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Summary  17	  
 18	  
 The positive strand 20S RNA narnavirus persistently infects Saccharomyces cerevisiae. 19	  

The 20S RNA genome has a single gene that encodes the RNA-dependent RNA polymerase 20	  

(p91). 20S RNA forms ribonucleoprotein resting complexes (RNPs) with p91 and resides in the 21	  

cytoplasm. Here we found no host proteins stoichiometrically associated with the RNP by pull-22	  

down experiments. Furthermore, 20S RNA, when expressed from a vector in Escherichia coli, 23	  

formed RNPs with p91 in the absence of yeast proteins. This interaction required the 3’ cis 24	  

signal for complex formation. Moreover, when 23S RNA, the genome of another narnavirus, was 25	  

expressed in E. coli, it also formed RNPs with its RNA polymerase p104. Finally, when both 26	  

RNAs are expressed in the same E. coli cell, they formed RNPs only with their cognate RNA 27	  

polymerases. These results altogether indicate that narnaviruses RNPs consist of only the viral 28	  

genomes and their cognate RNA polymerases.  Because the copy number of the RNPs can be 29	  

induced almost equivalent to those of rRNAs in some yeast strains, the absence of host proteins 30	  

may alleviate the burden on the host by not sequestering proteins into the RNPs. It may also 31	  

contribute to the persistent infection of narnaviruses by decreasing their visibility. 32	  

 33	  

Introduction  34	  

 20S RNA virus belongs to the genus Narnavirus and is among the simplest viruses in nature. 35	  

The virus has a single small positive strand genome (2514 nucleotides (nt)) called 20S RNA that 36	  

encodes a single protein of 91 kDa (p91), the RNA-dependent RNA polymerase (Wickner et al., 37	  

2013). Because the virus has no capsid gene, 20S RNA is not encapsidated into a conventional virion 38	  

structure (Widner et al., 1991; García-Cuéllar et al., 1995). Instead, 20S RNA forms a 39	  

ribonucleoprotein (RNP) complexed with p91, and the virus, in the form of RNP, resides in the 40	  

cytoplasm of the yeast Saccharomyces cerevisiae. Typical of fungal viruses, 20S RNA virus has no 41	  

extracellular transmission pathway. The virus is stably transmitted from mother to daughter cells, or 42	  

horizontally through mating. The virus does not kill the host nor render phenotypic changes to the 43	  

host.  44	  
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 20S RNA was originally discovered as an RNA species that accumulates under nitrogen 45	  

starvation (Kadowaki and Halvorson, 1971), a condition commonly used to induce sporulation in 46	  

yeast. In some strains, the copy number of 20S RNA becomes almost equivalent to those of rRNAs. 47	  

The high dosage may help the virus to distribute to meiotic progenies, although haploid cells can also 48	  

accumulate 20S RNA (Wejksnora and Haber, 1978).  The majority of 20S RNA in induced cells is the 49	  

positive strand and it forms RNPs with p91 in a 1:1 stoichiometry (resting complexes) (Solórzano et 50	  

al., 2000). The negative strands account only a few percent of the total 20S RNA population. Lysates 51	  

from induced cells also contain a minor amount of replication intermediates. These intermediates 52	  

contain p91 and synthesize 20S RNA positive strands in vitro (García-Cuéllar et al., 1997). The 53	  

intermediates consist of a negative strand and a positive strand with less than unit length loosely 54	  

associated, perhaps through p91 (Fujimura et al., 2005). The RNA backbone of the intermediates is 55	  

largely single-stranded but denaturation with phenol converts it to double-stranded. Upon completion 56	  

of positive strand synthesis, the product is released from the negative strand template. The released 57	  

product is still associated with protein and is indistinguishable from resting complexes. Because the 58	  

majority of negative strands in lysates are found in replication intermediates, the negative strand 59	  

template appears to be immediately recruited for another round of positive strand synthesis in vivo 60	  

(Fujimura et al., 2005).     61	  

 Most laboratory strains of yeast harbor 20S RNA virus. Fewer strains also contain another 62	  

narnavirus called 23S RNA. The 23S RNA genome (2891 nt) possesses a single gene that encodes its 63	  

RNA polymerase (p104) (Esteban et al., 1992). 23S RNA also forms resting complexes with p104. 64	  

20S and 23S RNA viruses are independent and compatible in the same host. When co-habiting in the 65	  

same cell, these viruses form resting complexes containing the RNA genomes and their cognate RNA 66	  

polymerases and do not form hybrid complexes (García-Cuéllar et al., 1995).    67	  

 A launching system of 20S RNA virus from a yeast expression vector has been established 68	  

(Esteban et al., 2005). The vector contains the full-length cDNA of 20S RNA under the constitutive 69	  

