna
model, independently of the competition and fire resis-
tance parameters, provided that they take values that
ensure the emergence of patterns in the system (see the
line labeled by Γ = 0 in Fig. 5; for the definition of Γ
see next section). This result is in good agreement with
the theoretical result provided for the wavelength by the
linear stability analysis λ = 2π/kmax = 9.78 m, which is
also independent of competition and resistance to fires.

III. STOCHASTIC MODEL

The perfectly periodic patterns emerging in Fig. 3 from
the deterministic model seem to be far from the dis-
ordered ones usually observed in aerial photographs of
mesic savannas and shown by individual based models
[6–8, 11]. We have so far described a savanna system in
terms of the density of trees with a deterministic dynam-

ics. The interpretation of the field ρ(x, t) is the density
of tree (active) sites in a small volume, V . If we think of
trees as reacting particles which are born and die prob-
abilistically, then to provide a reasonable description of
the underlying individual-based birth and death dynam-
ics, we have to add a noise term to the standard deter-
ministic equation. It will take into account the intrinsic

stochasticity present at the individual level in the system.
If we take a small volume, V , the number of reactions

taking place is proportional to the number of particles
therein, N , with small deviations. If N is large enough,
the central limit theorem applies to the sum of N inde-
pendent random variables and predicts that the ampli-
tude of the deviation is of the order of

√
N ∝

√

ρ(x, t)
[38]. This stochasticity referred to as demographic noise.
The macroscopic equation is now stochastic,

∂ρ(x, t)

∂t
= beff (ρ)[ρ(x, t)− ρ2(x, t)]−

− αρ(x, t) + Γ
√

ρ(x, t)η(x, t), (18)

where Γ ∝
√

beff (but we take it as a constant, [39])
modulates the intensity of η(x, t), a Gaussian white noise
term with zero mean and correlations given by Dirac
delta distributions

< η(x, t)η(x′, t′) >= δ(x− x
′)δ(t− t′). (19)

The complete description of the dynamics in Eq.(18)
should have the potential to describe more realistic pat-
terns.
We first investigate the effect of demographic noise on

the persistence of trees in the system. We show in (Fig.
6) that the critical point, σ∗, depends on the value of
the competition parameter δ. This effect is rather small,
so that when δ increases the transition to the grassland
state appears only for a slightly larger σ (i.e, less fre-
quent fire). The reason seems to be that fire frequency
and intensity depend on grass biomass. Seasonally wet
savannas support much more grass biomass that serves
as fuel for fires during the dry season [40, 41]. Dry savan-
nas have much lower grass biomass, so they do not burn
as often or as intensely. The shift of the critical value of
σ when competition is stronger is consistent with the one
showed in [11], as can be seen comparing Figure 2 in [11]
with Figure 6 here. Besides, the values obtained for σ∗

are larger when we consider the demographic stochastic-
ity [42] neglected in the deterministic field approach.
We explore numerically the stochastic savanna model

using an algorithm developed in [39] (See C). Note that
the noise makes the transition to pattern smoother so
the change from homogeneous to inhomogeneous spatial
patterns is not as clear as it is in the limit where the
demographic noise vanishes (See Fig. 4). The presence
of demographic noise in the model, as shown in Fig. 2
(red stars), also decreases the value of the competition
strength at which patterns appear in the system, as has
been observed in other systems. Mathematically, these
new patterns appear since demographic noise maintains
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FIG. 6: Active-absorbing phase transition in the deterministic
(Circles) and the stochastic model (Squares). In the later
case, we integrate the Eq. (18) with Γ = 0.2 and average the
density of trees in the steady state.

