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Abstract. Nonlinear transport coefficients do not obey, in general, reciprocity
relations. We here discuss the magnetic-field asymmetries that arise in
thermoelectric and heat transport of mesoscopic systems. Based on a scattering
theory of weakly nonlinear transport, we analyze the leading-order symmetry
parameters in terms of the screening potential response to either voltage or
temperature shifts. We apply our general results to a quantum Hall antidot
system. Interestingly, we find that certain symmetry parameters show a
dependence on the measurement configuration.
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1. Introduction

The nonlinear regime of mesoscopic transport is unique because certain physical effects have no
counterparts at linear response. A prominent example is the breakdown of the Onsager–Casimir
relations that manifest themselves in the differential conductance out of equilibrium [1, 2].
The effect is due to asymmetric properties of electron–electron interactions under reversal
of an external magnetic field and has been extensively studied in the last decade, both
theoretically [1–9] and experimentally [10–17]. These results are relevant to characterizing
nonlinear rectification phenomena in ballistic conductors [18–24]. Nonetheless, all these works
deal with purely electric transport. Equally interesting is the investigation of magnetic-field
asymmetries of thermoelectric and heat rectification transport. That is the goal we want to
accomplish in this work.

It is important to distinguish between magnetic-field asymmetries occurring in the linear
regime of transport and those in the nonlinear regime. For two-terminal conductors coupled to
equilibrium environments, the linear conductance is always an even function of the magnetic
field B [25]. However, under the same conditions, the linear thermoelectric coefficient can
exhibit B asymmetries if carriers experience inelastic scattering inside the conductor [26–29]6.
As a consequence, the two-terminal thermopower need not be an even function of B and its
degree of asymmetry determines the thermodynamic efficiency of a system with broken time-
reversal symmetry [30–33]. The asymmetries we discuss here survive in the purely elastic case
and appear only in the nonlinear regime of transport.

A recent experiment by Matthews et al [34] has detected an asymmetry of the Seebeck
coefficients in a multiterminal cross junction when the applied thermal gradient exceeds the
linear response limit. Intriguingly, the asymmetry depends on the measurement configuration.
We consider below general expressions for the thermopower magnetoasymmetry and illustrate
our method with an explicit calculation of a model system. We find that, quite generally,
the symmetric and antisymmetric combinations of the nonlinear thermopower are different
depending on the specific way that the generated voltage is measured in response to the applied
thermal difference.

6 This is true for normal reservoirs. In the case of superconducting leads, similar asymmetries can arise even in
the absence of inelastic scattering; see [29].
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Our analysis is based on a scattering theory valid for nonlinear thermoelectric
transport [35]. This approach considers leading-order contributions to the sample screening
potential arising not only from an external dc bias [36, 37] but also from applied temperature
shifts [35]. Thus, our self-consistent treatment takes into account charge injectivity [36, 37]
and entropic injectivity [35] contributions to the charge accumulation that builds up in the
conductor out of equilibrium. Recently, the scattering approach has been successfully applied to
discuss thermodynamic efficiencies and figures of merit beyond linear response [38–40]. These
results are relevant in view of recent works that emphasize nonlinear thermoelectric effects in
superlattices [41], quantum dots [42–44], molecular junctions [45, 46] and quantum impurities
in the Kondo regime [47–49].

Furthermore, the theory [35] can be extended to account for nonlinear transport of the heat
flow [50]. Surprisingly, nonlinear Peltier effects (a heat flow in response to a voltage shift) in
phase-coherent conductors have been less explored [51, 52]. Heat rectification (a nonlinear heat
flow in response to a temperature difference [53]) has been investigated in carbon nanotubes [54]
and quantum dots [55], just to mention a few. Therefore, we naturally extend our analysis of
magnetic-field asymmetries to the nonlinear heat transport coefficients. We show below that the
leading-order heat rectification is B-asymmetric when the entropic injectivity is not invariant
under reversals of the magnetic field. Our study thus aims at providing a complete picture
of magnetoasymmetries in quantum conductors simultaneously subjected to large electric and
thermal gradients.

2. Theoretical formalism

Suppose that a mesoscopic conductor is attached to multiple terminals α, β, . . ., where
each terminal is characterized by both the electrical voltage bias eVα = µα − EF (µα is the
electrochemical potential and EF is the Fermi energy) and the thermal gradient θα = Tα − T
(Tα and T are the reservoir and the background temperature, respectively). The electronic and
heat transport are completely described by the scattering matrix sαβ = sαβ(E, eU ), which is in
general a function of the carrier energy E and the electrostatic potential U inside the conductor.
The potential U = U (Er , {Vγ }, {θγ }) is, in turn, a function of the position Er and the set of
applied voltages {Vγ } and temperature shifts {θγ }. The charge and heat currents, at lead α from
carriers originated from lead β, are respectively given by Iα =

2e
h

∑
β

∫
dE Aαβ(E, eU ) fβ(E)

and Jα =
2
h

∑
β

∫
dE(E − µα)Aαβ(E, eU ) fβ(E), where Aαβ = Tr[δαβ − s†

αβsαβ] and fβ(E) =

(1 + exp[(E − µβ)/kBTβ])−1 is the Fermi distribution function in the reservoir β. We focus
on the weakly nonlinear regime of transport, for which we expand these currents around the
equilibrium state (defined with µα = EF and Tα = T for all α) up to second order in powers of
the driving fields Vα and θα:

Iα =

∑
β

(GαβVβ + Lαβθβ) +
∑
βγ

(Gαβγ VβVγ + Lαβγ θβθγ + 2Mαβγ Vβθγ ), (1)

Jα =

∑
β

(RαβVβ + Kαβθβ) +
∑
βγ

(Rαβγ VβVγ + Kαβγ θβθγ + 2Hαβγ Vβθγ ). (2)