PGK1 promoter. The ribozyme sequence from hepatitis delta virus (HDV) is directly attached to the 3’ 70	  

end of the viral genome so that the precise 20S RNA 3’ end can be generated in vivo. 20S RNA can be 71	  

launched efficiently from the vector and this system has been used to investigate cis-acting signals for 72	  
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replication. Moreover, in the absence of an active ribozyme sequence, the transcripts from the vector, 73	  

without generating the virus, can form ribonucleoprotein complexes in vivo with p91 translated there 74	  

from. By combining with a pull-down assay, the latter system has served as a useful tool to investigate 75	  

cis acting signals for 20S RNA complex formation (Fujimura and Esteban, 2007). A similar launching 76	  

system (Esteban and Fujimura, 2003) and an assay system for complex formation (Fujimura and 77	  

Esteban, 2004) for 23S RNA virus have also been developed.  78	  

 In resting complexes, p91 interacts with 20S RNA at three cis sites: the 5’ and 3’ end sites 79	  

and, to a lesser extent, an internal site (Fig. 1) (Fujimura and Esteban, 2007). The 3’ site is located at 80	  

the 3rd and 4th C residues from the 3’ end and the adjacent stem structure. The 3’ site largely overlaps 81	  

(if not identical) with the 3’ cis site for replication. The 5’ site is located at the second stem structure 82	  

from the 5’ end. Mutations at this site that destabilized complex formation also failed to generate the 83	  

virus from the launching vector. The tight relationship between complex formation and replication at 84	  

the 5’ and 3’ cis sites underlines the importance of stable resting complex formation in the virus life 85	  

cycle. The internal site is located somewhere between nt 1253 to 1515, but its precise location or 86	  

extent is not known. Mutations at the 5’ or 3’ cis site reduced complex formation to a basal level (10-87	  

20% of the wild type level). The effect of a double mutation at both sites is not cumulative. We have 88	  

suggested that the interactions of p91 at the 5’ and 3’ cis sites are coordinated and that the internal cis 89	  

site is responsible for the basal level of complex formation observed (Fujimura and Esteban, 2007).  90	  

 In spite of the small genome and its simple organization, 20S RNA virus establishes a 91	  

persistent infection in yeast. Because the majority of the viral genomes exist in vivo as resting 92	  

complexes, we have been investigating these complexes to understand the mechanism of viral 93	  

persistency. In this work we addressed the inquiry of whether the resting complex contains host 94	  

proteins. We found no host proteins stoichiometrically associated with metabolically labeled resting 95	  

complexes. Furthermore, 20S RNA and p91 formed complexes in E. coli with the same specificity as 96	  

in yeast, indicating that yeast proteins are not needed for complex formation. These results indicate 97	  

that the resting complexes consist of only 20S RNA and p91. The lack of host proteins in the resting 98	  

complexes may decrease the visibility of the virus in the cell. Moreover, when the virus accumulates 99	  

at a high number, it will not hurt the cell by depleting vital host proteins.  100	  
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 101	  

Results  102	  

Partial Purification of 20S RNA/p91 RNPs  103	  

 In induced conditions, the majority of 20S RNA virus exists in the form of a resting complex 104	  

consisting of 20S RNA and p91 in a 1:1 stoichiometry (Solórzano et al., 2000). We decided to 105	  

investigate whether a host protein(s) is involved in resting complex formation. Purification of RNP by 106	  

affinity chromatography was unsuccessful. We attached p91 with a Histidine tag, the Flag peptide, or 107	  

the TAP epitope, however, p91 with the appendix did not bind to the respective affinity column, 108	  

perhaps due to the bulky structure of 20S RNA in the complex. Conventional column chromatography 109	  

did not work either. It was difficult to keep 20S RNA intact during the purification. Since 20S RNA 110	  

can be immunoprecipitated well with anti-p91 antisera, we metabolically labeled yeast proteins and 111	  

performed pull-down experiments to see whether any host proteins were brought down along with the 112	  

RNP. To avoid high background caused by non-specific pull-down of proteins, we took two measures. 113	  

Firstly, anti-p91 antibodies were partially purified with protein A Sepharose and then used for 114	  

immunoprecipitation. Secondly, 20S RNA/p91 RNP was partially purified through differential 115	  

centrifugation and then subjected to pull-down experiments. During the first high-speed centrifugation 116	  

(Fig. 2A), more than half of ribosomes were precipitated (P1), while 20S RNA/p91 remains in 117	  

solution (S1). In the second centrifugation at higher speed, RNP can be pelleted (P2) while soluble 118	  

proteins remained in the supernatant (S2). The majority of resting complexes were recovered in the 119	  

pellet fraction. This fraction contained more than 80% of 20S RNA and p91 from the original lysate. 120	  