Fourier modes of the solution which, due to the value of
the parameters, would decay in a deterministic approach
[43]. Biologically, exclusion zones are promoted by demo-
graphic noise, since it does not affect regions where there
are not trees. On the other hand in vegetated areas fluc-
tuations may enhance tree density, leading to stronger
competition. The presence of demographic noise in the
model allows the existence of patterns under more humid
conditions. This result is highly relevant for mesic savan-
nas, as we expect competition to be of low to intermediate
strength in such systems. We show two examples of these
irregular patterns in Fig. 7(a) and Fig. 7(b). Unrealis-
tic stripe-like patterns no longer appear in the stochastic
model.
We have studied the dynamics of the system for some

values of the fire and competition parameters. Demo-
graphic noise influences the spatial structures shown by
the model. The deterministic approach shows a full spec-
trum of patterns which are not visually realistic for mesic
savannas (but for arid systems). The role of the noise is to
transform this spectrum of regular, unrealistic patterns
into more irregular ones (Figures 7(a)-7(d)) that remind
the observed in aerial photographs of real mesic savan-
nas. On the other hand, these patterns are statistically
equivalent to the deterministic ones, as it is shown with
the structure function in Fig. 5. The dominant scale in
the solution is given by the interaction radio, R, and it is
independent of the amplitude of the noise (see the struc-
ture function in Figure 5, peaked around λ = 10 m inde-
pendently of the noise). Besides, over a certain treshold
in the amplitude, demographic noise destroys the popu-
lation of trees. Therefore, the model presents an active-
absorbing transition with the noise strength, Γ, being the
control parameter.

IV. DISCUSSION

Understanding the mechanisms that produce spatial
patterns in savanna tree populations has long been an
area of interest among savanna ecologists [6–10]. A key
step in such an analysis is defining the most parsimo-

FIG. 7: Patterns of the stochastic model in a square patch of
savanna of 1 ha. σ = 2.9, R = 8.0 m, b = 5.0 and α = 1.0 in
all the plots. (a) Γ = 0.2, δ = 3.0. (b) Γ = 0.2, δ = 5.0. (c)
Γ = 0.1, δ = 10.0. (b) Γ = 0.2, δ = 10.0.

nious combination of mechanisms that will produce the
pattern in question. In this paper the combination of
long-range competition for resources and the facilitation
induced by fire are considered the responsible of the spa-
tial structures, in the line of studies of vegetation pat-
tern formation in arid systems, where also a combina-
tion of long-range inhibition and short-range facilitation
is introduced [22, 23, 26, 27]. The main difference is
that the facilitation provided by the protection effect of
adult trees against fires in our savanna model takes the
short-range facilitation to its infinitesimally short limit
(i.e, local limit). Under this assumption we have stud-
ied the conditions under which our model could account
for patterns. We have shown that nonlocal competition
combined with local facilitation induces the full range of
observed spatial patterns, provided the competition term
enters nonlinearly in the equation for the density of trees,
and that competition is strong enough.
The key technical requirement for this effect to occur

is that the competition kernel must be an almost con-
stant function in a given competition region, and decay
abruptly out of the region. We verify this condition work-
ing with supergaussian kernel functions. In practice, this
means that competition kernels whose Fourier transform
takes negative values for some wavenumber values, will
lead to competition driven clustering.
The other mechanism we have considered for a mini-

malistic but realistic savanna model, fire, has been shown
to be relevant for the coexistence of trees and grass and
for the shape of the patterns. However, competition is
the main ingredient allowing pattern solutions to exist in
the model. If the shape of the kernel allows these types
of solutions, then the specific values of fire and competi-
tion parameters determine the kind of spatial structure
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that develops. It is also worth mentioning that one can
observe the full spectrum of patterns in the limit where
fires vanish (σ → ∞), so there is no facilitation at all,
provided competition is strong enough. However, when
there is no competition, δ = 0, no patterns develop re-
gardless of the value of the fire term. Therefore, we con-
clude that the nonlocal competition term is responsible
for the emergence of clustered distributions of trees in
the model, with the fire term playing a relevant role only
to fix the value of the competition parameter at which
patterns appear. In other words, for a given competition
strength, patterns appear more readily when fire is com-
bined with competition. A similar mechanism of com-
petitive interactions between species has been shown to
give rise to clusters of species in the context of classical
ecological niche theory. Scheffer and van Nes [44] showed
that species distribution in niche space was clustered, and
Pigolotti et al. [32] showed that this arises as an insta-
bility of the nonlocal nonlinear equation describing the
competition of species.

