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Phase diagram for a single flexible Stockmayer polymer at zero field

Joan J. Cerda,** Pedro A. Sanchez,” Christian Holm,” and Tomas Sintes ¢

The equilibrium conformations of a flexible permanent magnetic chain that consists of a sequence of linked magnetic col-
loidal nanoparticles with short-ranged Lennard-Jones attractive interactions (Stockmayer polymer) are thoroughly analysed via
Langevin dynamics simulations. A tentative phase diagram is presented for a chain of length N = 100. The phase diagram
exhibits several unusual conformational phases when compared with the non-magnetic chains. These phases are characterised
by a large degree of conformational anisotropy, and consist of closed chains, helicoidal-like states, partially collapsed states, and
very compact disordered states. The phase diagram contains several interesting features like the existence of at least two ’triple

points’.
1 Introduction

Artificial magnetic filaments can be obtained by permanently
linking magnetic colloids to form a chain. These magnetic
chains represent the equivalent to magnetic polymers but at a
supra-molecular scale. Whereas magnetic polymers keep their
magnetic properties only at T< 100K, 2 magnetic filaments
can retain their magnetism at zero field and at room tempera-
ture if the size of the nanocolloids is chosen adequately.

The path towards the synthesis of such permanent magnetic
filaments has been possible thanks to a progressive increase
in the abilities to control the size of magnetic colloids and the
nature of bonds between the colloidal particles®"!’. Among
all studies we note the very recent work of Sarkar and Man-
dal'¥ who have performed the synthesis of magnetic chains
using DNA as a template on which they have directly grown
the magnetic nanoparticles with sizes ranging between 7 and
17 nanometers. It is also worthwhile to point out that there
have been successful attempts by Zhou et al. to lock and pre-
serve the structural conformations of filaments made of mag-
netic cobalt nanocolloids of 20nm in size'?. Goubault!? et al.
have achieved the synthesis of flexible magnetic filaments by
the simple procedure of bridging the surfactant layers carried
by ferrofluid particles adsorbed on top of their surface in the
presence of an external magnetic field. Once the bridging has
occurred, the particles are irreversibly linked and the external
magnetic field can be removed.

The growing interest in the relatively new field of magnetic
filaments is driven by the promising novel technological appli-
cations. They can be thought as improved substitutes for cur-
rent ferrofluids, as the new elements for magnetic memories,
as chemical and pressure nanosensors, or have useful appli-
cations for medical purposes, to mention just a few.% The use
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of non magnetic polymer colloids in ferrofluids that behave
as ’inverse magnetic filaments’ may also have potential ap-
plications as already shown in the assembly of non-permanent
photonic crystals.'* In general, in most of the applications, the
knowledge of the different types of equilibrium structures that
filaments may adopt is of extreme importance. Nonetheless,
to date, very little is known about the structures that perma-
nent magnetic chains may adopt as a function of temperature,
length, and other related parameters like the magnetic moment
of the particles or the strength of the attractive interactions
among colloidal particles.

For the case of non-magnetic attractive chains the study
of their phase transitions has been exhaustive, see refs. LoH2Tl
and refs.2223 for a review. In the case of semiflexible at-
tractive polymers it is known that there exist several confor-
mational phases different from the typical swollen coils, col-
lapsed globules, crystal and glassy states. Several studies
have shown semiflexible chains to possess toroidal or disk-
like phases.?24728 Helix structures have also been found for
some very specific square-well potentials.29 Related to this,
helical long-lived transient states have also been identified for
chains with truncated Lennard-Jones potentials.*

For magnetic chains the number of studies is much lower.
In addition to the previously mentioned studies devoted to
the experimental synthesis of magnetic filaments, there have
been several attempts to obtain phase diagrams for magnetic
chains using Ising or Heisenberg-like monomers in a good sol-
vent=1"3/ that correspond to the case of non-attractive colloids.
Henceforth, we will refer to such kind of chains as non-sticky
filaments. In addition, some studies have also dealt theoreti-
cally with the study of the magnetostatics of chains made of
magnetic nanoparticles of different shapes.2® The derivation
of the partition function, the intra-chain correlations, and the
coilglobule transition for flexible non-sticky magnetic chains
in the limits of zero and infinitely strong external magnetic
fields has also been pursued.®” The phase diagram of ho-
mopolymers with their magnetic dipoles constrained to be lo-
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cally perpendicular to the chain in order to mimic a protein
has been also studied with a virial and Landau approach.=®

A large fraction of the existing studies has been devoted
to the properties of magnetic filaments made of paramagnetic
or super-paramagnetic non-sticky chains. Most of these stud-
ies treat the filaments as elastic rods to use them as micro-
propellers (microswimmers)?=“Z under the action of an ex-
ternal field, or as actuators®“® with the purpose of performing
tasks similar to those of micrometric magnetic cilia,**>" but
at the nanoscale.

For lower dimensionalities and non-sticky magnetic fila-
ments, Snchez et al.® have recently addressed the adsorption
properties and the equilibrium conformation properties on an
adsorbed attractive surface via numerical simulations. In a
subsequent study the same authors>! report the different struc-
tural regimes displayed by non-attractive flexible magnetic fil-
aments immersed in a good solvent as a function of the relative
strength of the magnetic versus thermal forces. The presence
of a short-ranged Lennard-Jones attractive interaction, in addi-
tion to the point dipole, characterises the so-called Stockmayer
chains, and is expected to strongly modify the behaviour of
these filaments. The study of the effects of the short-ranged
attraction on the equilibrium conformations of a Stockmayer
polymer is the main purpose of the present work.