Anti-p91 antiserum can immunoprecipitate intact 20S RNA from the pellet fraction (Fig. 2B). 121	  

Furthermore, the co-sedimentation of 20S RNA and p91 in a glycerol gradient indicates that the 20S 122	  

RNA/p91 RNP remains intact after the differential centrifugation (Fig. 2C). 123	  

   124	  

In vivo Labeling 125	  

 Yeast cells with or without 20S RNA virus were grown in the presence of a mixture of 35S-126	  

labeled Met and Cys and then transferred to 1% K acetate to induce 20S RNA virus. Cells were 127	  

broken and an RNP-enriched pellet fraction (P2) was prepared by differential centrifugation. Finally, 128	  
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RNPs were immunoprecipitated by partially purified anti-p91 antibodies. The pellet (fraction P2) and 129	  

the immunoprecipitate contained approximately 30% and 0.2%, respectively, of radioactivity of the 130	  

original cell lysate. Proteins in the immunoprecipitate were separated by SDS-PAGE and visualized 131	  

by fluorography (Fig. 3). We found no prominent yeast proteins pulled down specifically along with 132	  

p91. For example, the intensities of band a (68 KDa) and band b (25 kDa) proteins relative to that of 133	  

p91 correspond to 13.5 and 5.2%, respectively. These proteins appear to be more abundant in the 134	  

immunoprecipitate from 20S RNA-carrying cells than from the 20S RNA-negative strain. If we 135	  

assume that these proteins were labeled with 35S with the same specific activity as p91, then we 136	  

calculated that only 0.18 and 0.19 molecules of a and b proteins, respectively, were pulled down along 137	  

with each molecule of p91. p91 (829 amino acids) contains 16 Met (1.93%) and 10 Cys (1.20%) 138	  

residues, while average S. cerevisiae proteins contain 2.08% Met and 1.31% Cys, and thus can be 139	  

labeled with 35S slightly better than p91. These results strongly suggest that there is no host proteins 140	  

stoichiometrically associated with resting complexes.  Because the P2 fraction also contains a small 141	  

amount of replication complexes (García-Cuéllar et al., 1997), however, we cannot rule out the 142	  

possibility that minor proteins, such as a and b, might be part of replication complexes. This 143	  

experimental approach underestimates proteins with lower Met and Cys contents. Furthermore we 144	  

cannot eliminate the possibility that the antibodies, upon binding to p91, may displace host protein(s) 145	  

from resting complexes. 146	  

  147	  

Expression of 20S RNA and p91 in E. coli 148	  

 If p91 does not require host proteins to form a resting complex, then the complex may be 149	  

formed even in a heterologous system in the absence of yeast proteins. We tested this possibility by 150	  

expressing p91 and 20S RNA in Escherichia coli. Two plasmids were constructed (Fig. 4, A and B). 151	  

One plasmid (pLOR91) contains the 20S RNA cDNA sequence under the T7 promoter. The Shine-152	  

Dalgarno (SD) sequence AAGGAG was inserted between the promoter and the cDNA. The 3’ end of 153	  

the 20S RNA genome was directly attached to the HDV ribozyme sequence. The second plasmid 154	  

(pLOR92) is the same as pLOR91 except that the 20S RNA cDNA was directly attached to the T7 155	  

promoter. Both plasmids expressed high amounts of 20S RNA in E. coli (Fig. 4C). As expected, p91 156	  
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was expressed in cells containing pLOR91, while 20S RNA transcribed from pLOR92 was not 157	  

decoded to p91 because of the lack of the Shine-Dalgarno sequence. E. coli cells did not generate 158	  

autonomously propagating 20S RNA virus (Fig 4D). Once pLOR91 was cured, the cells did not 159	  

produce 20S RNA transcripts any longer. In yeast cells, launching of 20S RNA virus from a vector 160	  

required removal of non-viral sequences from the transcripts at both termini. If the proper viral 161	  

sequence is generated by removal of the Shine-Dalgarno sequence, then p91 cannot be translated from 162	  

it in E. coli cells. It is also possible that the virus needs yeast proteins for replication.  163	  

p91 expressed in E. coli has an extra amino acid sequence (MGADP) at the N-terminus. To 164	  

demonstrate that the extra sequence does not impair the activity of p91, we did the following in vivo 165	  

experiments in yeast. Previously we have shown that 20S RNA virus can be generated from 20S RNA 166	  

negative strands transcribed from a vector, provided an active p91 is supplied from a second vector 167	  

