
PHYSICAL REVIEW E 88, 052904 (2013)

Characterizing the deterministic nature of individual power dropouts in
semiconductor lasers subject to delayed feedback
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We implement a method to identify the deterministic nature of specific events in the dynamics of a
semiconductor laser subject to time-delayed optical feedback. Specifically, we study the power dropouts in
the low-frequency fluctuations regime on an individual event basis and identify whether the underlying dominant
mechanism is deterministic. Our approach is based on sychronization with a twin system in a symmetric relay
configuration. We investigate the dependence of the fraction of deterministically driven (i.e., synchronized)
dropouts on the laser’s pump current as a key parameter. Our experimental results are corroborated by numerical
modeling based on rate equations. Our numerical findings also provide insights into the influence of spontaneous
emission noise.
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I. INTRODUCTION

Instabilities in the emission of semiconductor lasers have
been studied for a long time. Semiconductor lasers with
delayed feedback exhibit a variety of complex dynamical
behaviors and these systems serve as excellent test beds
for the study of delay-dynamics, chaos synchronization, and
applications based thereon (see, e.g., [1]). The dynamics
of semiconductor lasers subject to time-delayed feedback
is affected by an intricate interplay between deterministic
mechanisms and intrinsic noise, the latter resulting from
spontaneous emission and carrier fluctuations. Operating such
a laser system with moderate to strong feedback in the vicinity
of its lasing threshold leads to a characteristic and widely
studied dynamical regime called low-frequency fluctuations
(LFF). It is characterized by irregular sudden power dropouts
and a more gradual recovery of the average emitted power.
The dropout can be considered the end of a dynamical cycle.
An exemplary experimental time series of an LFF structure
is shown in Fig. 1. Each cycle is a power-buildup process
while the trajectory itinerates through multiple external cavity
modes (ECMs) toward the high-gain region, followed by
a sudden drop in intensity and jump back towards the
solitary laser frequency. [2,3]. There has been a long and
controversial discussion about the origin of LFF dynamics
and whether the overall structure and the power dropouts
are dominated by deterministic mechanisms or by stochastic
processes [2,4–12].

Numerical studies have shown that the qualitative features
of the LFF regime in semiconductor lasers can be obtained
without intrinsic noise. This underlines that the power dropouts
can be evoked by the underlying delay-induced chaotic dynam-
ics only and do not necessarily require noise. Nevertheless,
noise could indeed affect the dynamics and induce dropout
events, thereby also shortening the LFF cycle compared to a
noiseless situation. So far, all investigations to identify whether
deterministic mechanisms or stochastic processes dominate
the dropout behavior have been based on statistical measures.
In this paper, we introduce an individual event-based approach
allowing one to identify on an individual basis which power

dropouts in the LFF regime are deterministically induced by
the feedback signal and not by laser-intrinsic noise.

Our method is based on the synchronization with a twin
laser system. It has been shown, that the dynamics of a single
chaotic system with delayed feedback is equal to the dynamics
of two identical coupled twin systems that are synchronized,
i.e., the chaotic attractor in the synchronization manifold of the
coupled system is equal to the attractor of the single system
with feedback. For our approach to work, the subsystems have
to be able to synchronize identically which depends on their
coupling and feedback topology (see, e.g., [13]) and their
dynamical regime (see, e.g., [14]). For this reason we operate
in the moderate feedback regime and use an as symmetric setup
as possible. We employ a relay configuration to couple both
lasers [15,16]. It has been shown that the implementation of a
relay, which provides feedback and coupling for both lasers,
allows for identical synchronization of the output intensities
in such systems. In case both arms of the configuration
have the same optical length, zero-lag synchronization can
be achieved [13,15–19]. We now employ synchronization as a
test to determine whether a power dropout in one of the lasers
has been the result of the deterministic chaotic dynamics or
of the intrinsic noise in the laser. We argue that if the lasers’
outputs exhibit synchronous power dropouts, the events were
induced by a deterministic mechanism. Since each laser has its
own noise characteristics, it is highly unlikely that both lasers
experience a dropout at the same time. In case both lasers
exhibit dropouts but at different times, multiple reasons can be
postulated. An often occurring situation is that noise induces
a dropout event in one laser and after one coupling delay the
other laser exhibits a dropout as well; the lasers resynchronize
after that.

