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Interactions among units in complex systems occur in a specific sequential order, thus affecting the flow

of information, the propagation of diseases, and general dynamical processes. We investigate the

Laplacian spectrum of temporal networks and compare it with that of the corresponding aggregate

network. First, we show that the spectrum of the ensemble average of a temporal network has identical

eigenmodes but smaller eigenvalues than the aggregate networks. In large networks without edge

condensation, the expected temporal dynamics is a time-rescaled version of the aggregate dynamics.

Even for single sequential realizations, diffusive dynamics is slower in temporal networks. These

discrepancies are due to the noncommutability of interactions. We illustrate our analytical findings using

a simple temporal motif, larger network models, and real temporal networks.

DOI: 10.1103/PhysRevLett.111.188701 PACS numbers: 89.75.Hc, 05.45.�a, 02.10.Ud

Interactions in social, biological, and engineered net-
works are often being established and dismantled in a
temporal sequence rather than being static properties.
Such systems represented as networks with a sequence of
time stamped interacting node pairs are called temporal
networks [1]. The specifics of temporal interactions affect
accessibility [2] and dynamical processes on networks
such as epidemic spreading [1,3–5], synchronization [6],
random walks [7], and consensus [8–12]. In the context of
numerical simulations of population dynamics, including
networked dynamical systems (e.g., coupled oscillators),
the comparison of aggregate and temporal dynamics is
tantamount to the choice of synchronous or asynchronous
numerical schemes for updating states of the agents.
Although the effects of the two numerical schemes have
been examined, the analytical results are scarce [13–15],
and the evidence mostly remains numerical [16–19].

Here, we are interested in generic effects to which such
temporal interactions may give rise. A comparison is made
with the corresponding aggregate dynamics where all inter-
actions are present permanently. We consider dynamical
systems with diffusive couplings and theoretically analyze
their spectral properties, which represent various dynamics
such as synchronization, random walks, and diffusive pro-
cesses [20,21]. We show that diffusive dynamics is slower
for the temporal network (i.e., asynchronous update) than
for the aggregate network (i.e., synchronous update) and
find qualitatively different effects, even after averaging over
random temporal sequences of purely linear interactions.

General framework.—We consider linear dynamics
under a set M of interaction matrices. For a time interval

of length �, a matrix Mð0Þ drawn from M determines the

dynamics. Then, another matrixMð1Þ is drawn fromM and
is active for time �, and so forth. The N-dimensional state
vector xðtÞ evolves according to

_xðtÞ ¼ Mðbt=�cÞxðtÞ; (1)

where t � 0. Rounding to the next lowest integer is
denoted by b�c, so bt=�c is the number of time intervals of
length � before time t. The parameter � measures the ratio
of time scales of the dynamics of x and of the evolution of
the interactions.
Each specific real-world scenario of duration r� pro-

duces a particular sequence S ¼ ðMð0Þ;Mð1Þ; . . . ;Mðr�1ÞÞ of
interaction matrices, where r 2 N. The dynamics given by
Eq. (1) has the formal solution xðr�Þ ¼ TðS; �Þxð0Þ with
the matrix

TðS; �Þ ¼ expð�Mðr�1ÞÞ � � � expð�Mð0ÞÞ (2)

being the time evolution operator for a given sequence S.
An initial condition xð0Þ maps to the same xðr�Þ at time r�
under the dynamics with constant matrix ðr�Þ�1 lnTðS; �Þ,
which we call the effective matrix of sequence S.
Random sequences with replacement.—Being interested

in the generic effects of temporal networks, we first con-
sider ensembles of sequences with uniform probability,
that is, sequences generated by drawing uniformly and
independently with replacement from M. Starting from
an initial condition xð0Þ, the expected state at time � is
given by

hxð�Þi ¼ T̂ð�Þxð0Þ (3)

with the time evolution operator now averaged over all
interactions
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T̂ð�Þ ¼ jMj�1
X

M2M

expð�MÞ: (4)

The effective matrix for the temporal dynamics is

M̂ � ��1 lnT̂ð�Þ: (5)

This is to be compared to the dynamics _x ¼ M�x under
the aggregate matrix

M� � jMj�1
X

M2M

M; (6)

where all interactions are permanently present. The time
evolution operator is given by

T�ð�Þ ¼ expð�M�Þ: (7)

Whenever M� � M̂, aggregate dynamics and temporal
dynamics are different already at the level of the expecta-
tion over random sequences of interactions. Formally, such
a difference is rooted in the fact that averaging over inter-
actions and integration of the dynamics do not commute in
general.