Long-distance competition for resources in combina-
tion with the local facilitation due to the protection ef-
fect of adult trees in the establishment of juvenile ones
can explain the emergence of realistic structures of trees
in mesic savannas. In these environmental conditions,
competition is limited, so we should restrict to small to
intermediate values of the parameter δ, and the effect
of fires is also worth to be taken into account. How-
ever, these two ingredients give a full range of patterns
observed in vegetated systems, but not in the particular
case of savannas. It is necessary to consider the role of de-
mographic noise, which is present in the system through
the stochastic nature of the birth and death processes of
individual trees. In this complete framework our model
shows irregular patterns of trees similar to the observed
in real savannas.

The other important feature of savannas, the charac-
teristic long-time coexistence of trees and grass is well
captured with our model (Figures 1 and 6). Besides, the
presence of demographic noise, as it is shown in Figure 6,
makes our approach much more realistic, since the persis-
tence of trees in the face of fires is related to the water in
the system. On the other hand, demographic stochastic-
ity causes tree extinction at lower fire frequencies (larger
σ) than in the deterministic case. This is because random
fluctuations in tree density are of sufficient magnitude
that this can hit zero even if the deterministic stationary
tree density (for a given fire frequency) is greater than
zero. This effect vanishes if we increase the system size.
The demographic noise is proportional to the density of
trees (proportional to (Lx × Ly)

−1), so fluctuations are
smaller if we study bigger patches of savannas. As usually
happens in the study of critical phenomena in Statisti-
cal Mechanics, the extinction times due to demographic
noise increase exponentially with the size of the system
for those intensities of competition and fire that allow
the presence of trees in the stationary state. Over the
critical line, this time will follow a power law scaling,

and a logarithmic one when the stationary state of the
deterministic model is already absorbing (without trees)
[45].

V. SUMMARY

We have shown the formation of patterns in a minimal
savanna model, that considers the combination of long-
range competition and local facilitation mechanisms as
well as the transition from trees-grass coexistence to a
grass only state.
The salient feature of the model is that it only con-

siders nonlocal (and nonlinear) competition through a
kernel function which defines the length of the interac-
tion, while the facilitation is considered to have an in-
finitesimally short influence range. Our model thus dif-
fers from standard kernel-based savanna models that fea-
ture both short-range facilitation and long-range compe-
tition. The same sequence of spatial patterns appears in
both approaches, confirming Rietkerk and van de Kop-
pel’s [31] suggestion that short-range facilitation does
not induce spatial pattern formation by itself, and long-
distance competition is also needed. It also suggests that
long-range competition could be not only a necessary,
but also a sufficient condition to the appearance of spa-
tial structures of trees.
Inspired by [11], we have proposed a nonlocal deter-

ministic macroscopic equation for the evolution of the lo-
cal density of trees where fire and tree-tree competition
are the dominant mechanisms. If the kernel function falls
off with distance very quickly (the Fourier transform is
always positive) the system only has homogenous solu-
tions. In the opposite case, patterns may appear depend-
ing on the value of the parameters (δ and σ), and in a
sequence similar to the spatial structures appearing in
standard kernel-based models. Under less favorable en-
vironmental conditions, trees tend to arrange in more ro-
bust structures to survive (Fig. 3(d)). Biologically, trees
are lumped in dense groups, separated by empty regions.
Entrance of new trees in these exclusion zones is impossi-
ble due to the intense competition they experience there.
A great strength of our approach is that our determin-

istic analysis is formal, and we have shown the different
spatial distributions of the trees that occur as competi-
tion becomes more intense, concluding that self organiza-
tion of trees is a good mechanism to promote tree survival
under adverse conditions [26]. Trees tend to cluster in the
high competition (low resources) limit (Fig. 3(d)), due
to the formation of exclusion zones caused by non-local
competition, and not as a result of facilitation. How-
ever, because we are dealing with a deterministic model,
the patterns are too regular and the transition between
the grass-only and a tree-populated states is independent
of tree competition. We therefore considered stochas-
ticity coming from the stochastic nature of individual
birth and death events, to provide a more realistic de-
scription of savanna dynamics. Calabrese et al. [11] also
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noted that savanna-to-grassland transition was indepen-
dent of competition intensity in the mean field approach,
but not when demographic noise was included. In the
present model, both the grassland to savanna transition
and the spatial structures that develop are influenced by
demographic stochasticity. In the case of spatial struc-
tures, demographic noise is specially relevant, since it
turns much of the unrealistic patterns of the determin-
istic model into more realistic ones, that remind the ob-
served in real savannas. It also allows the existence of
periodic arrangements of trees in more humid systems,
which means environmental conditions closer to mesic
savannas.
We have quantified the characteristic spacing of spatial