In [35, 39, 50], the general expressions for all linear and leading-order nonlinear coefficients
are derived. In order to make this paper self-contained, we write out those coefficients in
appendix A. It should be emphasized that the linear response coefficients Gαβ , Lαβ , Rαβ and Kαβ
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are evaluated at equilibrium and consequently are independent of the nonequilibrium screening
potential U , while the weakly nonlinear coefficients Gαβγ , Lαβγ , Mαβγ , Rαβγ , Kαβγ and Hαβγ

do depend on U in response to the applied electrical and thermal biases.
In a situation not very far from equilibrium, an expansion of U up to the first order suffices

to take account of the interactions

U = Ueq +
∑

α

uαVα +
∑

α

zαθα, (3)

where uα = (∂U/∂Vα)eq and zα = (∂U/∂θα)eq are the characteristic potentials (CPs) that
relate the variation of the internal potential U with voltage and temperature shifts at terminal
α. In the equilibrium case where U = Ueq, the screening potential U is symmetric with
respect to the reversal of an applied magnetic field B due to the fundamental micro-
scopic reversibility principle, i.e. Ueq(B) = Ueq(−B). Corresponding magnetic-field symmetry
of linear thermoelectric and heat transport has been shown in [56] based on the scattering
approach. However, when the system is driven into the out-of-equilibrium regime, there is
no fundamental reason for this magnetic-field symmetry to hold. Indeed, the magnetic-field
asymmetry emerges because the CPs in equation (3) are in general magnetic-field asymmetric,
i.e. uα(B) 6= uα(−B) and zα(B) 6= zα(−B). Thus far [1], the nonlinear electrical conductance
Gαβγ in the isothermal case has shown magnetic-field asymmetry since uα (CP describing the
voltage response of U ) is not an even function of the magnetic field. We show here that a
magnetic-field asymmetry also arises in the isoelectric case in response to pure thermal gradients
due to the asymmetric properties of zα (CP describing the thermal response of U ).

The electrostatic potential U is self-consistently determined by considering the net charge
of the system q = qbare + qscr. The bare charge qα

bare injected from lead α is due both to a voltage
imbalance and to a temperature shift in lead α; each contribution is respectively described by
the particle injectivity [36, 37] νp

α(E) = (2π i)−1
∑

β Tr
[
s†
βα

dsβα

dE

]
and the entropic injectivity [35]

νe
α(E) = (2π i)−1

∑
β Tr

[
E−EF

T s†
βα

dsβα

dE

]
summing up to give qbare = e

∑
α(Dp

αeVα + De
αθα), with

Dp,e
α = −

∫
dEνp,e

α (E)∂E f . The screening charge qscr builds up inside the conductor due
to an interaction with the injected charges, which we obtain from the response of the
internal potential, 1U = U − Ueq, away from the equilibrium state Ueq. The random phase
approximation implies qscr = e251U , where 5 is the Lindhard function which in the long
wavelength limit becomes 5 =

∫
dE D(E)∂E f , with D = D(EF) the sample density of states.

Then, the net charge response of the system reads

q = e
∑

α

(Dp
αeVα + De

αθα) + e251U (4)

and the set of equations for the CPs is closed when we relate this out-of-equilibrium net charge
to 1U via the Poisson equation, ∇

21U = −4πq. Importantly, the self-consistent procedure
discussed here is also applicable to inhomogeneous fields, i.e. when the potential U is position
dependent, as will be shown below when we apply our general model to a specific system.

In order to quantify the aforementioned magnetic-field asymmetry in the nonlinear
transport regime, we define the symmetry (6) and the asymmetry (A) parameters for G, L ,
R and K coefficients appearing in equations (1) and (2):

6X
αβ,γ δ ≡

Xαβ(B)Xγ δ(−B)

X linear
αβ (B)X linear

γ δ (−B)
, AX

αβ,γ δ ≡
Xαβ(B)

Xγ δ(−B)
, (5)
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where Xαβ refers to the differential transport coefficients Gαβ(electric), Lαβ(thermoelectric),
Rαβ(electrothermal) and Kαβ(thermal) defined by

Gαβ ≡
∂ Iα

∂Vβ

∣∣∣
{θ}=0

= Gαβ + 2GαββVβ +
∑
ε 6=β

(Gαβε + Gαεβ)Vε, (6)

Lαβ ≡
∂ Iα

∂θβ

∣∣∣
{V }=0

= Lαβ + 2Lαββθβ +
∑
ε 6=β

(Lαβε + Lαεβ)θε, (7)

Rαβ ≡
∂Jα

∂Vβ

∣∣∣
{θ}=0

= Rαβ + 2RαββVβ +
∑
ε 6=β

(Rαβε + Rαεβ)Vε, (8)

Kαβ ≡
∂Jα

∂θβ

∣∣∣
{V }=0

= Kαβ + 2Kαββθβ +
∑
ε 6=β

(Kαβε + Kαεβ)θε (9)

and X linear
αβ indicates the corresponding linear terms Gαβ , Lαβ , Rαβ and Kαβ . Since we consider

either an isothermal, i.e. {θ} = 0, or an isoelectric case, i.e. {V } = 0, the terms Mαβγ and
Hαβγ in equations (1) and (2) do not enter into the above definitions. Note here that Xαβ

contains both linear and nonlinear contributions and in the linear response regime it satisfies
6X

αβ,βα = AX
αβ,βα = 1, due to the microscopic reversibility condition X linear

αβ (B) = X linear
βα (−B).