Edge sequences with replacement.—Let us consider an
undirected multigraph G ¼ ðV; EÞ with nodes V ¼
f1; . . . ; Ng and a multiset E of edges given as unordered
pairs of nodes. We are considering a multiset so that the
same unordered pair can appear as several edges. A single
diffusive coupling between i and j, induced by a network

edge e ¼ fi; jg, is represented by a matrixMðeÞ withMðeÞ
ii ¼

MðeÞ
jj ¼ �1, MðeÞ

ij ¼ MðeÞ
ji ¼ þ1, and zero at all other

entries. Using a homogeneous coupling strength �, i.e.,

replacing each MðeÞ by �MðeÞ, amounts to a general time
rescaling t ! t=�. Also replacing � by �=�, all resulting
eigenvalues are simply scaled up by �. The Laplacian of

the aggregate network is given by L ¼ �P
e2EM

ðeÞ.
Taking into account that squaring the matrix yields

MðeÞMðeÞ ¼ �2MðeÞ [22], the temporal evolution operator
under coupling e and time � is given by

expð�MðeÞÞ ¼ I þ �ð�ÞMðeÞ; (8)

where

�ð�Þ � 1� expð�2�Þ
2

: (9)

By combining Eqs. (4) and (8), we obtain the ensemble
averaged temporal evolution operator for a single applica-
tion of the edge as follows:

T̂ð�Þ ¼ jEj�1
X

e2E

expð�MðeÞÞ ¼ I þ �ð�ÞM�; (10)

with the aggregate matrix M� ¼ jEj�1
P

e2EM
ðeÞ ¼

�jEj�1L. The effective interaction matrix is obtained as

M̂ ¼ ��1 lnT̂ð�Þ ¼ ��1 ln½I þ �ð�ÞM��: (11)

Remarkably, M̂ is obtained from the aggregate matrix
M� purely by functional calculus. Therefore, the aggregate
and temporal matrices have identical eigenspaces. Each
eigenvalue �� of the aggregate matrix M� maps to an

eigenvalue �̂ of the temporal matrix M̂ according to

�̂ ¼ fð��; �Þ � ��1 ln½1þ �ð�Þ���: (12)

Before analyzing Eq. (12) further, we remark that �2 �
�� � 0. An eigenvalue �2 is obtained if and only if
jEj ¼ 1, i.e., for a single interaction. For arbitrary � � 0,
the function f has fixed points � ¼ 0 and � ¼ �2. For
�2<�� < 0, fð��; �Þ monotonically increases with �,
and fð��; �Þ ! 0 as � ! 1.
In the limiting case � ! 0, temporal and aggregate

dynamics coincide as fð��; �Þ ! ��. An increase of �
has the following consequences. First, the dynamics slows
down because eigenvalues move closer to 0. Second, dy-
namical behavior qualitatively changes because the slow-
ing down of modes is not linear; i.e., the ratios between
eigenvalues change. The fastest modes are least affected
when � is increased. However, the nonlinearity is signifi-
cant only for eigenvalues of M� that are close to �2.
If j��j is sufficiently small, we can apply the first order

approximation lnð1þ xÞ � x to Eq. (12) to obtain

�̂ � �ð�Þ��; (13)

where �ð�Þ ¼ ð2�Þ�1½1� expð�2�Þ�. To the extent that
the approximation is valid for all eigenvalues of M�, the
temporal matrix itself approximates to M̂ � �ð�ÞM�.
Let us comment on the relevance of the approximation