(Esteban et al., 2005). p91 cannot be translated from the negative strands, thus in the absence of the 168	  

second vector there is no virus generation. It implies that the first round of positive strand synthesis 169	  

catalyzed by p91 expressed from the second vector is critical for virus generation. As expected, the  170	  

negative strand-expressing vector alone did not generate 20S RNA virus (Fig. 5, lane 4). However, if 171	  

intact p91 or p91 with MGADP was expressed from a second vector, 20S RNA virus was generated 172	  

with similar efficiency (Fig. 5, lanes 5 and 6.). The second vector alone (either with or without 173	  

MGADP) did not launch the virus because it contained the C4A mutation (numbered from the 3’ end 174	  

of the 20S RNA genome) that abolishes 20S RNA replication (Fig. 5, lanes 2 and 3) (Esteban et al., 175	  

2005). These results indicate that the extra amino acids at the N-terminus do not compromise the RNA 176	  

polymerase activity of p91.   177	  

   178	  

Complex Formation in E. coli 179	  

 To examine whether p91 forms a complex with 20S RNA in E. coli cells, two experimental 180	  

approaches were taken: pull-down assays and glycerol gradient sedimentation. In the first approach, a 181	  

lysate from E. coli cells transformed with pLOR91 was subjected to immunoprecipitation with anti-182	  

p91 antiserum. As shown in Fig. 6 lane 2, 20S RNA was pulled down specifically with anti-p91 183	  

antiserum. A lysate from yeast cells harboring 20S RNA virus was processed in parallel as positive 184	  
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control. As expected, the probe detected 20S RNA in the immunoprecipitate (Fig. 6 lane 3). In the 185	  

second approach we tried to visualize physical interactions between p91 and 20S RNA through 186	  

glycerol gradient sedimentation. A lysate prepared from cells carrying pLOR91 was directly applied to 187	  

a 10-40% glycerol gradient. As shown in Fig. 7, the majority of p91 co-migrated with 20S RNA in the 188	  

gradient during centrifugation. As a control, the lysate was predigested with RNase A and then applied 189	  

to the gradient. Now 20S RNA is not visible and p91 remains in the upper part of the gradient. These 190	  

results indicate that most of p91 molecules expressed in E. coli cells are physically associated with 191	  

20S RNA. Both experimental approaches clearly indicate that p91 can form RNP in E. coli cells. 192	  

 193	  

Specificity of Complex Formation in E. coli 194	  

 We addressed the question of how faithfully the formation of 20S RNA/p91 RNP in E. coli 195	  

reflects the reaction that occurs in the native yeast cells. To answer this question we examined the 196	  

specificity of complex formation in E. coli. In the native host, p91 interacts with 20S RNA at the 5’-, 197	  

internal-, and 3’-cis sites to form the RNP.  The 3’ cis site consists of the 3rd and 4th Cs at the 3’ end 198	  

and the adjacent stem structure. We constructed three plasmids to express 20S RNA modified at the 3’ 199	  

cis site in E. coli (Fig. 8A). These RNAs, when expressed in yeast, failed to generate 20S RNA virus 200	  

and formed RNPs at the basal low level (Fujimura and Esteban, 2007). The first plasmid contains the 201	  

C4A mutation (numbered from the 3’ end of the 20S RNA genome). In the second plasmid, a small 202	  

disturbance in the stem was introduced by G5C. The third plasmid contains a substitution (5 bp-stem 203	  

mutation) that destroys a large part of the stem structure. All these changes were introduced into the 3’ 204	  

non-coding region of the viral genome. Therefore, p91 expressed from these plasmids has the same 205	  

wild type amino acid sequence. The three mutant plasmids as well as the reference plasmid pLOR91 206	  

expressed similar amounts of 20S RNA and p91 in E. coli (Fig. 8B). Lysates prepared from these cells 207	  

were subjected to pull-down experiments with anti-p91 antiserum. As shown in Fig. 8C, mutant RNAs 208	  

formed reduced amounts of complexes compared with the WT RNA. Especially, G5C and 5-bp stem 209	  

mutations severely affected complex formation. These results indicate that, even in E. coli cells, the 3’ 210	  

cis site is required for full activity to form complexes. We also tried another approach to examine the 211	  

specificity of complex formation in E. coli. Like 20S RNA virus, the genome of 23S RNA virus also 212	  
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forms a RNP with its RNA polymerase p104. 20S RNA and 23S RNA viruses can reside and 213	  

propagate stably in the same yeast host. Even residing together in the same cell, they do not form 214	  

hybrid RNPs. We constructed a plasmid to express 23S RNA and p104 in E. coli and introduced it into 215	  

bacterial cells together with the 20S RNA-expressing plasmid. These two plasmids have different 216	  

antibiotic markers. The concentrations of antibiotics were adjusted so that similar amounts of 20S 217	  