Our approach can in general be applied to investigate
specific outstanding events in the dynamics of other noisy
chaotic systems as well. As a necessary condition, these have
to be synchronizable such that the attractor of the synchronized
(coupled) system is identical to that of a single system. Further
discussion of the applicability of our method can be found in
Sec. IV.
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FIG. 1. (Color online) Exemplary experimental time trace of the
output intensity fluctuations associated with the LFF regime. The
intensity has been shifted by its mean and normalized by its standard
deviation. The light (red) curve depicts the time series after applying
a low-pass filter. The power buildup and power dropout can be clearly
seen at the beginning and the end of the LFF cycle, respectively. The
inset shows a magnification of one of the shown dropout events.

We study experimentally and numerically the dependence
of the fraction of deterministically driven dropouts ζ on two
parameters that are key in this context: the noise strength and
the pump current. With the former we analyze the impact of
stochastic processes on the laser dynamics and with the latter
we examine how changes in the dynamical regime make the
chaotic dynamics susceptible to the effect of a given noise
strength.

This paper is organized as follows: Sec. II contains the
description of the experiment and the analysis of its results,
as well as a discussion about limitations that apply to the
described method. In Sec. III we introduce the model we use for
our numerical studies and present the corresponding results.
In Sec. IV we discuss the applicability to other systems as
well as statistical measures to find indications of determinism.
Finally, we summarize our results and make final conclusions.

II. EXPERIMENTS

Our experimental setup is depicted in Fig. 2. The optical
fiber-based coupling configuration consists of two single-mode
quantum-well (QW) edge-emitting discrete mode semicon-
ductor lasers (Eblana Photonics), operating at a nominal
wavelength of λ ≈ 1540 nm with a side-mode suppression
ratio of >40 dB. The lasers have been hand selected for similar
properties.

The lasers are coupled symmetrically via a relay fiber
loop. This loop consists of a 50/50-optical coupler and
an optical circulator and corresponds to a semitransparent
mirror, accounting for symmetric feedback and coupling,
respectively, with equal coupling delays and equal coupling
and feedback strengths. The two legs of the setup have
been equalized in optical path length with an accuracy of
the resulting feedback delays of |τf b,1 − τf b,2| ≈ 25 ps. We
use polarization maintaining (PM) optical fiber; therefore
we can exclude effects related to polarization alignment as
the origin of desynchronization. The laser temperatures and

FIG. 2. (Color online) Schematic experimental setup. The lasers
are symmetrically coupled via a feedback and coupling fiber loop
consisting of a 50/50 optical coupler and a circulator. This loop
serves as passive relay. The numbers in the symbols for the couplers
correspond to their respective coupling ratios (in percent). The dark
(orange) lines depict electrical connections, the light (blue) ones
represent polarization-maintaining (PM) optical fiber.

pump currents are controlled by a Thorlabs PRO8000 laser
controller with accuracies �T = ±0.01 ◦C and �I = ±0.01
mA, respectively. We measure the laser outputs by using
Miteq Dr-125G-A photodetectors with 13 GHz bandwidth,
the outputs of which are recorded by a LeCroy WaveMaster
816Zi oscilloscope with an analog bandwidth of 16 GHz and
a sampling rate of 40 GS/s. This corresponds to a temporal
resolution of 25 ps.

By autocorrelation analysis the two feedback delays in
our setup were estimated to be τf b,1 = 89.75 ± 0.025 and
τf b,2 = 89.73 ± 0.025 ns. Thus, with the coupling delay
τc = 1

2 (τf b,1 + τf b,2), all delay times can be considered equal
within the uncertainty bounds.

We measured the feedback attenuation along both optical
feedback paths as ≈ −11 dB being equal for both arms
within a margin of 1%. Because of this symmetry, the
coupling has the same attenuation and thus the same strength.
Considering the geometry and coupling of the laser cavities we
estimate the total feedback rates (and thus the coupling rates)
per laser as κ1 = κ2 = κc = 34 ns−1.

Both lasers are being operated in the low-frequency
fluctuations regime. This means that the pump current is
relatively close to the solitary threshold. The feedback strength
corresponds to a few percent of the output power coupled back
into the cavity.