for large networks. The eigenvalues of M� are lower
bounded [23] by �maxfdi þ dj: fi; jg 2 Eg=jEj, where

di is the degree of node i, i.e., the number of edges incident
on i. For eigenvalue ��, this bound translates into j��j �
2dmax=jEj, where dmax is the maximum degree in the net-
work. The approximation given by Eq. (13) improves for a
growing network size if dmax=jEj ! 0; i.e., the fraction of
edges owned by each node tends to zero. Then, all eigen-
values of M� tend to zero, and the expected temporal
dynamics is just a time-rescaled version of the aggregate
dynamics.
Otherwise, a node accumulates a finite fraction of the

edges with growingN, a phenomenon called Bose-Einstein
condensation in networks [24]. Then, an eigenvalue �� of
M� may remain finitely separated from zero even when
N ! 1.
The largest deviation from the approximation is

obtained when the fastest eigenvalue of the aggregate
matrixM� remains at�1 [25] while the slowest eigenvalue
tends to zero when N ! 1. In this case, the slow and fast
modes are decelerated by the factors �ð�Þ and fð�1; �Þ,
respectively, when passing from the aggregate to temporal
dynamics. The ratio between the deceleration factors is
maximum in the limit of large �, where we obtain
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lim
�!1

�ð�Þ
fð�1; �Þ ¼

�1

2 lnð1=2Þ � 0:72: (14)

The slow modes are decelerated less than fast modes, and
the ratio between the eigenvalues corresponding to the
slow and fast modes does not fall below 72% of the original
value. The bound is attained in the case of a star, which
has the Laplacian eigenvalues 0, 1, and N, translating
into eigenvalues 0, ��

slow ¼ �1=ðN � 1Þ, and ��
fast ¼

�N=ðN � 1Þ for matrix M�. Networks possessing a large
ratio��

fast=�
�
slow, including scale-free networks, are known

to be difficult to synchronize in coupled chaotic dynamics
[20,26]. Although ��

fast does not remain Oð1Þ as N ! 1,

such networks deviate from Eq. (13) more than homoge-
neous networks of the same size do.

Small example.—For illustration, we consider a network
with N ¼ 3 nodes and two edges E ¼ ff1; 2g; f2; 3gg. The
eigenvalues of the aggregate matrix are equal to �� ¼ 0,
�1=2, and �3=2. For the temporal dynamics averaged
over random sequences with replacement, Eq. (12) results
in �̂ ¼ 0, fð�1=2; �Þ, and fð�3=2; �Þ. As the theory pre-
dicts, �̂ (dotted curves in Fig. 1) is closer to zero than ��
is, and �̂ approaches zero as � increases. In particular, the
spectral gap, i.e., the eigenvalue with the smallest nonzero
absolute value, is smaller for the temporal than for the
aggregate dynamics; the spectral gap gives the time scale
of relaxation.

If we select S ¼ ðMf1;2g;Mf1;2gÞ or S ¼ ðMf2;3g;Mf2;3gÞ in
the sampling with replacement, the spectral gap trivially

vanishes. For sequences S ¼ ðMf1;2g;Mf2;3gÞ and S ¼
ðMf2;3g;Mf1;2gÞ, the eigenvalues of the effective matrix are
plotted by the solid curves in Fig. 1. Also, in this sampling
scheme, in which we avoid multiple sampling of the same
edge and the resulting loss of connectivity of the entire

network, the spectral gap, at least, is smaller for the tem-
poral than for the aggregate dynamics.
Edge sequences without replacement.—We now con-

sider edge sequences sampled without replacement.
In the previous example, it corresponds to the two sequen-
ces containing both edges (solid curves in Fig. 1). For a

general network and an arbitrary permutation S ¼
ðMð0Þ;Mð1Þ; . . . ;MðjEj�1ÞÞ of its edges, the spectral gap of
the effective temporal matrix in this case is smaller than or
equal to that of the aggregate matrix.
To show this, we use Eqs. (8) and (9) to write the time

evolution operator according to Eq. (2) as

TðS; �Þ ¼ ½I þ �ð�ÞMðjEj�1Þ� � � � ½I þ �ð�ÞMð0Þ�: (15)