Thus, a deviation from one of these symmetry and asymmetry parameters is indeed an indication
of magnetic-field symmetry breaking in the nonlinear regime. In a recent experiment by
Matthews et al [34], the authors tested the magnetic-field asymmetry for the thermoelectric
coefficient, i.e. Lαβ (equation (7)), for which they defined a parameter quite analogous to 6Lαβ,γ δ

used here to analyze the measured data, except that they averaged the coefficient over the
magnetic fields. It was shown that sufficiently strong thermal gradients may lead to magnetic-
field asymmetries and that these asymmetries qualitatively differ between the diagonal (6Lαα,αα)
and the off-diagonal [6Lαβ,βα (α 6= β)] elements.

In addition to 6Lαβ,γ δ, we also consider the symmetry parameters 6Gαβ,γ δ, 6Rαβ,γ δ and 6Kαβ,γ δ,
which provide analysis tools for measurements of the electrical or the heat currents. In parallel
with the symmetry parameters, we also define the asymmetry counterparts, AGαβ,γ δ, ALαβ,γ δ,
ARαβ,γ δ and AKαβ,γ δ, for completeness. The advantage of using the asymmetry parameters is
that they provide pure measures of the magnetic-field asymmetry once they deviate from 1.
For example, in the two-terminal case with V1 = V and V2 = 0, we find 6G11,11 = 1 + 2(G(B)

111 +
G(−B)

111 )V/G11 and AG11,11 = 1 + 2(G(B)

111 − G(−B)

111 )V/G11 up to the leading order in V (see
appendix B). Thus, the non-unity of AG11,11 6= 1 is purely due to the magnetic-field asymmetry
G(B)

111 6= G(−B)

111 whereas 6G11,11 6= 1 does not guarantee the field asymmetry but indicates the
importance of nonlinear effects, a part of which is the magnetic-field asymmetry. As shown
in this example, to leading order in the external fields, the symmetry parameter 6 consists of
the symmetric (even) combination between the nonlinear coefficients [G(B)

111 and G(−B)

111 in this
case] while the asymmetry parameter A is comprised of the asymmetric (odd) combination,
explaining the terminologies. If we define the symmetry parameter σ X

αβ,γ δ ≡ Xαβ(B) + Xγ δ(−B)

and the asymmetry parameter aX
αβ,γ δ ≡ Xαβ(B) − Xγ δ(−B) [1], these are simply related to

6X
αβ,βα and AX

αβ,βα by σ X
αβ,βα/X linear

αβ = 6X
αβ,βα + 1 and aX

αβ,βα/X linear
αβ = AX

αβ,βα − 1 to leading
order in {V } and {θ}. But we emphasize that the parameters 6 and A which we use here
are dimensionless quantities and have direct relevance to the experiments [34]. Moreover,
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Figure 1. Sketch of a quantum Hall bar attached to two reservoirs (1 and 2) with
applied voltages V1, V2 and temperature shifts θ1, θ2. An antidot (�5) is coupled
to the quantum Hall edge states with the hybridization widths 01 and 02 and
capacitances C1, C2, C3, C4. The antidot level position can be tuned with a top
gate potential (not shown here).

these parameters are related to the efficiency of the thermoelectric power generation or
refrigeration [26, 30, 31]. Thus, the gate tunability of these parameters, which we demonstrate
below for a quantum Hall conductor, can pave the way for controlling the functionality of
thermoelectric devices.

3. Quantum Hall bar

Armed with the general formalism described so far, we are now ready to apply it to a specific
system; a conductor in the quantum Hall regime coupled to two terminals, as depicted in
figure 1. We fix the external magnetic field B such that only the lowest Landau level is occupied
(filling factor 1). Hereafter, the magnetic field strength is constant and we only consider the
reversal of its direction denoted by B and −B. An antidot is formed inside the quantum Hall
bar by producing a potential hill with a gate control [57, 58], which can connect two counter-
propagating edge states. We regard the antidot as a quantum impurity with a Breit–Wigner
resonance at ε0 + eUd(B), where Ud(B) is the interaction-driven potential shift at the antidot
in the presence of magnetic field B. The upper and the lower edge states are tunnel coupled
to the antidot via hybridization widths 01 and 02, respectively. Suppose that the direction of
the magnetic field is reversed. It follows that the direction of charge flows through the edge
states is also reversed due to the chiral nature of the quantum Hall system, and the resonant
level at the antidot in this case forms at ε0 + eUd(−B). It should be noted that the potential shift
Ud is in general magnetic-field asymmetric, i.e. Ud(B) 6= Ud(−B), once the screening effects
are incorporated beyond the linear response regime [1]. This system serves as a good test bed
for the magnetic-field asymmetry as the symmetry can be broken either through the scattering
asymmetry, 01 6= 02, or through the electrical asymmetry, provided the charges on the upper
edge interact more strongly with the antidot than those on the lower edge.

As shown in figure 1, we discretize the conductor potential into five regions, namely �i

with i = 1, . . . 5, where �5 ≡ �d denotes the antidot region. The potential Ui in each region
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is assumed to be constant and the Coulomb interaction between charges in different regions is
described by a capacitance matrix Ci j [36], making the analytic calculations tractable. Despite
the simplification, such a discrete local potential model captures the essential physics [1, 36,
37]. The region-specific CPs are then given by uiα = (∂Ui/∂Vα)eq and ziα = (∂Ui/∂θα)eq, and
the net charge response in equation (4) for each region is related to the capacitance matrix via

qi = e
∑

α

(Dp
iαeVα + De

iαθα) + e25i1Ui =

∑
j

Ci j1U j (10)

which is a discrete version of the effective Poisson equation. The matrix elements Ci j are
determined by considering the net charge in each region i ; for instance, we have C11 = −C15 ≡

C1 since q1 = C1(1U1 − 1U5), and so on. One can determine the potentials Ui as a function
of the applied voltages and the thermal gradients to obtain the corresponding CPs according
to equation (3). For definiteness, we assume that the density of states for all regions are equal
(Di = D) and the injectivities in two terminals are symmetric, which amount to Dp,e

iα = Dp,e and
5i = 5. We then solve equation (10) for 1Ud = 1U5.