Relevant to our study of Stockmayer chains are studies of
clusters of free particles that interact via Stockmayer poten-
tials (Lennard-Jones plus point dipole potentials) in the limit
of very low temperatures. Miller and Wales”% have found that
clusters of particles interacting via Stockmayer potentials ex-
hibit a rich variety of ground states that includes rings and dif-
ferent types of coils with several topological knots. The type
of ground state exhibited by a cluster of Stockmayer particles
was found to depend strongly on the dipole moment and the
number of particles. Nonetheless, it is not clear if the confor-
mations of a single magnetic sticky filament at low temper-
atures will resemble the ground states found for Stockmayer
clusters that lack permanent links between particles.

In this paper we study the influence of the magnetic interac-
tions on the phase diagram of sticky and non-sticky magnetic
chains in three-dimensions via the use of extensive Langevin
dynamics simulations. In Section [2] we describe the numeri-
cal model and the details of the simulations. In Section 3] we
present and discuss the results with emphasis in the structures
and phases found in the weak and strong attractive interac-
tion regime, and a tentative phase diagram is also presented.
Finally, a summary and a discussion of the conclusions are
presented in Section 4]

2 Numerical Model

The magnetic filament is modelled as a bead-spring chain
made of a sequence of N magnetic beads (colloidal particles)

of diameter o,, carrying a point dipole M, at their centre.
Henceforth, the subindex e denotes the experimental values
of the physical quantities we use, whereas the absence of such
a subindex means the quantity is expressed in reduced units.
Throughout this work, we will express the results in reduced
units, thus, for a length le its corresponding reduced value is
1 =1,/0,. In all the simulations carried out the diameter of
the colloidal particles is set to ¢ = 1, so all length scales are
measured in units of this diameter. Therefore, our results are
expected to be valid to any particle size as far as the mag-
netism of the colloidal particles can be approached by point
dipoles fixed in the lattice structure of particles, and sedimen-
tation forces are negligible.

Two different types of particles will be considered: non
sticky particles, where the predominant interaction between
particles is the steric repulsion due to their cores and sticky
particles, in which in addition to the repulsion there exists an
attractive pair-wise interaction among the particles. We will
refer to this interaction as ’the LJ interaction’. The attractive
interaction between two particles i and j will be modelled via
the following potential that combines the core repulsive part
(cutoff rqy = 21/ 65), and the attractive part (ro; = 2.50),

Uatt(r) = ‘/tSLJ(ra o, 1,10 = 21/60-) +VtsL/(r7 O, & ey = 250)

(1)
where r is the distance between the centres of the particles
i and j, i.e. r=|r;—rj|, and Vg is a truncated-shifted
Lennard-Jones potential 23

Vi) = { Ury(r) —Urs(reut), forr < rey @)

0, for r > reut

where U, (r) = 4€[(co/r)'? — (6 /r)%]. The LJ energy param-
eter €, is given in units of the experimental well depth &,, and
any energy U will be also referred to &, i.e. U ="U,/¢,. In
the same way we choose the Boltzmann constant to be k = 1
in reduced units, and therefore the reduced temperature is
T =k,T,/€,. The modulus of the dipole moments can be also
expressed in the reduced system as: u? = p2/(4ny, 0. €,). It
should be noted that the soft-core and the attractive part have
been implemented as in eq. (I) and not through a simple LJ
potential because we want to ensure that the effective repul-
sion is roughly the same when different values of € < 1 are
used. In this way a comparison between chains with differ-
ent depths for the attractive well and non-sticky chains can be
performed more easily.

The colloidal particles are assumed to interact pair-wise as
point dipoles according to the potential,
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where r;; = r; —r; is the displacement vector between parti-
cles i and j. The energy due to magnetic interactions is calcu-
lated by direct summation over all pairs of particles. In spite
of being algorithmically ¢'(N?), for small numbers of colloids
this is the fastest and most accurate way to compute it when
open boundary conditions are used (see below). Reasonable
values of 4 = || depend in general on the composition and
size of the colloidal particles. Aside from cobalt nanoparticles,
colloidal particles found in common commercial ferrofluids
usually do not exceed values of u ~ 10.

In order to connect the colloids to form a chain, a linking
model in which springs between consecutive particles are not
anchored at the centres of the beads, but at fixed points on
their surface, has been implemented. This was done in order
to effectively penalise those conformations in which consecu-
tive particles, holding a magnetic mono domain blocked in the
crystal structure, are in an inverted orientation, resulting in an
anormal stretching of the bond. The model is shown schemat-
ically in Figure [l The proposed spring potential is written
as

N 1 N . O\2

Us(r,-,rj,u,-,uj)ZEKS(ri—rj—(ui—&—uj)E) R (@)
where r; and r; are the position vectors of the centres of the
beads. #&; and &; are unitary vectors placed along the direc-
tion that joins the two anchoring surface points of each bead
(see Figure[I). Thus, the anchoring points are collinear and lo-
cated at I} = it;6 /2 and I; = — ;6 /2 with respect to the centre
of the bead. We assume all links in the chain are formed ac-
cording to the following scheme: the point on the surface of
the i — 1 particle with position r;_1 +1;_, is linked to the point
on the surface of the particle i with position r; + I;. In order
to penalise those conformations with consecutive dipoles in
anti-parallel configuration, we associate each vector director
i1; with the dipole moment of the particle, i;, i.e. it; = /| 4;|-
The constant of the potential is set to K; = 30 which is enough
to ensure the average bond length to lie within a reasonable
range rpoug € [0.98, 1.1)o. The use of larger values for Kj is
possible but implies a further reduction of the integration time
step.