RNA and 23S RNA were produced in the same cell (Fig. 9A, the far right column). Lysates were 218	  

prepared and subjected to pull-down assays using anti-p91 and anti-p104 antisera. 20S and 23S RNAs 219	  

in the immunoprecipitates were detected with specific probes. As shown in Fig. 9B, anti-p91 220	  

antiserum pulled down 20S RNA but not 23S RNA. It indicates that p91, even in E. coli cells, 221	  

specifically interacts with 20S RNA to form RNPs and discriminates 23S RNA from the reaction.  222	  

Thus p91 does not require yeast proteins for proper RNP formation. Similarly, the anti-p104 antiserum 223	  

pulled down 23S RNA but not 20S RNA (Fig. 9C). It indicates that p104 and 23S RNA can also form 224	  

an RNP in E. coli in the absence of yeast proteins and that p104 correctly chooses 23S RNA as a 225	  

partner to form its own RNPs.  226	  

 227	  

Discussion  228	  

In this work we have investigated whether yeast proteins are involved in the formation of 20S 229	  

RNA/p91 resting complexes. We found that no host proteins were stoichiometrically associated with 230	  

metabolically labeled RNPs in pull-down experiments. This suggests that p91 and 20S RNA are 231	  

capable of forming RNPs by themselves. In fact, when expressed in a heterologous organism, E. coli, 232	  

they formed RNPs in the absence of yeast proteins. The authenticity of complex formation in the 233	  

surrogate host was demonstrated by two specificity experiments. Mutations at the 3’ cis site of 20S 234	  

RNA drastically reduced RNP formation as in yeast. Furthermore, p91 correctly chose 20S RNA as 235	  

partner but not 23S RNA for RNP formation. The formation of RNPs in E. coli, thus, retains the same 236	  

specificity as the reaction that occurs in its native host. In addition, we found that 23S RNA/p104 237	  

RNPs can be also formed in E. coli.  238	  

 Although 20S RNA/p91 RNPs were assembled in E. coli, they did not produce autonomously 239	  

propagating 20S RNA virus. Launching of 20S RNA from a vector in yeast requires removal of 240	  
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extraneous terminal sequences from the transcripts to expose the mature 5’ and 3’ viral termini. The 241	  

expression of p91 in E. coli required the Shine-Dalgarno sequence and the removal of the ribosome-242	  

binding site would make the generated viral RNA a poor template for translation. Furthermore, we did 243	  

not observed 20S RNA negative strand synthesis by p91 in E. coli cells nor RNA polymerase activity 244	  

of p91 in bacterial cell lysates (unpublished results). Unlike resting complex formation, replication of 245	  

20S RNA may require yeast proteins. 246	  

 Since there is no host protein in resting complexes, p91 is solely responsible for the 247	  

interactions at the three cis sites in forming the complexes. The 3’ cis site is located close to the 3’ 248	  

end. Because exonucleases play the major role in mRNA degradation in eukaryotes, it suggests that 249	  

p91 protect the 20S RNA genome from degradation by binding to the 3’ end. mRNA decay usually 250	  

begins with shortening the 3’ poly(A) tail followed by decapping at the 5’ end (Wilusz et al., 2001; 251	  

Parker and Song, 2004). Then decapped RNA is degraded by the SKI1/XRN1 5’ exonuclease. 252	  

Alternatively, deadenylated RNA is digested by a 3’ exonuclease complex called the exosome 253	  

(Mitchell et al., 1997; Jacobs Anderson and Parker, 1998). The exosome is present in both the nucleus 254	  

and the cytoplasm (Mitchell et al., 1997; Allmang et al., 1999) and has compartment-specific auxiliary 255	  

factors. In the cytoplasm, SKI2, SKI3, and SKI8 form the so-called SKI complex (Jacobs Anderson 256	  

and Parker, 1998; Brown et al., 2000,) and the complex is physically linked to the exosome through 257	  

SKI7 (Araki et al., 2001). An RNA substrate is channeled from the SKI complex to the exosome for 258	  

degradation (Halbach et al., 2013). 20S RNA has no 3’ poly(A) tail. Although it is not known whether 259	  

the 5’ end is capped, it resembles intermediates of mRNA degradation. In ski2, ski3, ski7 or ski8 260	  

mutants, the copy number of 20S RNA (and 23S RNA) greatly increases (Matsumoto et al., 1990; 261	  