The lasing threshold pump currents are Ithr1 = 10.89 and
Ithr2 = 10.92 mA, respectively. We define the normalized
pump currents as p1,2 = I1,2/Ithr1,2. For our experiments
p1 and p2 are varied simultaneously from p1,2 = 1.01 to
p1,2 = 1.12 in steps corresponding to 0.15 mA. For each step,
six output intensity time series of both lasers are acquired, each
with a length of 100 μs. Although experimentally challenging
due to the optical phase sensitivity of our experimental
setup, we identify and only record time series with appro-
priate phase conditions. The classification as synchronous or
nonsynchronous dropouts is done manually for every single
measured power dropout because this proved to be the most
reliable method. If the dropouts of both lasers occur within a
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FIG. 3. (Color online) Experimental intensity time traces of both
lasers. In the upper panel an unsynchronized dropout is shown. The
desynchronization event has a duration corresponding to the delay
τc ≈ τf b. The lower panel shows a synchronized dropout in both
lasers.

2 ns window they are considered as synchronous. Figure 3
shows exemplary time traces of an unsynchronized and a
synchronized pair of dropouts, respectively.

To analyze our results we define the total number of detected
pairs of dropouts for one set of parameters as Ntotal and its
subset of synchronized pairs of dropouts as Nsynced. The main
measure we use is the synchronized dropout fraction ζ which
is defined as ζ = Nsynced/Ntotal. Our experimental results for ζ

as a function of the normalized applied pump currents p1 and
p2 are depicted in Fig. 4. They exhibit a high fraction (�83%)
of synchronous dropouts close to the solitary lasing threshold
and a decrease with increasing bias current.

This first result is surprising: the fraction ζ has its maximum
just above the lasing threshold. One might have expected a
stronger effect of the intrinsic noise close to threshold. This is
due to the relatively large contribution of spontaneous emission
to the output power close to the lasing threshold. What we
observe is contrary to that expectation. We conjecture that the
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FIG. 4. Experimental results for the fraction of synchronized
power dropouts ζ versus the normalized pump currents p1 and
p2 averaged among the corresponding measured time series (black
circles). The error bars show the corresponding standard deviation.
The gray curve results from a 3rd order polynomial fit and is only
meant as guide to the eyes.

noise is not sufficiently strong to induce more power dropouts
with the pump current close to threshold than at higher pump
currents. This hypothesis is verified via our numerical studies
presented in Sec. III.

With the ratio of synchronized dropouts ζ being this
large, we can conclude that close to threshold a significant
majority of LFF power dropouts is induced by underlying
deterministic mechanisms rather than by noise. Moreover, we
can identify which events are deterministic. Since the noise
due to spontaneous emission is independent for each laser and
correlated noise even for a single round trip is much smaller
due to the feedback attenuation and coupling attenuation, we
can disregard stochastic effects as the principal drive of power
dropouts in the low pump current regime. An analysis of the
inter-dropout-interval (IDI) probability distributions with a 2
ns resolution reveals that the chance of coincidental dropouts
in both lasers within a 2 ns window is negligible (�10−4).
Once we classify a pair of dropout events as synchronized we
can, therefore, name determinism as the dominant mechanism
with high confidence.

Considering the lower synchronized dropout fraction for
higher pump currents we have to be aware of certain limitations
our method has. On the individual event basis we can only
classify synchronized dropouts as deterministically driven;
we can not determine the main driver of the unsynchronized
ones. Attractor bubbling, mismatches in feedback strength
and/or delay, mismatches in laser parameters, and detection-
related misclassifications reduce the fraction of synchronized
dropouts without being related to the delayed feedback attrac-
tor. Bubbling [20–22] is a desynchronization phenomenon that
occurs in coupled systems. In contrast to on-off intermittency
[22–25] the synchronization is overall stable; nevertheless the
system can exhibit intermittent desynchronization events. Bub-
bling events are induced by noise and/or parameter mismatch
and can be attributed to transversely unstable periodic orbits
embedded in the stable synchronization manifold. The local
instability forces the system’s trajectory to temporarily leave
the synchronization manifold in a transverse direction until
resynchronization. Bubbling has been investigated theoreti-
cally, numerically, and experimentally in lasers [19,22,26].
An increase in the occurrence of bubbling-induced desyn-
chronization with increasing pump current was found, which
would, in part, explain the strong decline of the synchronized
dropout fraction for increasing pump current. Moreover, a
strong connection between the occurrence of bubbling events
and that of power dropouts in the LFF regime was discovered.
If the lasers are identical and the configuration is symmetric,
bubbling occurs only due to transversely unstable saddle
nodes embedded in the attractor, not because of the drop
in power. The saddles, called antimodes, nevertheless also
play an important role for the power dropouts. With slight
asymmetries in the experimental conditions and parameters,
some of the laser’s modes also become transversely unstable
and bubbling can occur at different parts of the attractor as
well (see, e.g., [13]). In these cases the phase space trajectories
diverge and the lasers might exhibit their dropouts at different
times due to bubbling.