We consider two cases: (i) the conductor is electrically symmetric, i.e. Ci = C , but
asymmetric in the scattering properties such that 01 = (1 + η)0/2 and 02 = (1 − η)0/2, and (ii)
the scattering is symmetric, i.e. 01 = 02, but electrically asymmetric, i.e. C1 = C2 = (1 + ξ)C
and C3 = C4 = (1 − ξ)C . In both cases, the asymmetry is described with a parameter (η or ξ ).
A little algebra gives 1Ud = u1V1 + u2V2 + z1θ1 + z2θ2 and the corresponding CPs

u1(B) = u2(−B) =

{
1
2 + ηcsc,

1
2 + ξcel,

u1(−B) = u2(B) =

{
1
2 − ηcsc,

1
2 − ξcel,

(11)

z1(B) = z2(−B) =
De

eDp
u1(B), z1(−B) = z2(B) =

De

eDp
u1(−B), (12)

where the terms ηcsc and ξcel display the results of the two respective cases: (i) scattering
asymmetry and (ii) electrical asymmetry:

csc =

(
2 +

4πC Dp0

r(C − e25)

)−1

, cel =
−πe25DpC0t

(C − e25)[2πC Dp0 + r(C − e25)]
.

Here r = 1 − t = 0102/|3|
2 is the Breit–Wigner reflection (t is the transmission) probability

through the antidot evaluated at equilibrium, with 3 = EF − ε0 + i0/2. As shown in
equations (11) and (12), the two asymmetry factors η and ξ play qualitatively the same role
in the resultant CPs.

In equation (11), we first note that the sum rule for uα due to gauge invariance (see
equation (C.6) in appendix C) is indeed satisfied for each direction of the magnetic field as
should be: u1(B) + u2(B) = u1(−B) + u2(−B) = 1. One may also note that

∑
α zα = De/eDp

is satisfied in equation (12), but this result is only due to our assumption of equivalent injectivites
(Dp,e

iα = Dp,e) and in general there is no reason for such a sum rule for zα to exist. Importantly,
the CPs are generally magnetic-field asymmetric, i.e. uα(B) 6= uα(−B) and zα(B) 6= zα(−B).
We argue below that the latter asymmetry for zα can explain the recently reported observation
of a temperature-driven asymmetry beyond linear response [34]. It is also important to point out
the property u1(±B) = u2(∓B) and z1(±B) = z2(∓B) in equations (11) and (12), which can
be attributed to the chiral nature of the quantum Hall system.

The symmetry (6) and the asymmetry (A) parameters defined in equation (5) are readily
evaluated with the CPs in equations (11) and (12). The general expressions of these parameters
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for a generic two-terminal quantum conductor are written in appendix B. Equations (B.1)–(B.4)
show that all of the symmetry and asymmetry parameters can deviate from 1 indicating the
importance of nonlinear terms to leading order in V and θ because deviations from 1 clearly
depend on the CPs. Let us now apply the CPs in equations (11) and (12) evaluated for our
quantum Hall system to the general expressions given by equations (B.1)–(B.4).

Firstly, we consider the off-diagonal asymmetry parameters AX
αβ,βα in equations (B.1d),

(B.2d), (B.3d) and (B.4d) as well as the electric symmetry parameter 6G11,11 in equation (B.1a).
We find

6G11,11 = AG12,21 = AL12,21 = AR12,21 = AK12,21 = 1. (13)

This constancy is, in principle, unexpected and stems from the property u1(±B) = u2(∓B)

and z1(±B) = z2(∓B). Physically, this originates from the fact that our system considered in
figure 1 with C1 = C2 and C3 = C4 remains invariant under the simultaneous transformations
B → −B and V → −V . In addition to this chirality, the gauge invariance condition (

∑
α uα =

1) plays a role in the constancy of 6G11,11 = 1 because u1(B) + u1(−B) = u1(B) + u2(B) = 1
holds which applies to equation (B.1a). One can interpret the result as follows: the imposed
chirality in the system cancels out the magnetic-field asymmetry and recovers the reciprocity
even if weakly nonlinear screening effects are taken into account.

More interestingly, we find that the response of the symmetry parameters for both
thermoelectric (L) and thermal (K) coefficients depends on the lead indices:

6L11,11 = 1 + cL1 (2θ/T ), 6L12,21 = 1 + cL2 (2θ/T ), (14a)

6K11,11 = 1 + cK1 (2θ/T ), 6K12,21 = 1 + cK2 (2θ/T ) (14b)

(see equations (B.2a), (B.2b), (B.4a) and (B.4a)). The different tendencies between 6L11,11 and
6L12,21 as a function of the thermal gradient θ has been experimentally observed in an asymmetric
multiterminal junction [34]. Remarkably, this is a high-temperature effect since at kBT → 0 we
find 6L11,11 = 6L12,21 = 6K11,11 = 6K12,21 = 1 + 2θ/T , independently of the system parameters.