The numerical simulations are performed using Langevin
dynamics, in which colloidal particles are moved according to
the translational and rotational Langevin equations of motion

that for a given particle i are®%:
dv;
M~ =Fi~Trvi+§] &)
do,;
i =17~ Tre; + & (6)

where F;, and 7; are respectively the total force and torque
acting on the particle i. M; and I; are its mass and in-
ertia tensor, and I'y and I'g are the translational and rota-

. . T R .
tional friction constants. &; and &; are Gaussian random

(a) (b)

Fig. 1 The magnetic filament is modelled as a chain of beads linked
by springs anchored onto a point of their surfaces, see eq. (@). The
magnetic moment of each particle is used as reference vector to
define the unitary vectors @ = g/ which are used to determine the
position of the anchoring points on the surface of the particles,

0/2 @t and —0 /2 @1, when the centre of the particle is taken as the
origin.

forces and torques, each of zero mean and satisfying the
usual fluctuation-dissipation relations. In the simulations,
t =t,\/€/(m.02%), where m, is the real mass of the colloids;
F =F,0,/€, and T = 1,/¢,. For equilibrium simulations, the
values of the mass, the inertia tensor, as well as friction con-
stants I'7, and I'y are irrelevant because the same equilibrium
state is reached independently of their value. Only the dy-
namics to attain such equilibrium state may show differences.
For simplicity, the particle mass is chosen to be m = 1 and
we take the inertia tensor to be the identity matrix in order to
ensure isotropic rotations I = 1. We have chosen I'r = 1 and
I'r = 3/4 because we observed that these values produced a
conveniently fast relaxation to equilibrium=>>°, The reduced
time step is set to 8 = 5-10~* in order to ensure a correct
integration of the equations of motion.

The simulation starts by placing the filament in an open
three-dimensional non-bounded space with the position of the
first bead located randomly. The remaining monomers are po-
sitioned using a self-avoiding random walk scheme with an
overlap radius of 0.9¢. The chain is pre-equilibrated at 7 = 1
for 2-10° integrations with the magnetic interaction turned
off while the time step is slowly increased from 107387 till
0.056¢. Subsequently, magnetic interactions are turned on,
and a second pre-equilibration stage consisting of 5-10° in-
tegrations is performed while gradually raising the time step
from 0.1-10738¢ till 8z. Right after, if the final temperature
is T < 1 we perform an annealing process using the final time
step &t: the temperature is reduced from 7' = 1 down to its fi-
nal value by performing a set of five annealing stages of 5-10°
steps each one. Once the final temperature has been reached,
the chain is equilibrated for a period of 3-10° ¢!/7 ¢ in order
to ensure that the chain is in the thermodynamic equilibrium.
After the equilibration period, the system is sampled at inter-
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vals of 2500 e'/T 8¢ for another period of 15-10° '/ ¢ to
make sure there are no correlations between measurements.
To get further assurance that the results do not depend on the
initial conditions and to improve statistics, an average over 15
independent runs for each set of sampled parameters (7', €, 1)
is performed. The simulations have been performed using the
package ESPResSo0~”.

3 Results and discussion

In the present model there are two main competing interac-
tions: on the one hand there is the LJ attractive interactions
among the beads that tend to collapse the chain when the
temperature is lowered**%3 and, on the other hand, there is
the magnetic interaction which is known from ferrofluid stud-
ies220 to favour the formation of rod-like chains and rings in
which dipoles tend to align in a nose-tail conformation. Nose-
tail conformations are those in which two dipole i and j satisfy
Bi-pj =W and ;- rij = p; - rij = £ rij. This noise-tail
alignment allows to minimise the magnetic energy in eq.(3).
We define a dimensionless parameter

€0’
n= e )
which measures the relative strength of the attractive LJ inter-
action with respect to the strength of the magnetic interaction
for particles at close contact, 7;; = 0, in a nose-tail conforma-
tion.

Although we just focus on the behaviour of a single chain,
the number of parameters involved to explore the full phase
diagram of a Stockmayer polymer is large. Therefore, in or-
der to get a first sketch on the phase diagram, we have chosen
to focus in the case of a polymer with a fixed number of beads
N = 100. In addition, all beads are assumed to have the same
magnetic moment 4> = 5 and share the same LJ energy pa-
rameter €. In this first approach no external magnetic field is
present. The phase diagram will be studied as a function of
two parameters: 1], that is controlled modifying the value of
€ while keeping u fixed, and the temperature 7. The range
of values explored for the parameter 7 is 1 € [0,0.2], where
n = 0 corresponds to the case of non-sticky chains explored
in previous studies®!. The range of temperatures sampled
is T € [0.27,5], where the upper boundary 7 = 5 has been
chosen because the most interesting features were found in all
cases to occur well below such value. It is worth to remark that
the value of the parameters chosen for the simulations corre-
spond to values close to those one can expect in experiments,
thus, for instance, the relative strength of the magnetic forces
involved compared to the thermal fluctuations coincide with
that corresponding to ferrofluid particles made of magnetite
with 6, ~ 20 — 25nm.