Pairs of dropouts that are unsynchronized due to bubbling
will be (mis-)classified by our approach as not being determin-
istically driven. Since bubbling-induced desynchronization
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induces dynamics transverse to the synchronization manifold
we can make no statement about the principal mechanism
underlying these dropouts. Furthermore, certain asymmetries
or mismatches in the experimental setup, which in experiments
are unavoidable, will lead to more unsynchronized dropouts
and therefore to additional misclassifications, since they also
can result in dynamics partly outside the synchronization
manifold and thus outside the single delay system’s dynamics
manifold. During the preparation of the experiment, all
asymmetries were minimized as much as possible. Although
these mismatches still might have an effect, the dynamics
within the synchronization manifold is a good approximation
for the dynamics of the single delayed feedback system.

There are two further possible sources for misclassification.
One is detection noise which contributes to the synchronization
error and might blur the dropout event. The second source
relates to instances of LFF dynamics where the precise time
of occurrence is hard to determine. These uncertainties in
the determination of the exact dropout time can arise because
the shape of a dropout is not as clear. This happens, in partic-
ular, towards higher pump currents, e.g., during the transition
from the LFF regime to the fully developed coherence collapse
regime where the characteristic shape of the dropouts gets lost.

Considering these misclassification sources the resulting
fractions of synchronized dropouts represent a lower limit
to the actual values. We conclude that one can not make
clear statements about the dominant mechanism underlying
the dropouts in the regime where our results show only small
to intermediate values for ζ . Since ζ is highest closest to the
solitary threshold, we can draw the strongest conclusions there.

III. NUMERICAL MODELING

To model the coupled laser system, we use a rate equation
model based on the Lang-Kobayashi equations for a laser
subject to time-delayed optical feedback [27]. It is considered
adequate for single mode operation of the lasers operating in
a moderate feedback regime. The set of rate equations reads

Ėj (t) = 1
2 (1 + iαj )[gj (nj − nTj

) − γj ]Ej (t)

+ κjEj (t − τf b,j ) + κcE3−j (t − τc) + FEj
, (1)

ṅj (t) = Ij

e
− γenj (t) − gj (nj − nTj

)|Ej (t)|2, (2)

with the variables Ej and nj representing the slowly varying
complex electric field amplitude and the carrier number of
the j th laser (j = 1,2), respectively. Here, α is the linewidth
enhancement factor, g is the differential gain, nT denotes the
carrier number at transparency, γ is the photon decay rate, κj

stands for the feedback rate, τf b is the feedback delay, and κc

and τc are the rate and time delay of the coupling, respectively.
I describes the laser pump current, e denotes the elementary
charge, and γe is the carrier decay rate.

The noise is modeled as field noise originating from
spontaneous emission only; we neglect carrier noise in our
approach. The Langevin noise term FE is modeled as Gaussian
white noise with correlation 〈FE (t)FE (t ′)〉 = 2βjγenj δ(t − t ′)
and zero mean 〈FE (t)〉 = 0, where β is the spontaneous emis-
sion factor which describes the fraction of the spontaneously
emitted photons that contribute to the lasing mode.

FIG. 5. (Color online) Numerical results for the fraction of
synchronized power dropouts ζ versus the laser’s pump current
and the spontaneous emission factor. For these results Eqs. (1)
and (2) were integrated with symmetric parameter values αj = 3,
gj = 10−5 ns−1, nTj

= 2 × 108, γj = 200 ns−1, κj = 20 ns−1, τf b,j =
10 ns, κc = 20 ns−1, and τc = 10 ns; all for j = 1,2.