We show in figure 2 an analysis of the symmetry parameters 6 for the various responses.
In figure 2(a), we first observe a difference between 6L11,11 and 6L12,21 at high temperatures.
Indeed, one can see in equations (B.2a) and (B.2b) that the difference between the symmetry
parameters 6L11,11 and 6L12,21 for the differential thermoelectric conductance arises from z1(B)

and z2(B) incorporated in each parameter, where these CPs characterize the nonlinear thermal
responses due to the different leads and in general z1(B) 6= z2(B). Our model also predicts that
the distinction can be observed between the thermal symmetry parameters 6K11,11 and 6K12,21 (see
figure 2(a)) when one measures the heat currents. In our quantum Hall system, we find that the
diagonal elements 6L11,11 and 6K11,11 are totally independent of (i) the scattering asymmetry factor
η and (ii) the electrical asymmetry factor ξ because z1(B) + z1(−B) = z1(B) + z2(B) = De/eDp

in equations (B.2a) and (B.4a). We digress a little bit and mention that independence from η

and ξ is also observed for the diagonal electrothermal element 6R11,11 in equation (B.3a). Thus,
in our quantum Hall system, eight parameters 6X

11,11 and AX
12,21 for all X = G, L, R, K, are

independent of the scattering asymmetry (η) and the electrical asymmetry (ξ ) factors due to
the chiral nature; five of which are manifestly magnetic-field symmetric as already shown in
equation (13). In contrast, the off-diagonal elements 6L12,21 and 6K12,21 depend on the asymmetry
factors η or ξ since the leading-order nonlinear terms in equations (B.2b) and (B.4b) include
z1(−B) + z2(B) = 2z1(−B) = 2z2(B). When η = ξ = 0, however, the distinction between the
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Figure 2. Symmetry parameters for the thermoelectric (6L) and the thermal
(6K) coefficients as a function of the background temperature T . The thermal
gradient is fixed with kBθ/0 = 0.01. Panels (a) and (b) show the two distinctive
cases of the antidot resonance level ε0 = 0 and |ε0| = 0/2

√
3. In (b), a merging

of the parameters 6L11,11 = 6L12,21 = 1 + 2θ/T is clearly shown. Insets show
the voltage dependence of the symmetry parameters 6R(electrothermal) and
6G(electric) with kBT/0 = 0.05. Left inset corresponds to the case ε0 =

0.020. The right inset displays the case |ε0| = 0/2
√

3 in which a single
constant description for the electrothermal symmetry parameters, i.e. 1 −

6R12,21 = 6R11,11 − 1, is shown. We here use η = 0.5 and EF = 0 without loss of
qualitative generality.

diagonal and the off-diagonal elements disappears, i.e. 6L11,11 = 6L12,21 and 6K11,11 = 6K12,21.
Therefore, an asymmetry present in the system is crucial to observe this difference. This is
consistent with the asymmetric scattering used in the experiment [34]. We note in passing
that, even with non-zero η or ξ , our analytic results suggest that we can gate-tune the antidot
resonance level ε0 to make cL1 = cL2 = 1 (when |ε0 − EF| = 0/2

√
3), hence recovering the

universality of the thermoelectric coefficients, i.e. 6L11,11 = 6L12,21 = 1 + 2θ/T . This case is
precisely shown in figure 2(b) where |ε0 − EF| = 0/2

√
3. However, this is not the case for the

heat current counterparts 6K11,11 and 6K12,21, and parameter tuning by means of the antidot top
gate cannot be achieved (see figure 2(b)).

There is one more category of parameters whose deviations from the magnetic-field
symmetry are directly proportional to either (i) the scattering asymmetry η or (ii) the electrical
asymmetry ξ ; these are 6G12,21 = 1 − cG(eV/0), AG11,11 = 1 + cG(eV/0), AL11,11 = 1 + cLA(2θ/T ),
AR11,11 = 1 + cRA (eV/0) and AK11,11 = 1 + cKA(2θ/T ), in which we find cG = cLA = cRA = cKA = 0
when η = ξ = 0. Hence the magneto-asymmetry of these parameters originates only from the
underlying asymmetry in the quantum Hall antidot. Note that 6G12,21 and AG11,11 are described
by a single constant cG with opposite signs of the deviation in response to the voltage. We
again find the gate tunability such that AL11,11 = AR11,11 = 1 when |ε0 − EF| = 0/2

√
3 even with

non-zero η and ξ (see figures 3(b) and (c)), which implies that the magnetic-field symmetry
can be recovered by adjusting the antidot level. Interestingly, this happens at the same resonant
level where the universal behavior 6L11,11 = 6L12,21 = 1 + 2θ/T of the thermoelectric symmetry
parameters is recovered as explained above.
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Figure 3. Gate tunability of several parameters. At |ε0| = 0/2
√

3 ≈ 0.280,
we observe (a) 6L11,11 = 6L12,21 = 1 + 2θ/T , (b) AL11,11 = 1, (c) AR11,11 = 1 and
(d) 1 − 6R12,21 = 6R11,11 − 1 = cR(eV/0). The fitting parameters are, respec-
tively, used in (a) kBT = 0.10, kBθ = 0.030, η = 0.5 and (d) kBT = eV =

0.10, η = 0.5. In (b) and (c) the three cases refer to (I) kBT = 0.20, kBθ =

0.030 (eV = 0.060) , η = 0.5 (II) kBT = 0.10, kBθ = 0.010 (eV = 0.020),
η = 0.7 (III) kBT = 0.30, kBθ = 0.040 (eV = 0.080), η = 0.6, respectively. In
(c) and (d), we show a small interval around the resonance energy where the
thermoelectric and electrothermal asymmetry parameters coincide.