patterns through the structure function. The irregular
patterns produced by the stochastic model still have a
dominant wavelength whose value is the same as in the
deterministic model and depends only on the value of the
range of the interaction, R, in the kernel function. The
match between the typical spatial scale of the patterns
and the characteristic distance over which nonlocal com-
petition acts indicates that competition is responsible for
the presence of clustered spatial structures.
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Appendix A: Linear stability analysis

This appendix shows the details of the linear stability
analysis, in particular how it is obtained the dispersion
relation in Eq. (9). We consider the stationary solution
ρ0 plus a small harmonic perturbation,

ρ(x, t) = ρ0 + ǫeλt−ik·x, (A1)

where ǫ ≪ 1. Substituting Eq. (A1) into the original
equation (5), and retaining only linear terms in ǫ,we ar-
rive to the relation dispersion

λ(k) = bCσ(ρ0 − ρ20)
[

1
(σ+1−ρ0)2

− Ĝ(k)δ
σ+1−ρ0

]

+bCσ 1−2ρ0

σ+1−ρ0

− 1,

(A2)

where Ĝ(k) is the Fourier transform of the kernel, Ĝ(k) =
∫

G(x) exp(λt−ik·x), and C ≡ exp (−δρ0), provided that
we deal with normalized kernels. Equation (A2) can be
written as Eq. (9) using the definition of beff (ρ0).

Appendix B: Expression of the transition to pattern
critical line.

We show here the analytical expression for the criti-
cal line in the transition from homogeneous to inhomo-
geneous solutions. Starting from Eq. (11) it is possible
to write an expression for the value of the resistance to
fires parameter, σ, at which the macroscopic equation
(5) starts showing pattern solutions, as a function of the
competition parameter, δ, and the most unstable mode
kc. Considering the value of the parameters taken in our
study, b = 5 and α = 1, it is

σc =
(ρ0−1)[5(ρ0−1)(δĜ(kc)ρ0−1)−2eδπR2ρ0 ]

10[1−2ρ0+δĜ(kc)ρ0(1+ρ0)−eδπR2ρ0/5]

+
(ρ0−1)

√

5[5(ρ0−1)2(δĜ(kc)ρ0−1)2−4eδπR2ρ0ρ0]
10[1−2ρ0+δĜ(kc)ρ0(1+ρ0)−eδπR2ρ0/5]

. (B1)

This complicated expression must be evaluated numer-
ically together with the solution of Eq. (7) for the sta-
tionary density of trees, which is also a function of the
competition and fire parameters. We show the results
in Figure 2, where the curve, represented with the black
crosses, fits perfectly with the numerical results from the
linear stability analysis.

Appendix C: Numerical algorithm for the
integration of the equation (18).

The integration of stochastic equations where the noise
amplitude depends on the square root of the variable, ρ,
and there are absorbing states (i.e, states where the sys-
tem stays indefinitely), has awaken a great interest, spe-
cially in the study of critical phenomena (i.e, properties
of the system that appear when it is close to the critical
point, often the absorbing state). The amplitude of the
fluctuations tends to zero there, and thus numerical in-
stabilities may appear. Recently [46, 47] a very efficient
method has been developed, but we have used in this
work an older one, presented in [39], since its implemen-
tation is easier and it gives precise results working far
from the transition point. It consists on discretizing the
Langevin equation, taking a step size ∆ρ in the variable.
To apply the method to equation (18), first of all we

discretize the space. Particularly, we compute the inte-
gral in the exponential term approximating it by a sum
of the field evaluated in the nodes of the discrete space

∫

ρ(x, t)G(x−x
′)dx ≈

Nx
∑

i=1

Ny
∑

j=1

ρi,jGi,j;i′,j′∆x∆y. (C1)