Ramírez-Garratacho and Esteban, 2011), indicating that there is a stage in the virus life cycle 262	  

vulnerable to the exosome. 20S RNA has a strong secondary structure at the 5’ end and the first four 263	  

consecutive Gs are buried at the bottom of the stem structure. These features confer on 20S RNA fully 264	  

resistance to the SKI1/XRN1 5’ exonuclease. Destabilizing the 5’ secondary structure makes 20S RNA 265	  

vulnerable to SKI1 suppression (Esteban et al., 2008). Although 20S RNA is not encapsidated into a 266	  

protective capsid structure, formation of resting complexes may protect 20S RNA from exonucleases 267	  

in the host cytoplasm. It is also possible that the formation of a resting complex with 20S RNA 268	  
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stabilizes p91. So far we have been unable to dissociate p91 from the RNPs in an active form. It is 269	  

well known that in growing conditions both rRNAs and ribosomal proteins become very stable once 270	  

assembled into RNP particles (Deutscher, 2003). It has been observed that expression of active 271	  

hepatitis B reverse transcriptase requires the presence of the template RNA binding site (Wang et al., 272	  

1994; Tavis and Ganem, 1996). The reverse transcriptase LtrA of group II intron is also stabilized by 273	  

forming RNP particles complexed with excised intron RNA (Saldanha et al., 1999). In silico, 274	  

intramolecular long distance interactions bring the three cis sites of 20S RNA close together (Fujimura 275	  

et al., 2007). Perhaps it is a prerequisite for a single p91 molecule to interact with the three sites 276	  

simultaneously. The molecular mass of p91 is one eighth of that of 20S RNA (736 kDa). A large area 277	  

of 20S RNA molecule would remain uncovered in the complex and directly exposed to the cytoplasm. 278	  

20S RNA/p91 RNPs may be well adapted to the challenge of exonucleases, however, they may be 279	  

vulnerable to endonucleolytic cleavages. Recently, it has been shown that S. cerevisiae can support the 280	  

RNAi system if Dicer and Argonaute are imported from S. castellii (Drinnenberg et al., 2009). The 281	  

constructed strains lost the double-stranded RNA (dsRNA) killer viruses M and L-A (Drinnenberg et 282	  

al., 2011). Curiously, however, L-BC dsRNA virus (Drinnenberg et al., 2011) and L-A variants 283	  

(Rodríguez-Cousiño et al., 2013) were not eliminated by the extraneous RNAi system. Their dsRNA 284	  

genomes are encapsidated into protective capsids, while 20S RNA is not. As expected, 20S RNA virus 285	  

is much more sensitive to RNA interference than these encapsidated dsRNA viruses (R.E., P.G. and 286	  

N.R, manuscript in preparation). 287	  

The absence of host proteins in the stable resting complexes suggests that 20S RNA viruses 288	  

keep the dependency to host proteins at minimum in its life cycle. In sporulation conditions some 289	  

yeast strains accumulate 20S RNA to an amount almost equivalent to those of rRNAs. Since extensive 290	  

degradation of ribosomes as well as vegetative proteins occurs during sporulation (Esposito and 291	  

Klapholz, 1981), it may not be much burden for the cell to provide precursors for synthesis of 20S 292	  

RNA and p91. The high copy number of resting complexes may help the virus to be stably transmitted 293	  

to the meiotic descendants. However, if host proteins were constituents of a resting complex, then a 294	  

great increase of the complex during sporulation might exhaust the proteins and thus be harmful for 295	  

the host. 20S RNA virus is a persistent virus and has no extracellular transmission pathway. Since 296	  
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there is no opportunity of escaping from the cell, to inflict too much damage to the host against non-297	  

infected cells is also undesirable for the virus. Furthermore, if such proteins were essential part of the 298	  

complex, then it would provide a measure for the host to antagonize the virus through regulating the 299	  

proteins. Thus the absence of host protein in the resting complex may contribute to the persistent 300	  

infection by decreasing the visibility of 20S RNA virus in the cell.  301	  

 302	  

Experimental procedures  303	  

 In vivo Labeling 304	  

 Yeast strain 924 (a ura3 his3 leu2 ski2Δ, L-A-o, 20S RNA) or 913 (isogenic to 924 but 20S 305	  

RNA-o) was grown in complete synthetic medium H (Wickner, 1980) (5 ml) supplemented with a 306	  

mixture of 35S-Met and 35S-Cys (0.13 mCi ml-1, Perkin Elmer). The concentrations of both amino acids 307	  

were adjusted to 20 µg ml-1. The cells were grown at 28 ºC for three days, transferred to 1% K acetate 308	  

and then kept another 16 h to induce 20S RNA. 309	  

   310	  

 Differential Centrifugation 311	  

 Cells were harvested, washed once with H2O and then suspended in lysis buffer (50 mM Tris-312	  

HCl pH 8.0, 100 mM NaCl). The cells were broken with glass beads (0.40-0.60 mm in diameter, 313	  