Finally, we explain the electrothermal symmetry parameters 6R11,11 = 1 + cR1 (eV/0) and
6R12,21 = 1 − cR2 (eV/0), describing the voltage response of the magnetic-field asymmetry in
heat current measurements, where the latter (6R12,21) in general depends on η or ξ while
the former (6R11,11) does not. In the insets of figures 2 and 3(d), we clearly show that for
the particular case where |ε0 − EF| = 0/2

√
3, we have cR = cR1 = cR2 yielding 1 − 6R12,21 =

6R11,11 − 1. Besides, at this gate position, 6G11,11 ≈ 6G12,21 as shown in the inset of figure 2(b).
In figure 3, the aforementioned gate tunabilities for several parameters are displayed. In

our quantum Hall system, we find that the recoveries of the universality for the thermoelectric
symmetry parameters 6L11,11 = 6L12,21 = 1 + 2θ/T (figure 3(a)), the magnetic-field symmetry
for the diagonal thermoelectric and electrothermal asymmetry parameters AL11,11 = AR11,11 = 1
(figures 3(b) and (c)), and the merging into a single constant 1−6R12,21=6R11,11−1= cR(eV/0)

(figure 3(d)) occur at the same resonance energy, i.e. |ε0 − EF| = 0/2
√

3. It is remarkable
that several distinct symmetry and asymmetry parameters can be tuned by gate control of
the antidot level. In figures 3(b) and (c), the (diagonal) asymmetry parameters AL11,11 and
AR11,11 are shown, respectively, for three different sets of values: {T, θ (V ), η}. In any case,
we have AL11,11 = AR11,11 = 1 at a certain resonance energy, i.e. |ε0 − EF| = 0/2

√
3. In general,

our observed gate tunability is due to the dependence of the CPs on the antidot level via the
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reflection and transmission probabilities (see equations (11) and (12) in which csc and cel can
be adjusted via ε0). We believe that our results are important because the gate tunability of
the magneto-asymmetry is also of practical importance for the evaluation of thermodynamic
efficiencies [30–32].

4. Conclusion

In conclusion, we have investigated the magnetic-field asymmetry of the thermoelectric and the
heat transport of mesoscopic systems in the weakly nonlinear regime. Based on the scattering
approach, we have determined the transport coefficients in terms of the screening potential up to
the leading-order nonlinearity. We have defined the symmetry and the antisymmetry parameters
which quantify the magnetic-field asymmetry. We have applied our general formalism to a two-
terminal quantum Hall antidot system and have shown that either the voltage or the temperature
shift leads to the breakdown of Onsager–Casimir symmetry relations beyond the linear response.
Intriguingly, the underlying chiral nature of our quantum Hall antidot system gives rise to
unusual behavior such as the recovery and gate tunability of reciprocity even in the weakly
nonlinear regime. Motivated by this, it will also be interesting to extend our current work to the
quantum spin Hall insulator, in which the spin of the carrier and its momentum are correlated,
giving rise to the helical nature of the system [59], and to analyze if there is any peculiar property
due to the underlying helicity.
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Appendix A. Linear and nonlinear coefficients

The linear coefficients in equations (1) and (2) read

Gαβ =
2e2

h

∫
dE Aαβ(E)

(
−

∂ f (E)

∂ E

)
≈

2e2

h
Aαβ(EF), (A.1)

Lαβ =
2e

hT

∫
dE(E − EF)Aαβ(E)

(
−

∂ f (E)

∂ E

)
≈

2eπ2k2
BT

3h

∂ Aαβ(E)

∂ E

∣∣∣
E=EF

, (A.2)

Rαβ =
2e

h

∫
dE(E − EF)Aαβ(E)

(
−

∂ f (E)

∂ E

)
≈

2eπ2k2
BT 2

3h

∂ Aαβ(E)

∂ E

∣∣∣
E=EF

, (A.3)

Kαβ =
2

h

∫
dE

(E − EF)
2

T
Aαβ(E)

(
−

∂ f (E)

∂ E

)
≈

2π 2k2
BT

3h
Aαβ(EF), (A.4)

where f (E) is the Fermi distribution function at equilibrium and the Sommerfeld expansion to
leading order in kBT/EF at low temperature is taken in all the last approximations. The leading
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order nonlinear coefficients are given by

Gαβγ =
−e2

h

∫
dE

(
∂ Aαβ

∂Vγ

+
∂ Aαγ

∂Vβ

+ eδβγ

∂ Aαβ

∂ E

)
∂ f (E)

∂ E
, (A.5)

Lαβγ =
e

h

∫
dE

EF − E

T

(
∂ Aαβ

∂θγ

+
∂ Aαγ

∂θβ

+ δβγ

E − EF

T

∂ Aαβ

∂ E

)
∂ f (E)

∂ E
, (A.6)

Mαβγ =
e2

h

∫
dE

(
EF − E

eT

∂ Aαγ

∂Vβ

−
∂ Aαβ

∂θγ

− δβγ

E − EF

T

∂ Aαβ

∂ E

)
∂ f (E)

∂ E
, (A.7)

Rαβγ =
e2

h

∫
dE

{
δαγ Aαβ + δαβ Aαβ − (E − EF)

(
∂ Aαβ

∂eVγ

+
∂ Aαγ

∂eVβ

)
−δβγ

[
(E − EF)

∂ Aαβ

∂ E
+ Aαβ

] }
∂ f (E)

∂ E
, (A.8)

Kαβγ =
−1

h

∫
dE

(E−EF)
2

T

{(
∂ Aαβ

∂θγ

+
∂ Aαγ

∂θβ

)
+ δβγ

[
(E−EF)

T

∂ Aαβ

∂ E
+

Aαβ

T

]}
∂ f (E)

∂ E
, (A.9)

Hαβγ =
−e

h

∫
dE(E − EF)

{ (
∂ Aαγ

∂θβ

+
(E − EF)

T

∂ Aαβ

∂eVγ

− δαγ

Aαβ

T

)
+δβγ

[
(E − EF)

T

∂ Aαβ

∂ E
+

Aαβ

T

] }
∂ f (E)

∂ E
. (A.10)

For a practical calculation, we use the WKB approximation valid in the long wavelength
limit and make the replacement δ/δU → −e∂/∂ E . Then, one can calculate the voltage and the
temperature derivatives provided the CPs are known since