Then, we integrate the temporal dependence. The key
of the algorithm is to prevent ρ + ∆ρ to take negative
values. From a general equation

dρ

dt
= f(ρ) +

√
ρψ(t), (C2)
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where ψ(t) is a gaussian white noise with zero mean and
delta correlated, it is

∆ρ = f(ρ)∆t+
√
ρ∆W, (C3)

where ∆W =
√
∆tY . Y is a Gaussian number with zero

mean and unit variance. At this point, to prevent ρ+∆ρ
to take negative values, the author in [39] proposes to
dicretize the density setting ρ = nρmin and to truncate
the gaussian distribution from where Y is obtained si-
metrically so that |Y | ≤ Ymax. The negatives values are

avoided requiring Ymax

√
∆t ≤ ρmin. It can be done in

many ways but following [39] we use

Ymax =
| ln∆t|

3
,

ρmin =
(ln∆t)2∆t

9
. (C4)

Finally, rescaling the equation, we can achieve a dis-
cretized version in which positive and zero-mean noise
are ensured at the cost of a “quantized” density.

Appendix D: The effect of rainfall: Random
switching between death and birth

One of the key ingredients for the long coexistence be-
tween grass and trees is the largely inhomogeneous tem-
poral distribution of precipitations over time [3, 13, 34].
We have studied this environmental variability following
the idea in [30], considering the switching between un-
stressed vegetation growth, given by the first term in (5),
and drought-induced vegetation decay, represented with
the second term in Eq. (5). These processes take place
each time step with probability P and 1−P , respectively.
From now on, we call

fb[ρ(x, t)] = beff (ρ)
[

ρ(x, t)− ρ2(x, t)
]

,

fd[ρ(x, t)] = −αρ(x, t), (D1)

and

f±[ρ(x, t)] =
1

2
[fb[ρ(x, t)] ± fd[ρ(x, t)]] . (D2)

The random dynamics of the system is written in terms
of a stochastic partial differential equation,

∂ρ(x, t)

∂t
= f+[ρ(x, t)] + f−[ρ(x, t)]ξdn(t), (D3)

where ξdn(t) is a dichotomous noise (DMN), assuming
values +1 (wet season) and −1 (dry season) with proba-
bility P and 1− P , respectively.

If the rate of random switching, taken as the inverse
of the integration time step, is relatively fast respect to
the rate of convergence to equilibrium in each of the two
states, we can replace the noise term in Eq. (D3) with
its average value, < ξdn(t) >= 1 − 2P . It is meaningful
since the rainfall seasons are much shorter than the time
needed to reach one of the equlibrium stationary states
of death and birth processes, ρ(x, t) = 0, 1, respectively.
This substitution leads to a deterministic equation

∂ρ(x, t)

∂t
= f+[ρ(x, t)] + f−[ρ(x, t)](1 − 2P ), (D4)

where we will be able to perform linear stability analysis
as usual. The new dispersion relation is easily obtained,

λ(k;σ, δ) = beff (ρ0)P
1+σ(1−2ρ0)

σ−ρ0+1 − (1− P )

−beff (ρ0)P
ρ0[2−ρ0+δĜ(k)(ρ0−1)(ρ0−1−σ)+2σ]

(σ−ρ0+1) , (D5)

which means that the main effect of the dichotomous
noise is to renormalize the rates α and b. The patterns
observed now are the same as the ones in the determin-
istic case, though the regions where they emerge change
in accordance with this renormalization. Thus, the effect
of stochastic precipitation, as modeled with this random
switching mechanism, is a change of the parameter values
for the different transitions observed in the deterministic
continuum model Eq. (5).

According to the value of P , an absorbing-active phase
transition is observed, Pc ≈ 0.20. Small values of P,
meaning long dry season, lead to an absorbing state
while increasing the probability of raining implies the
appearence of trees in the system. In this latter case, the
solution can be either homogeneous or showing spatial
patterns, depending on fire and competition.

This attempt to model rainfall has not been very suc-
cesful and does not give a lot of new information. Much
effort of future research should be put on this point, try-
ing to get much more realistic modelling of external en-
vironmental variability, according to empirical observa-
tions, with long runs of dry years and rare wet years.
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