Values of n > 0.2 and T' < 0.27 correspond to regions in the
phase space characterised by compact structures. An effec-
tive sampling of these regions with usual Langevin methods is
very costly in computer terms and requires special techniques
like e.g. umbrella sampling™¥, or Wang-Landau®%>, or other
advanced existing methods1%12,

In the next sections we will characterise the typical confor-
mational states of a Stockmayer polymer in the weak (n <
0.10) and strong (1 > 0.10) attractive regime.

3.1 Filaments in the weak attraction regime (1 < 0.10)

The radius of gyration R, and the end-to-end distance R, are
two important observables that can be very useful in order to
follow the structural changes of a magnetic filament. The end-
to-end distance is defined as R,. = ((71 — 7y)?)"/2 where (...)
denotes an average over all the sampled conformations of the
chain. On the other hand, we can define the gyration tensor
through their elements,

N

1
Rop =332 < Y. (ia—ria)(rip—7ip )> v

i,j=1

where o and 8 denotes the Cartesian components x, y, and
z. The tensor can be represented as a diagonalisable 3 x 3
matrix with three eigenvalues or principal moments hence-
forth labelled as A7 > A} > A7. The radius of gyration is

Ry = /A}+2AF+ A5

Figure [2| shows the end-to-end distance (top) and the radius
of gyration(bottom) as a function of the reduced temperature.
Our results show that the ends of the chain tend to get closer
to each other as the temperature is lowered. Remarkably, the
behaviour of the end-to-end distance is very similar for all fil-
aments with 1 € [0,0.07]. In the range 1 > 0.07 —0.10 a
noticeable two-fold decay step emerges whose origin is ex-
plained below.

The change in the radius of gyration also differentiates the
behaviour of the sticky filaments (1 > 0) from the non-sticky
ones (1 = 0). In the case of non-sticky particles the varia-
tion of R, is quite small. It ranges between R, ~ 90 at T =5
(value not shown in Figure@ and R, ~ 120 at T ~ 0.3. This
behaviour is clearly different from the one expected for non-
magnetic chains: for such chains without attractive interac-
tions, one would expect R, to get a constant value correspond-
ing to a self-avoiding walk. However, for a magnetic filament,
as the temperature is lowered R, shows an initial expansion
followed by a contraction in 7 € [0.7,1.0] and a second ex-
pansion at 7 < 0.7. This particular behaviour is also observed
in filaments with values of 7 — 0 down to a temperature in
which the attractive interactions dominate and induce a strong
collapse of the chain. This expansion-contraction behaviour
can be understood as follows: as the temperature is lowered
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Fig. 2 The plot depicts the the end-to-end distance R,, (top) and the
radius of gyration R, (bottom) as a function of the temperature for
N < 0.10. The case 1 = 0.10 has been also included for a better
comparison with the results corresponding to 7 > 0.10.

the magnetic interactions for an extended open chain domi-
nate, favouring the stretching of the chain in a conformation
in which all the dipoles tend to remain aligned. Nonetheless,
below a certain temperature, the most favourable conforma-
tion is a closed structure because an extra aligned pair can
be created by getting closer the ends of the chain, see Fig-
ure[3] The entropic penalty of a closed chain is not excessive
when the temperature is low enough. The closed structures at
low temperatures are already known to occur in ferrofluids®”,
where particles assemble into ring-like structures. For low val-
ues of 1 the transition from open to closed structures occurs at
T ~ 0.85, which corresponds to a value of the dipolar coupling
parameter of A ~ 6. These results are in good agreement with
those observed for non-sticky chains in the simpler variant of
the bead-spring model>.

Further insight into the behaviour of the magnetic filament
in the regime 1 < 0.10 can be obtained by examining the spe-
cific heat Cy. Figure[d shows the specific heat as a function of
temperature. The bottom plot in Figure 4] shows some small
peaks appearing around 7 ~ 0.8 — 0.9 which can be identi-
fied with the transition from open to closed structures. Two
main features can be observed for such peaks: the first one is
that for values of 1 € [0,0.07] they almost coincide in position
and width. This means that this transition is almost indepen-
dent of the strength of the attractive interaction, and is due to
the absence of close contacts between particles which are not
first nearest neighbours. The second feature is that the fluc-
tuations in energy are small compared to the peaks observed
in the top plot of Figure [d This fact is coherent with the idea

that those peaks represent a transition from extended open to
simple closed structures since the difference in the total en-
ergy should not be much larger than the energy originated in
the creation of a new pair of aligned dipoles, plus the energy
due to the close contact of two particles. These peaks in the
specific heat are expected to grow with N as in the case of
non-magnetic homopolymers®Y, and non-sticky chains.