∂ Aαβ

∂Vγ

=
∂U

∂Vγ

δAαβ

δU
≈ −euγ

∂ Aαβ

∂ E
, (A.11a)

∂ Aαβ

∂θγ

=
∂U

∂θγ

δAαβ

δU
≈ −ezγ

∂ Aαβ

∂ E
. (A.11b)

In a two-terminal setup which we consider in section 3, we have A11 = A22 = −A12 =

−A21 = t (E) with t (E) the transmission probability. Then, one can find the leading order of the
Sommerfeld expansion

G111 =
e3

h

∂t (E)

∂ E

∣∣∣
EF

(1 − 2u1), (A.12a)

G122 =
e3

h

∂t (E)

∂ E

∣∣∣
EF

(2u2 − 1), (A.12b)

G211 =
e3

h

∂t (E)

∂ E

∣∣∣
EF

(2u1 − 1), (A.12c)
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L111 =
eπ 2k2

B

3h

[∂t (E)

∂ E
− 2ez1T

∂2t (E)

∂ E2

]
EF

, (A.13a)

L122 = −
eπ 2k2

B

3h

[∂t (E)

∂ E
− 2ez2T

∂2t (E)

∂ E2

]
EF

, (A.13b)

L211 = −
eπ 2k2

B

3h

[∂t (E)

∂ E
− 2ez1T

∂2t (E)

∂ E2

]
EF

, (A.13c)

R111 = −
e2

h

[
t (E) +

π2(kBT )2

6

∂2t (E)

∂ E2
(4u1 − 1)

]
EF

, (A.14a)

R122 = −
e2

h

[
t (E) +

π2(kBT )2

6

∂2t (E)

∂ E2
(3 − 4u2)

]
EF

, (A.14b)

R211 = −
e2

h

[
t (E) +

π2(kBT )2

6

∂2t (E)

∂ E2
(3 − 4u1)

]
EF

, (A.14c)

K111 =
π2k2

B

3h

[
t (E) − 2ez1T

∂t (E)

∂ E

]
EF

, (A.15a)

K122 = −
π2k2

B

3h

[
t (E) − 2ez2T

∂t (E)

∂ E

]
EF

, (A.15b)

K211 = −
π2k2

B

3h

[
t (E) − 2ez1T

∂t (E)

∂ E

]
EF

. (A.15c)

Appendix B. Symmetry and asymmetry parameters in the two-terminal case

Following the definitions in equation (5), we evaluate all the symmetry (6) and the asymmetry
(A) parameters up to the leading order of biases (V and θ ) for a generic two-terminal conductor:

6G11,11 = 1 +
2(G(B)

111 + G(−B)

111 )

G11
V = 1 − 2(u(B)

1 + u(−B)

1 − 1)

∂t (E)

∂ E

t (E)

∣∣∣∣
EF

eV, (B.1a)

6G12,21 = 1 +
2(G(B)

122 + G(−B)

211 )

G12
V = 1 − 2(u(−B)

1 + u(B)

2 − 1)

∂t (E)

∂ E

t (E)

∣∣∣∣
EF

eV, (B.1b)

AG11,11 = 1 +
2(G(B)

111 − G(−B)

111 )

G11
V = 1 − 2(u(B)

1 − u(−B)

1 )

∂t (E)

∂ E

t (E)

∣∣∣∣
EF

eV, (B.1c)

AG12,21 = 1 +
2(G(B)

122 − G(−B)

211 )

G12
V = 1 − 2(u(B)

2 − u(−B)

1 )

∂t (E)

∂ E

t (E)

∣∣∣∣
EF

eV, (B.1d)
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6L11,11 = 1 +
2(L (B)

111 + L (−B)

111 )

L11
θ = 1 + 2

[
1 − eT (z(B)

1 + z(−B)

1 )

∂2t (E)

∂ E2

∂t (E)

∂ E

]
EF

θ

T
, (B.2a)

6L12,21 = 1 +
2(L (B)

122 + L (−B)

211 )

L12
θ = 1 + 2

[
1 − eT (z(−B)

1 + z(B)

2 )

∂2t (E)

∂ E2

∂t (E)

∂ E

]
EF

θ

T
, (B.2b)

AL11,11 = 1 +
2(L (B)

111 − L (−B)

111 )

L11
θ = 1 − 2eT (z(B)

1 − z(−B)

1 )

∂2t (E)

∂ E2

∂t (E)

∂ E

∣∣∣∣
EF

θ

T
, (B.2c)

AL12,21 = 1 +
2(L (B)

122 − L (−B)

211 )

L12
θ = 1 + 2eT (z(−B)

1 − z(B)

2 )

∂2t (E)

∂ E2

∂t (E)

∂ E

∣∣∣∣
EF

θ

T
, (B.2d)

6R11,11 = 1 +
2(R(B)

111 + R(−B)

111 )

R11
V = 1 −

[
6

π2(kBT )2

t (E)
∂t (E)

∂ E

+
(

2
[
u(B)

1 + u(−B)

1

]
− 1

) ∂2t (E)

∂ E2

∂t (E)

∂ E

]
EF

eV,

(B.3a)

6R12,21 = 1 +
2(R(B)

122 + R(−B)

211 )

R12
V = 1 +

[
6

π 2(kBT )2

t (E)
∂t (E)

∂ E

+
(

3 − 2
[
u(−B)

1 + u(B)

2

]) ∂2t (E)

∂ E2

∂t (E)

∂ E

]
EF

eV,

(B.3b)

AR11,11 = 1 +
2(R(B)

111 − R(−B)

111 )

R11
V = 1 − 2(u(B)

1 − u(−B)

1 )

∂2t (E)

∂ E2

∂t (E)

∂ E

∣∣∣∣
EF

eV, (B.3c)

AR12,21 = 1 +
2(R(B)