Sartorius) using Fast Prep P120 (Bio101Sarvant) with two pulses of 15 s at speed 4.5. After removing 314	  

cell debris and unbroken cells, the lysates were centrifuged at 55000 rpm (120000 xg) for 30 min with 315	  

the Beckman-Coulter rotor TLA-100.2 to remove ribosomes. The supernatant was re-centrifuged at 316	  

75000 rpm (250000 xg) for 2 h in a TLA-100.3 rotor to separate 20S RNA/p91 complexes from the 317	  

bulk of soluble proteins. The pellet was suspended in the lysis buffer and subjected to pull-down 318	  

experiments or glycerol gradient centrifugation. 319	  

    320	  

 Antibody Purification 321	  

 Anti-p91 antibodies were partially purified using a column containing protein A-conjugated 322	  

Sepharose CL-4B (GE Healthcare). After extensive washing with PBS buffer (20 mM Na phosphate, 323	  
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pH 7.0, 0.15 M NaCl), the antibodies bound were eluted with 0.1 M glycine-HCl pH 3.0. The pH of 324	  

the fractions was immediately adjusted to neutral by the addition of 1 M Tris-HCl pH 9.0. 325	  

  326	  

 Preparation of E. coli Lysates 327	  

 E. coli BL21 cells transformed with 20S RNA- and/or 23S RNA-expressing plasmids were 328	  

grown at 37 ºC for 4 h in 30 ml of LB medium supplemented with 100 µg ml-1 ampicillin and/or 50 µg 329	  

ml-1 kanamycin. Isopropyl β-D-1-thiogalactopyranoside (1 mM) was added to the culture and the cells 330	  

were kept at 28 ºC for another 5 h to express the viral genome(s). Cells were harvested, suspended in 331	  

the lysis buffer supplemented with 0.1% bentonite, 1 mg ml-1 lysozyme, and 1x protease inhibitor 332	  

mixture (GE Healthcare), and broken with glass beads (0.25-0.30 mm in diameter) using Fast Prep 333	  

P120 (one pulse of 15 s with speed 4.5). The lysates were diluted three times with the lysis buffer, 334	  

centrifuged to remove cell debris and unbroken cells, and then subjected to pull-down experiments. 335	  

  336	  

 Glycerol Gradients 337	  

 Glycerol gradient centrifugation was done following the procedure described previously for 338	  

sucrose gradient centrifugation (Wejksnora  and Haber, 1978; Widner, et al., 1991) by simply 339	  

substituting 10-40% sucrose with 10-40% glycerol. 340	  

   341	  

 Pull-down Assay 342	  

 To 10-160 µl of the lysate prepared from yeast or E. coli as described above, 1 ml of Tris-343	  

buffered saline-Tween 20 (10 mM Tris-HCl pH 8.0, 150 mM NaCl and 0.05% Tween 20), 1 mM 344	  

DTT, 40 units of RNasin (Promega), 20 µg of yeast tRNA (Invitrogen) and 2 µl of anti-p91 or anti-345	  

p104 antiserum or 0.5 µl of partially purified anti-p91 antibodies (16 mg ml-1) were added and the 346	  

mixture was incubated at 4 ºC for 30 min. 25 µl (wet volume) of protein A conjugated Sepharose CL-347	  

4B was added to the mixture and it was incubated at 4 ºC for another 30 min. The sepharose was 348	  

washed 5 times with 1 ml Tris-buffered saline-Tween 20 and 1 mM DTT. RNA was extracted from 349	  

the sepharose, slot-blotted and detected by hybridization as described in (Fujimura and Esteban, 350	  
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2004). The probes used to detect 20S RNA, 23S RNA, and E. coli 23S rRNA are complementary to nt 351	  

1262-2514 of 20S RNA, nt 1-2891 of 23S RNA, and nt 435-1005 of E. coli 23S rRNA, respectively.  352	  

Alternatively, protein bound to sepharose was eluted with loading buffer for SDS acrylamide gels and 353	  

separated in a 7.5% or 14% SDS gel. After electrophoresis, the gel was soaked with the Amersham 354	  

amplify fluorographic reagent and protein bands were detected by fluorography. Quantification of 355	  

bands was done using a PMITM Personal Molecular Imager (Biorad). 356	  

  357	  

 Plasmids 358	  

 For expression of 20S and 23S RNA in E. coli we used the following vectors. 20S RNA: 359	  

pLOR84 is a derivative of pT7-7 (Tabor and Richardson, 1985) that contains the complete 20S RNA 360	  

cDNA (2514 nt) downstream of the Shine-Dalgarno sequence with the HDV ribozyme fused at its 3’ 361	  

end. p91 expressed from pLOR84 has 5 extra amino acids at its N-terminus (MGADP). pLOR91 was 362	  

constructed from pLOR84 by inserting a 1.4 kb DNA fragment containing the kanamycin resistance 363	  