The large peaks observed in the specific heat in the top
of Figure [ represent a different type of transition, namely,
the conversion of simple closed structures into compact
helicoidal-like ones as shown in Figure [3| (see snapshots at
1N =0.05and T < 0.6). As it is shown in Figure[3} for the case
n = 0.1, the main part of the filament adopts a structure that
resembles a tight helix, while the ends of the chain arrange
in such a way that the two ends stay in close contact. These
helicoidal states are related to the toroidal conformations ob-
served in non-magnetic semi-flexible chains where local chain
stiffness helps to stabilise those structures?*2”. In our case,
the magnetic interactions tend to force a nose-tail orientation
of the dipoles that, in addition, will induce a local chain stift-
ness=. Nonetheless, there are some subtle differences between
the toroidal conformations found in non-magnetic chains and
the helicoidal structures observed here: in the non-magnetic
case the toroidal walls are thick with a width of several parti-
cle diameters while in the magnetic case they tend to be much
thinner. An open question is what would happen if longer
chains of the order of N ~ 10° — 10* were studied. We ar-
gue that in the case of magnetic chains, a helicoidal state is
preferred to a toroidal conformation for moderate values of
1. A helicoidal structure allows to minimise the energy as-
sociated to pairs of dipoles with their dipole moments lying
parallel w, = @, = p but for which rj2 - g = 0. Unlike the
nose-tail conformations, these pairs have the highest possible
magnetic energy and therefore are heavily penalised. Such
energy penalty decreases as ~ 1/r with the distance between
the two dipoles. In a toroidal conformation, a similar num-
ber of unfavourable dipole pairs may exist, but in difference
to the helicoidal structure the distance between the two par-
ticles will be, in general, much shorter, leading to a higher
energy penalty. The situation reverts for large values of 7 in
which the short ranged attractive interaction dominates over
the magnetic one and a torus is preferred. Thus, helicoidal
structures seem to be the result of a complex interplay between
the attractive interactions that tend to collapse the chain into
an isotropic globule, the magnetic forces which, on the one
hand, tend to locally stretch the chain by leading to an effec-
tive local stiffness that favours toroidal conformations but, on
the other hand, tend to avoid the formation of pairs of parallel
dipoles with their relative vector position perpendicular to the
direction of the dipoles and the chain entropy.

Helicoidal states have also been found for non-magnetic
chains when specific short-ranged square-well potentials were
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Fig. 3 Shown are several typical snapshots of the configurations that magnetic filaments of length N = 100 adopt for different values of the
temperature and relative strength of the attractive interactions 1. Snapshots for 1 = 0, 0.05 are shown. The two ends of the filaments are
show in green and red colours. The rest of the beads are painted in two colours (yellow and blue) to show the orientation of the magnetic

moments of the particles.

used??. Another issue worth to mention is the possibility
that those helicoidal states could be long-lived metastable
transient states as those found by Sabeur et al.®V for sim-
ple homopolymers using truncated Lennard-Jones potentials.
Sabeur et al. observed that the decay from the helical states
is a stochastic rate-driven process, where the escape rate is
1/ty ~ exp(AE /kT) and AE is the height of the energy bar-
rier. They found a value of ¢, ~ 20008 for the particular case
of a homopolymer chain of length N = 100 at 7 = 0.04. Since
our equilibration and measurement times are of the order of
3-10° ¢!/T & and 15-10° ¢!/T 8¢ respectively, and taking
into account that the lowest temperature we have sampled is
of the order of T ~ 0.25, we can reasonably conclude that our
helicoidal structures are true equilibrium states.

A quantitative way to characterise the formation of a he-
licoidal state is to evaluate an order parameter able to signal
helix formation. Among the different order parameters 30 we
have chosen the so-called Hs parameter which characterises
the global helical order defined as

1 N—-1
H4:M<Z(ri_ri—l)x(ri+l_ri)>~ ©))

i=2

H4 = 0 is associated to isotropic conformations that resemble
a rod, whereas Hs = 1 holds for perfect helix. Other order
parameters like H3 %% were found to lead to similar conclusions
that those derived from Hj.

In Figure [6] (top plot) the value of the order parameter Hy
as a function of the temperature is depicted for n < 0.10. The
values of Hy remain equal to zero until temperatures close to
the helicoidal transition point. The derivative, dHy/dT, shows
that the position of the inflection points occurring at the high-
est temperature coincides with the position of the peaks in the
specific heat. This fact shows that both observables are linked
to the appearance of helicoidal states. Figure [6also displays
that the achievement of the helicoidal states is very gradual:
the further the temperature is lowered the higher is the value
of Hy, and the structure looks more similar to a perfect helix.
Only for values of n — 0.10, the order parameter Hs seems to
reach a plateau within the range of temperatures sampled, and
the largest values of Hsy ~ 0.4 are quite low compared with
those of an ideal helix Hy = 1. These relatively small values
for the order parameter have a two-fold cause: the first one is
that only the main part of the chain adopts a helix-like struc-
ture, whereas the ending parts of the chain arrange in such a
way that the ends can be at close contact. If the whole structure
was in a helicoidal state the two ends would be separated by
a large distance, which gives an energy penalty. Such small
differences in energy may be irrelevant at high temperatures
but not at low temperatures. The second reason lies in the fact
that these helicoidal states do not look like normal cylinders
but rather they exhibit a symmetry similar to that of an ellip-
tic cylinder, whereas the parameter Hy is defined having in
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Fig. 4 The specific heat is represented as a function of temperature
for different values of the relative strength of the LJ attractive
interactions 7). The bottom plot is a zoom to highlight the small
peaks that exist at 7 ~ 0.8 — 0.9 which point out the transition from
extended open chains to simple closed structures.