The equations are numerically solved using Milshtein’s
method [28,29]. The two coupled lasers are simulated as being
identical in every parameter and the coupling scheme is set to
be completely symmetrical, neglecting any possible feedback
delay or -strength mismatch.

The parameter values of the simulation are given in the
caption of Fig. 5. For each set of parameters 20 time series of
10 μs are computed.

Classification of synchronized and nonsynchronized
dropouts is performed automatically for the modeled time
series. The dropouts were identified by the following algo-
rithm: The original time series are window averaged with
a window size corresponding to the delay time τ = 10 ns
and a step size of 5 ps. When the intensity drops below the
corresponding windowed intensity average for at least 1.7 ns
out of the consecutive 2 ns interval (400 points), the occurrence
of a power dropout is identified. If a dropout is detected
in the time series of both lasers within a 1 ns window, the
drops are considered synchronous. Although this automatized
classification may be not as reliable as a manual one, it is
sufficiently accurate. Due to the extent of the studied parameter
dependencies, a manual classification can not be implemented.

Our numerical results for the synchronized dropout fraction
ζ versus the normalized pump currents and versus the noise
strength β is depicted in Fig. 5. A spontaneous emission factor
of β ≈ 10−6 to 10−5 is considered realistic for the type of laser
used in our experiment.

The results show relatively large fractions of synchronized
dropouts for most of the scanned parameter ranges. This
can be understood considering the full symmetry. Therefore,
mismatch-induced desynchronization is not present. Employ-
ing a set of slight mismatches (feedback delays and -strengths,
normalized pump currents, and α factors) in our simulations
indeed results in significantly lower values for ζ towards higher
pump currents, thus better reflecting the qualitative trend of the
experimental results. For small mismatches of the order of 1%
of the aforementioned parameters, we observe a decrease of
ζ to ζ ≈ 0.4 for β = 10−6 and I/Ithr = 1.2 with all other
parameters as listed in the caption of Fig. 5. Furthermore,
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classification errors due to experimental limitations can be
excluded as well. The numerical findings exhibit maxima of
the investigated fractions close to the lasing threshold for small
to moderate (realistic) noise strengths and a decrease with
increasing pump current. The maximum values for a given
noise factor shows a decrease from 1 for β ≈ 10−9 to ≈ 0.1
for β ≈ 10−3. For noise strengths below 10−5 the synchronized
dropout fraction maximum is close to threshold and decreases
with increasing current. For spontaneous emission noise
factors above that value the maximum shifts to a larger pump
current with the minimum now at or below threshold.

The simulation results corroborate our experimental find-
ings. There is a qualitative agreement with the decrease of
the synchronized event fraction with pump current and its
maximum closely above threshold. From the numerics we can
see the effect of noise close to threshold: with a spontaneous
emission factor β � 10−4 which is one to two orders of
magnitude stronger than assumed for the experiment, the
maximum of the discussed fraction is no longer close to
threshold, but at higher pump currents. Stronger noise has
a more pronounced effect and can be the dominant driving
force close to threshold. With such strong noise the originally
expected behavior can be found.

The result that close to threshold the influence of noise
on the occurrence of dropouts is minimal can be considered
specific to the type of laser we use in the experiment—single
mode QW edge emitters. As the spontaneous emission factor β

can be significantly higher for other laser types, e.g., photonic
crystal lasers, the examined fraction can have a minimum close
to the lasing threshold with the effect of noise diminishing and
thus increasing ζ with increasing pump current.

IV. DISCUSSION AND CONCLUSIONS

We have presented an approach to identify deterministically
induced power-dropout events in semiconductor lasers subject
to time-delayed feedback. The method is based on synchro-
nization of individual events in two coupled twin systems.
We have shown experimentally and numerically that close to
its solitary lasing threshold the power dropouts in the output
characteristics of a semiconductor laser with feedback are
mostly dominated by deterministic chaos. Our experiments
show a fraction ζ of more than 80% of the dropouts to be driven
deterministically. With increasing pump current ζ decreases.