If � is a so-called spectral function, �ðeAeBÞ � j�ðeAþBÞj
holds true for general matrices A and B [27,28]. The
product of the two largest eigenvalues is a spectral func-
tion. Because the largest eigenvalue of the evolution op-
erator for the Laplacian dynamics is equal to unity for both
aggregate and temporal dynamics, with the right eigenvec-
tor being ð1 � � � 1Þ>, the second largest eigenvalue of

eM
ðiÞ
eM

ðjÞ
is at least that of eM

ðiÞþMðjÞ
for arbitrary i and j.

Therefore, in terms of the absolute value, the spectral gap
for the effective matrix ðjEj�Þ�1 lnTðS; �Þ is at most j��j.
This result implies that the dynamics on an arbitrary tem-
poral network is slower than (or at least not faster than) that
on the aggregate network.
When � ! 0, we can approximate the right-hand side of

Eq. (15) using �ð�Þ � � by

I þ �ð�ÞX
jEj

i¼1

MðiÞ ¼ I þ �jEjM� � T�ðjEj�Þ: (16)

Therefore, the temporal dynamics approaches the aggre-
gate dynamics as � ! 0 as in the case of the random
sampling with replacement.
Application to model and real networks.—For two

model temporal networks and two real temporal networks,
the (negative) spectral gaps �� and �̂ are compared
in Fig. 2. For random sampling without replacement, we
appropriately normalized the spectral gap of ��1 lnTðS; �Þ
by dividing by jEj.
The first model network is generated on a realization of

the Erdős-Rényi random graph having 500 nodes and 1978
edges, which is the aggregate network. Because adjacent
nodes usually have multiple edges in real data [1], we
assumed 10 edges between each pair of adjacent nodes in
the aggregate random graph. Figure 2(a) indicates that,
under the sampling both with and without replacement,
j�̂j i.e., the spectral gap for the temporal network averaged
over 1000 sequences (thick and thin dashed lines), is con-
sistently smaller than j��j (thick solid line) for any �. The
results are qualitatively the same for a scale-free temporal
network [Fig. 2(b)] constructed by placing 10 edges on
each edge of an aggregated network, which is a realization
of the Barabási-Albert model [29] having 500 nodes and
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FIG. 1 (color online). Dependence of the spectrum of effective
interaction matrices on the temporal parameter �. We show the
two nonzero eigenvalues of effective interaction matrices for a
network with two edges connecting three nodes. Dotted curves:
Random sequences with replacement. Solid curves: Random
sequences without replacement.

PRL 111, 188701 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 NOVEMBER 2013

188701-3



1990 edges. The results for human interaction data
obtained from the Reality Mining Project, having 104
nodes and 782 682 edges [30], and those from the
SocioPatterns Project, having 112 nodes and 20 816 edges
[31], are shown in Figs. 2(c) and 2(d), respectively.

First of all, �� is independent of � by definition (thick
solid lines). For all the networks, we verified that j�̂j<
j��j holds true for the temporal networks derived from the
real-world interaction sequences [dash-dotted lines labeled
‘‘original’’ in Figs. 2(c) and 2(d)] and individual temporal
networks generated by the sampling without replacement
(ensemble averaged values are shown by the thin dashed
lines). It should be noted that it is not the case for the
sampling with replacement (averages are shown by the
thick dashed lines). Second, for both the sampling with
replacement and without replacement, Fig. 2 indicates that
j�̂j< j��j holds true on the average and that j�̂j decays
toward zero as � increases. Third, the original sequence of
edges and random sequences both with and without
replacement yield values of �̂ approaching �� as � ! 0.
All these numerical results are consistent with our

theoretical results. Finally, Eq. (13) suggests that �̂ in
the case of sampling with replacement is approximated
by �ð�Þ��. Figure 2 shows that this is a reasonable ap-
proximation (thin solid lines).
The error bars in Fig. 2 are large in some cases, indicat-

ing that the �̂ value depends much on the individual
sequence. This is also implied by the discrepancy between
the �̂ values for the real temporal networks [dash-dotted
lines in Figs. 2(c) and 2(d)] and those averaged over
samples (thick and thin dashed lines). When any pair of