()

Fig. 5 Displayed are two different perspectives of a typical
conformation in the helicoidal state (n = 0.10, and 7' = 0.475). The
colour code is the same as in FigureEl

mind ideal helixes with a symmetry similar to that of a regular
cylinder. Notice that the cross product (r; —ri_1) X (rit1 —r;)
would be zero for a very elongated ellipse in which bonds be-
tween particles are locally aligned.

The asymmetry of the filaments can be roughly inferred
from a visual inspection of the different conformations shown
in Figure E[ However, a good set of observables to determine
quantitatively the degree of asymmetry of the different confor-
mations are the ratios of the second and third eigenvalues of
the gyration tensor to the main eigenvalue, A7 /A7 and A3 /A2
Those ratios are shown in Figure [7] as a function of temper-
ature. In the region of high temperatures 7 € [1.8,5] the ra-
tios of the eigenvalues are approximately constant and equal
to A7 /A% ~ 0.2 and A7 /A? ~ 0.06, respectively. These ratios
mean that filaments are highly elongated along one direction
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Fig. 6 The helicoidal order parameter H, as defined in eq.@) is
plotted as a function of temperature for several values of 1 < 0.10
(top plot) and 7 > 0.10 (bottom plot).

and almost lie in a plane because the value of third eigenvalue
is almost negligible compared to the first and second eigenval-
ues. These behaviour roughly corresponds to the tendency of
the magnetic particles to align in a row. The fact that the value
of the ratios is almost the same for all 7 < 0.10 implies that in
the range of high temperatures the attractive interaction plays
a very minor role.

At first sight, it can be surprising that all closed and col-
lapsed structures do not show, in average, an isotropic distribu-
tion of particles, at least along their two main axis of rotation.
From the isotropy of the space, symmetric conformations are
expected. However, the eigenvalues are obtained in the frame
of reference of the particle (frp) and not in the frame of ref-
erence of the lab (fr/). Due to the rotational averaging, the
frlis not suitable to distinguish between a truely isotropic ob-
ject from an anisotropic one. Since the average is taken over
all possible rotations of the object, an anisotropic object will
always appear in average as isotropic in the frl. In fact, it
is a well-stablished result that the averaged shape (in the frp)
of even a fully flexible coil is not isotropic®*. The key to
understand why a polymer chain prefers to adopt anisotropic
conformations rather than isotropic ones is that the entropy
is maximised for a single trajectory of the polymer when the
number of segments along each of the directions is inhomo-
geneous. Therefore, even in the limit of vanishing dipolar
strenghts one should observe the shapes of the chains to be
anisotropic.
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Fig. 7 The ratios of the second and third eigenvalues of the gyration
tensor, to the main eigenvalue are shown as a function of the
temperature for several values of 1 <0.10.

3.2 Filaments in the strong attraction regime (11 > 0.10)

We can observe in Figure ] how the specific heat develops
an additional peak for n = 0.1 at T ~ 0.4. This peak is also
observed for 1 > 0.1 (see top of Figure[8) and, as n — 0.2,
it shifts towards higher temperatures T € [0.3,0.7] while de-
creasing in height. The radius of gyration and the end-to-end
distance depicted in Figure [9]show that those peaks in the Cy
must correspond to a transition that takes place when the chain
is already in a collapsed state. For that reason it is very dif-
ficult to discern from the structural parameters any relevant
signal of the transition. This transition must involve an inter-
nal rearrangement of the particles without noticeable changes
in the global size of the structure. A rough idea of such inter-
nal rearrangements is provided by the helical order parameter
H, depicted in the bottom plot of Figure [ for n > 0.10. A
comparison between Cy and H, (top of Figure [8) reveals that
the inflection point of the Hy lines in the interval T € [0.3,0.7]
roughly coincides with the position on the peak in the specific
heat. We can infer that the new transition is associated with
a loss of the helicoidal order and the onset of compact disor-
dered states. A typical structure in this regime is represented
in Figure [I0p.

In those collapsed states the magnetic filament occupies a
volume that is approximately 1.5 times the volume of a com-
pact hexagonal packaging (hcp) of N = 100 spheres. This re-
sult shows that the magnetic filaments at  =0.2 and T < 0.6
exhibit a substantial degree of compaction. On the other hand,
for n > 0.1 we observe that the helicoidal structures devel-
oped are far more isotropic than for 7 <0.1. Thus, forn =0.2
the highest ratios of the eigenvalues of the radius of gyration
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Fig. 8 The top plot shows the specific heat as a function of the
temperature for several values of the relative strength of the
attractive interaction 11 > 0.10. The bottom plot displays the
derivative of the gyration radius dRg/dT as a function of the
temperature for the same range of ’s .
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(bottom plot) are depicted as a function of temperature for several
values of the relative strength of the attractive to the magnetic
interaction 1.
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are A7 /A% ~ 0.9 and A7 /A% ~ 0.6 that imply a significant in-
crease in the level of isotropy when compared to those values
for n < 0.1 plotted in Figure[7}

From the comparison among Cy, R, and R, for 11 > 0.1
we can extract more useful information about the magnetic
chains. A remarkable feature in Figure E] is that R, and R,
have a very similar dependence with the temperature. In this
case, the attractive interaction is strong enough to force com-
paction to occur at higher temperatures than those at which
filaments would suffer the closing transition. Once the com-
paction of the chain occurs, the distance between the chain
ends must substantially decrease, and this leads to the closing
transition right after the compaction.