Nevertheless, certain limitations of the presented method
apply that lead to more unsynchronized dropouts than those
which are actually induced by noise and therefore to a
smaller synchronized event fraction. We have identified
bubbling-induced and mismatch-induced divergences from the
single laser dynamics manifold, detection errors and manual
classification errors as potential diminishing factors of the
deterministic dropout fraction ζ . On an individual event basis
we can classify dropouts as deterministically induced with
high certainty; the nonsynchronous dropouts can, however,
not be characterized further. The experimental results for ζ

have, thus, to be considered a lower limit.
Our numerical results show that the effect of noise becomes

more significant for operation close to the lasing threshold
if the spontaneous emission factor is increased by one or
two orders of magnitude relative to an assumed realistic

value of β = 10−6 to 10−5 for QW single-mode edge-emitting
lasers. A higher noise level has a bigger impact on the
dynamics close to threshold than for larger pump currents—a
smaller fraction of dropouts occurs synchronized close to
threshold than for higher currents. It should be noted that
the spontaneous emission factor can be of different orders
of magnitude for different kinds of lasers (e.g., photonic
crystal lasers). Therefore, the fact that most dropouts occur
synchronized while operating close to threshold could be
modified for different lasers. Our modeling results indicate
that for spontaneous emission factors β up to the assumed
value for the lasers used in the experiments, noise has only little
effect on the synchronized dropout fraction when operating the
lasers close to threshold. As an example, the value of ζ varies
from ζ ≈ 1.0 for β = 10−9 and pump current I/Ithr = 1.002 to
ζ ≈ 0.93 for β = 10−6 and the same pump current value. Still,
there is a significant decrease in ζ for larger pump currents due
to spontaneous emission. ζ varies from ζ ≈ 0.95 for β ≈ 10−9

and pump current I/Ithr = 1.15 to ζ ≈ 0.76 for β ≈ 10−6.
If one assumes the existence of common dynamical features

as precursors of deterministically induced power dropouts,
future work could entail classification of events with statistical
or pattern-recognition approaches using machine learning con-
cepts [30,31]. The dynamics preceding known deterministic
dropouts would be used to train the data processing reservoir.
Yet unclassified dropout events would then be fed into the
trained reservoir and be classified binarily—deterministically
driven or not.

The presented approach can, in general, be applied to other
noisy chaotic systems that are synchronizable and exhibit
irregular characteristic events (e.g., spikes, dips, and patterns).
In a system of coupled neuron populations of the Hodgkin-
Huxley type (see, e.g., [32]) the individual spiking behavior
could be analyzed with respect to a deterministic origin using
the scheme presented in this paper. As a necessary condition,
the synchronized dynamics of two coupled twin subsystems
have to be identical to the dynamics of a corresponding
single system. If the required symmetry conditions apply,
the presented method can even be applied to systems whose
governing equations are unknown.

Since bubbling is not present in all coupling schemes
of noisy chaotic oscillators, the corresponding fraction ζ of
synchronized characteristic events could even have a higher
significance for those kinds of systems.

Our conclusions are strongest the larger the synchronized
dropout fraction ζ is. For the regime with a smaller ζ ,
one can complement the presented method with statistical
measures based on an information theoretical analysis, which
are based on different approaches and therefore exhibit other
opportunities and limitations. [12]. Combining an individual
event-based approach with others based on statistical methods
could give a broader access to characterizing semiconductor
laser dynamics over a wide range of parameters. This might
enable further tailoring of dynamical features and their
utilization in applications.
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[8] T. Heil, I. Fischer, W. Elässer, J. Mulet, and C. R. Mirasso, Opt.
Lett. 24, 1275 (1999).

[9] T. Heil, I. Fischer, and W. Elsäßer, J. Opt. B: Quantum Semiclass.
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[11] J. Tiana-Alsina, J. M. Buldú, M. C. Torrent, and J. Garcı́a-Ojalvo,

Phil. Trans. R. Soc. A 368, 367 (2010).
[12] A. Aragoneses, N. Rubido, J. Tiana-Alsina, M. C. Torrent, and

C. Masoller, Sci. Rep. 3, 1778 (2013).
[13] K. Hicke, O. D’Huys, V. Flunkert, E. Schöll, J. Danckaert, and
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