MðiÞ (1 � i � jEj) commutes, the time evolution operators
for the aggregate and temporal dynamics [Eqs. (7) and (15)]
are identical. This is tantamount to saying that the pairwise
noncommutability of graphlets may be a main source of the
discrepancy between �̂ and�� and also that between �̂ for
different temporal networks sharing the same aggregate
network.
Discussion.—We have quantitatively shown that the ef-

fect of temporal networks on diffusive dynamics is consid-
erable. Our results imply that synchronization is more
difficult in temporal than in the corresponding aggregate
networks for general � > 0, in agreement with the numeri-
cal results in Ref. [6]. The slowing down due to temporal
dynamics is also observed in other diffusive dynamics such
as random walks [7], the voter model [8,9], and the naming
game [11]. Our theoretical results also enlarge previous
theoretical understanding of synchronization dynamics in
temporal networks. The theoretical results obtained under
the framework of switching topology mostly treat the case
of fast switching, which corresponds to � ! 0 in the
present study [32–35]. In the limit � ! 0, the stability of
the aggregate Laplacian matrix is theoretically sufficient
for synchronization in temporal networks [32–35], which
is consistent with our results. We obtained a quantitative
theory for general � without strong constraints like simul-
taneous diagonalizability of the graphlets [36]. Going be-
yond purely diffusive dynamics, the spectral framework is
relevant for systems with local dynamics at each node. A
stability criterion for the synchrony of such dynamics
across nodes is based on the eigenvalues of the coupling
matrix [37]. Tests with simple systems of chaotic oscilla-
tors provide the first evidence that the present spectral
analysis for time-dependent coupling matrices correctly
combines with that approach (see the Supplemental
Material [38]). Finally, real interaction sequences show
correlated patterns [4,39]. To reveal the relationship
between such correlated patterns and the behavior of indi-
vidual temporal sequences is warranted for future work.
We thank the SocioPatterns collaboration (http://

www.sociopatterns.org) for providing the data set. We
also acknowledge financial support provided by
Grants-in-Aid for Scientific Research (No. 23681033)
from MEXT, Japan, the Nakajima Foundation,
VolkswagenStiftung, and MINECO (Spain) and FEDER
(EU) through the MODASS Project (No. FIS2011-24785).
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FIG. 2 (color online). The (negative) spectral gap of the ag-
gregate and temporal Laplacian dynamics for four networks. The
error bars indicate the standard deviation calculated on the basis
of 103 realizations of edge sequences. (a) Results for a random
temporal graph having N ¼ 500 nodes and jEj ¼ 19780 edges.
(b) Results for a scale-free temporal network with N ¼ 500 and
jEj ¼ 19990. We set the parameters of the Barabási-Albert
model to m ¼ m0 ¼ 4. The degree d obeys a power law with
exponent �3 [29]. (c) Results for human interaction data with
N ¼ 104 and jEj ¼ 782682 among students, staff, and faculty
members at the Massachusetts Institute of Technology. The data
were produced by the Reality Mining Project [30]. Although the
original network contains 106 subjects, we used the largest
connected component containing 104 subjects. (d) Results for
the human interaction data during a conference recorded in the
SocioPatterns Project [31]. Although the original data have 113
nodes and 20 818 edges, we excluded one node and the link
emanating from this node, possessing two edges on it before the
analysis. This is because the spectral gap value is very sensitive
to such a nearly isolated node. The modified network has
N ¼ 112 and jEj ¼ 20816.
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