Another remarkable feature that can be extracted from Fig-
ure [9] is the observation that for the curves corresponding
to n = 0.15 and n = 0.20 it is possible to clearly asso-
ciate the inflection points in Rg(7) with the two emerging
peaks in the specific heat (Figure[§|top) at T ~ 1.3 — 1.4 and
T ~ 1.8 —1.9, respectively. This behaviour suggests the exis-
tence of a regime of intermediate states between the expanded
chains and the compact helicoidal configurations. For values
of 7 €[0.10,0.15) one can infer that the peak is also present
but hidden in the long tail associated to the appearance of he-
licoidal states that take place in the interval T € [0.8, 1.1]. For
these smaller values of 1) the fingerprint of the transition to-
wards this intermediate regime is found in the double stage
decay of both R,, and R, (Figure EI) A natural question that
arises is what kind of conformations do exist in such interme-
diate region. The plots of R, and R, in Figure E] show that
for those intermediate states, the chain is still far from being
fully collapsed and there is still, on average, a long distance
between the two ends of the chain. Snapshots of such inter-
mediate states, as the one shown in Figure [10p, confirm the
previous suggestion: between expanded open chains and the
compact helicoidal states there exists a region of partially col-
lapsed filaments in which a part of the filament is already in
a compact state while the other parts are still in an expanded
conformation, with the chain ends being separated by a rela-
tively long distance.

The characterisation of this new transition from open ex-
panded chains to partially collapsed states by using the spe-
cific heat is hard to be accomplished for 1 < 0.20. We found
that the best observable to determine the transition point are
the dR,/dT curves®® (see bottom of Figure . The maxima
of the peaks of such function for 1 = 0.15, 0.20, coincide
with the apparent position of the emerging peaks for the Cy
at the highest temperature. Results for the transition temper-
atures obtained via dRy/dT are shown in Figure |11|as solid
blue triangles-up for all values of 7.

Those partially collapsed structures resemble vaguely the
core-shell structures found in non-magnetic semiflexible at-
tractive chains?Z. Nonetheless, in the present case we have

()

Fig. 10 Displayed are two typical snapshots for high strengths of
the LJ attractive interaction when compared to the strength of the
magnetic interaction: (a) N =0.15, T = 0.40. (b) n = 0.20,

T = 1.60. The colour code is the same as in FigureE}

a core plus some loose tails rather than a shell surrounding a
core. This behaviour comes from the anisotropic nature of the
magnetic interactions which favour relative straight segments
far from the core rather than the wrapping of the core by the
non-collapsed part of the chain. It is not yet clear what the be-
haviour of the filament will be in the limit N — oo when long
non-collapsed segments may exist.

3.3 The phase diagram for an isolated flexible Stock-
mayer polymer

Gathering together the results presented in sections [3.1] and
it is possible to build up a tentative sketch of the (7,n)-
phase diagram as shown in Figure [IT] The solid black circles
correspond to the transition points for 7 < 0.10 derived from
the position of the maxima of the peaks in the Cy and corre-
spond to the transition from extended open chains to simple
closed structures (see bottom in Figure [). Solid red squares
depict the transition points obtained from the maximum of the
highest peaks of the Cy in the range T € [0.7,1.2], see Figures
H] (top) and [§] (top). Those large peaks correspond to transi-
tions towards a compact helicoidal state when the temperature
is lowered. Solid green diamonds depict the transition points
from compact helicoidal states to compact disordered states,
which are obtained from the maxima of the peaks of the Cy
in the region of very low temperatures 7 < 0.7 in Figure [§]
(top). The solid blue triangles-up correspond to the maxima
of the peaks in the dR,/dT, for n > 0.1, that also mark the
inflection points of R,, Figure [8] (bottom). As we described
in section [3.2) the position of such peaks should basically co-
incide with the transition points from open extended chains to
partially collapsed states. Figure|11|also shows that dR,/dT
gives a very good estimation of the transition points from sim-
ple closed chains to helicoidal states, in which transition tem-
peratures derived from dR,/dT are very similar to those ob-
tained from the position of the peaks in the Cy .




In Figure [IT] the solid black circles only refer to the transi-
tion for n < 0.7. This is due to the fact that for higher values
of 1 the peak in the specific heat associated to such transition
is hidden by the tail of the larger peak associated to the transi-
tion to helicoidal structures. In section [3.1] we mentioned the
possibility of using the dR,./dT in order to characterise the
transition from extended open chains to simple closed states.
The inflection points of the R,.(T') curves are plotted in Figure
[[T] as solid magenta down triangles. Furthermore, for values
of 1 < 0.1 the inflection point in the end-to-end distance is
clearly related to the transition point from open structures to
simple closed structures. For values of 11 > 0.1 the inflection
in the R,, takes place approximately at the same temperature
as the inflection point of R, (solid blue triangles up) which,
as discussed in section is a consequence of the fact that
a partial compaction of the chain triggers the closing of the
chain.