122 − R(−B)

211 )

R12
V = 1 + 2(u(−B)

1 − u(B)

2 )

∂2t (E)

∂ E2

∂t (E)

∂ E

∣∣∣∣
EF

eV, (B.3d)

6K11,11 = 1 +
2(K (B)

111 + K (−B)

111 )

K11
θ = 1 + 2

[
1 − eT (z(B)

1 + z(−B)

1 )

∂t (E)

∂ E

t (E)

]
EF

θ

T
, (B.4a)

6K12,21 = 1 +
2(K (B)

122 + K (−B)

211 )

K12
θ = 1 + 2

[
1 − eT (z(−B)

1 + z(B)

2 )

∂t (E)

∂ E

t (E)

]
EF

θ

T
, (B.4b)

AK11,11 = 1 +
2(K (B)

111 − K (−B)

111 )

K11
θ = 1 − 2eT (z(B)

1 − z(−B)

1 )

∂t (E)

∂ E

t (E)

∣∣∣∣
EF

θ

T
, (B.4c)

AK12,21 = 1 +
2(K (B)

122 − K (−B)

211 )

K12
θ = 1 + 2eT (z(−B)

1 − z(B)

2 )

∂t (E)

∂ E

t (E)

∣∣∣∣
EF

θ

T
. (B.4d)

Here, the off-diagonal elements 6X
12,21 and AX

12,21 are related to both terminals (1 and 2), and
hence are evaluated under simultaneous transformations B → −B and either driving fields V →

−V or θ → −θ , while the diagonal elements 6X
11,11 and AX

11,11 are evaluated only with B → −B
since V1 = V , θ1 = θ and V2 = θ2 = 0 are fixed. Thus, in the limit B → 0, AX

11,11 = AX
12,21 = 1

(X = G,L,R,K). Note that even in this B → 0 limit, the symmetry parameters 6X
11,11 and
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6X
12,21 can have deviations from 1, owing to the nonlinear effects irrelevant to B-asymmetry

as discussed below equation (9) in section 2 of the main text.

Appendix C. Relations between symmetry and asymmetry parameters

Due to the charge conservation, i.e. unitarity of the scattering matrix
∑

α Aαβ =
∑

β Aαβ = 0,
we have the sum rules for the coefficients:∑

α

Gαβ =

∑
β

Gαβ =

∑
α

Gαβγ = 0, (C.1)

∑
α

Lαβ =

∑
β

Lαβ =

∑
α

Lαβγ = 0, (C.2)

∑
α

Rαβ =

∑
β

Rαβ = 0, (C.3)

∑
α

Kαβ =

∑
β

Kαβ =

∑
α

Kαβγ = 0 (C.4)

that are easily verified from the general expressions given in appendix A. In addition, the
physics must be invariant under the common shift of voltages giving rise to the constraint [37]
e∂E Aαβ +

∑
γ ∂Vγ

Aαβ = 0. This gauge invariance condition gives additional sum rules for Gαβγ

and the CP uα:∑
γ

(Gαβγ + Gαγβ) = 0, (C.5)

∑
α

uα = 1. (C.6)

In a two-terminal case, these sum rules correspond to G12 = −G11, G122 = G111 = −G211,
L12 = −L11, L111 = −L211, R12 = −R11 and K12 = −K11, K111 = −K211, from which one can
relate the symmetry and the asymmetry parameters:

6G11,11 + AG11,11

2
= 1 +

2G(B)

111

G11
V,

6G12,21 + AG12,21

2
= 1 −

2G(B)

111

G11
V, (C.7)

6L11,11 + AL11,11

2
= 1 +

2L (B)

111

L11
θ,

6L12,21 + AL12,21

2
= 1 −

2L (B)

122

L11
θ, (C.8)

6R11,11 + AR11,11

2
= 1 +

2R(B)

111

R11
V,

6R12,21 + AR12,21

2
= 1 −

2R(B)

122

R11
V, (C.9)

6K11,11 + AK11,11

2
= 1 +

2K (B)

111

K11
θ,

6K12,21 + AK12,21

2
= 1 −

2K (B)

122

K11
θ. (C.10)

Note that the right-hand sides of equation (C.7) are written in terms only of G111 and G11 due
to the gauge invariance with respect to voltage shifts.
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[22] Büttiker M and Sánchez D 2003 Phys. Rev. Lett. 90 119701
[23] González T, Vasallo B G, Pardo D and Mateos J 2004 Semicond. Sci. Technol. 19 S125
[24] Hackens B, Gence L, Gustin C, Wallart X, Bollaert S, Cappy A and Bayot V 2004 Appl. Phys. Lett. 85 4508
[25] Sánchez D and Kang K 2008 Phys. Rev. Lett. 100 036806
[26] Saito K, Benenti G, Casati G and Prosen T 2011 Phys. Rev. B 84 201306
[27] Sánchez D and Serra L 2011 Phys. Rev. B 84 201307
[28] Entin-Wohlman O and Aharony A 2012 Phys. Rev. B 85 085401
[29] Jacquod P and Whitney R S 2010 Europhys. Lett. 91 67009
[30] Benenti G, Saito K and Casati G 2011 Phys. Rev. Lett. 106 230602
[31] Brandner K, Saito K and Seifert U 2013 Phys. Rev. Lett. 110 070603
[32] Balachandran V, Benenti G and Casati G 2013 Phys. Rev. B 87 165419
[33] Apertet Y, Ouerdane H, Goupil C and Lecoeur P 2013 Phys. Rev. E 88 022137
[34] Matthews J, Battista F, Sánchez D, Samuelsson P and Linke H 2013 arXiv:1306.3694
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[49] Azema J, Daré A-M, Schäfer S and Lombardo P 2012 Phys. Rev. B 86 075303
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