A very remarkable fact observed in Figure [T1]is the exis-
tence of two different conformational ’triple points’. In the
first ’triple point’ extended open chains would coexist with
partially collapsed states and simple closed states. In the sec-
ond ’triple point’, simple closed states will coexist with com-
pact helicoidal states and partially collapsed states. The ex-
istence of two different, yet close triple points is a vivid ex-
ample of how rich and complex the phase diagram is already
for a single magnetic chain. It is important to remark that in
the different tests performed, no sign of hysteresis has been
found for the transitions between collapsed phases, which fur-
ther reinforces the idea that the structures found in this work
correspond to equilibrium structures.

It is also interesting to discuss how the phase diagram would
change if the strength of the dipolar interaction u? was mod-
ified, or if the range of the attractive forces was changed. To
this end it is important to note that the bottom left corner of the
phase diagram is dominated by the magnetic interactions, the
upper left corner of the phase diagram is dominated by the LJ-
like attractive interactions, and the bottom right corner is dom-
inated by thermal motion. By increasing the dipolar strength
u? while keeping the other factors unaltered we should ex-
pect the region where the magnetic interactions are dominant
to expand. That means that the transition from extended open
chains to simple closed structures should shift towards higher
temperatures, and the transition from simple closed structures
to compact helicoidal states should occur at higher values of
n. The region where partially collapsed structures exist should
also shift towards regions of higher values of n and 7. A re-
verse behaviour should be observed if we decrease the value
of u? rather than increasing it. On the other hand, if we in-
crease the range of the attractive interactions, the region where
the attractive interactions dominate should expand, and there-
fore one should expect the transition from compact disordered
structures to helicoidal states to occur at lower values of 17. In
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Fig. 11 A tentative phase diagram for magnetic filaments of length
N =100 and u? = 5 is presented. See text in sectionfor a
detailed explanation of how the different transition lines were
obtained. In sake of clarity of the origin of each transition line, they
have been painted using different colours and symbols.

turn, the transition from helicoidal to simple closed structures
should also happen at lower values of 7. It should be also
possible to observe partially collapsed states at lower values
of n.

Finally, it is also interesting to study the dependence of the
phase diagram as function of the length N of the chain. In
the limit N — 1 it is clear that the helicoidal closed phase
should not be present because the chain simply lacks sufficient
monomers to form the helix. For the same reason, and based
on the work of Jacobs-Bean®”, which is further supported by
our experience with ferrofluids®>29, chains with N < 4 are
not expected to form loops. On the other hand Higuchi et
al“/'have shown that for semiflexible non-magnetic chains, the
transition from open to toroidal and partially collapsed struc-
tures occurs at higher temperatures as N increases, and, due
to the resemblances with our systems, we can expect a similar
dependence with N in our open-partially collapsed-helicoidal
transitions.

Figure [12] depicts the behaviour of the transition temper-
atures for the open-closed, and the open-partially collapsed-
helicoidal transitions as a function of N € [25,150]. Solid
black circles show that for 1 = 0.04 the open to simple-closed
transition temperature decreases with N, i.e., longer chains in
bulk need further reductions in temperature to attain a closed
shape. This behaviour has been also observed in the case of
non-sticky filaments (7 = 0) in bulk by Sanchez et al.”!. The
behavior of the transition temperature as a function of chain
length N for the open to partially collapsed, and the partially
collapsed to helicoidal transitions are represented in Figure[12]
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Fig. 12 The dependence of the characteristic transition temperature
as a function of N is shown for the observed structural transitions
from: open to simple closed (at n = 0.04, black circles), open to
partially-collapsed (at 1 = 0.14, red squares), and
partially-collapsed to helix transitions (at 7 = 0.14, green
diamonds).

by the red squares and green diamonds, respectively. Our re-
sults show an increase of the transition temperatures with N
that confirms our previous expectations based on the resem-
blances of the transitions we study in this work with those
observed by Higuchi et al“Z,

4 Conclusions

A tentative phase diagram for a single Stockmayer polymer
made of N = 100 colloidal particles of identical size and mag-
netic moment U is presented as a function of the temperature
and the relative strength between the attractive LJ-like inter-
actions versus the dipolar magnetic moment, 717. Our results,
summarised in section [3.3] evidence a rich phase diagram in
which it has been possible to characterise up to five different
conformational phases and two ’triple points’.

Although the present phase diagram is a simple sketch of a
much more complex reality, several interesting open questions
emerge from it. One of them is whether it is possible to find
a critical 1 below which the closed-helicoidal transition van-
ishes. The characterisation of the ground stated structures of
the magnetic filaments and their comparison with the ground
states observed in clusters of free Stockmayer-particles>? is
also worthwhile to be studied. At intermediate temperatures,
another challenging issue is to explore whether compact he-
licoidal states will transit to compact globules directly or via
intermediate partially collapsed states, where the existence of
a third ’triple point’ cannot be discarded. The changes in the

phase diagram with colloidal size polydispersity, bond stiff-
ness, and the presence of an external magnetic field, as well
as a more elaborate study of the influences of the chain length
N, are issues which need to be addressed in order to have a
proper understanding of those systems.

The knowledge of the different structures that a magnetic
filament may adopt as a function of the interplay among the
different interactions involved, and its conformational phase
diagram, is crucial in order to assess the use of these filaments
for new technological applications or as substitutes of current
ferrofluids with enhanced properties. Magnetic filaments have
an enormous potential for new applications, and the character-
isation of their properties is still a pending issue. We expect
the present work to constitute a first step towards the under-
standing of the magnetic filaments that stimulates further de-
velopments on this subject of increasing scientific interest.
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