gene into the ampicillin resistance gene. pLOR92 was made from pLOR91 by eliminating the  364	  

sequence between the T7 promoter and the 20S RNA 5’ end. 23S RNA: 23S RNA and p104 were 365	  

expressed from pRE1048. This plasmid is identical to pLOR91, except that the 20S RNA cDNA was 366	  

substituted by the full 23S cDNA sequence. p104 expressed from pRE1048 has 3 extra amino acids at 367	  

its N-terminus (MGA). Yeast 20S RNA launching vectors from genomic or antigenomic strands have 368	  

been described previously (Esteban et al., 2005). Mutations in the vectors were introduced by site 369	  

directed mutagenesis (Esteban et al., 1989). 370	  
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 498	  

Legends to figures  499	  

 500	  
Figure 1 A. Diagram of the 5’ and 3’ end regions of the 20S RNA genome. The 5’ and 3’ end cis 501	  

sites for complex formation and replication are indicated. B. Nucleotide sequences and secondary 502	  

structures at the 5’ end (left panel) and 3’ end (right panel) regions. The initiation (start) and 503	  

termination (stop) codons of p91 are indicated.  504	  

 505	  

Figure 2. Partial purification of 20S RNA/p91 complexes by differential centrifugation. A. A cell 506	  

lysate was separated into pellet (P) and supernatant (S) fractions by two sequential centrifugations (1 507	  

and 2) at different speeds. RNA was extracted, separated on an agarose gel and visualized by ethidium 508	  

bromide staining. T, initial cell lysate. B. 20S RNA was immunoprecipitated from the P2 fraction 509	  

shown in A in the presence (lane 2) or absence (lane 3) of anti-p91 antiserum, separated in an agarose 510	  

gel, and detected by Northern hybridization using a 20S RNA-specific probe. As control, total RNA 511	  

from the initial lysate (T shown in A) was processed in parallel but without immunoprecipitation (lane 512	  

1). C. Fraction P2 was subjected to 10-40% glycerol gradient centrifugation. RNA from gradient 513	  

fractions was separated in an agarose gel and visualized by ethidium bromide staining (upper panel). 514	  

20S RNA and p91 were visualized by Northern hybridization (middle panel) and Western blotting 515	  

(lower panel), respectively.  516	  

 517	  

Figure 3. No yeast proteins are stoichiometrically associated with 20S RNA/p91 resting 518	  

complexes. Lysates were prepared from 20S RNA-negative (lane 1) and positive (lane 2) strains 519	  

metabolically labeled with 35S. After differential centrifugation, the pellet fractions (P2) were 520	  

subjected to immunoprecipitation with partially purified anti-p91 antibodies (anti-p91). The 521	  
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immunoprecipitates were separated in 7.5% (A) and 14% (B) acrylamide/SDS gels. Proteins were 522	  

visualized by fluorography. Scanning of protein bands are shown on the right of the panels. Black 523	  

color, strain with 20S RNA; pale gray, control strain without 20S RNA. The pellet fractions without 524	  

immunoprecipitation (Total) were also analyzed in a 7.5% gel as shown in A. a and b band proteins: 525	  

see the explanation in the text. M, molecular standards (kDa). 526	  

 527	  

Figure 4. The expression of p91 in E. coli requires the Shine-Dalgarno sequence. A. The nucleotide 528	  

sequence at the 5’ end of 20S RNA transcript expressed from pLOR91.  The 5’ terminal nucleotide of 529	  

the 20S RNA genome is numbered (1) and the initiation codon of p91 is marked by start. The bars 530	  

separate the codons of p91. The transcript contains an extra 66 nt upstream sequence derived from the 531	  

E. coli T7-7 expression plasmid, including the Shine-Dalgarno (SD) sequence and a new initiation 532	  

codon Met. Thus p91 expressed from this transcript has 5 extra amino acids (MGADP) at the N 533	  

terminus. B. Diagrams of pLOR91 and the control plasmid pLOR92. 20S RNA cDNA sequences are 534	  

indicated by thick black lines. T7; T7 promoter. R; HDV ribozyme. In pLOR92 the 20S RNA cDNA is 535	  

directly fused to the T7 promoter. C. Expression of 20S RNA and p91 in E. coli from the Shine-536	  

Dalgarno-containing pLOR91 (+) or non-containing pLOR92 (-) plasmid. The expression of 20S RNA 537	  

was detected by ethidium bromide staining of an agarose gel (EtBr) and confirmed by Northern 538	  

hybridization using a 20S RNA-specific probe (Northern). The expression of p91 was monitored by 539	  

Western blotting using anti-p91 antiserum (anti-p91). D. 20S RNA virus is not generated in E. coli. 540	  

After expression of 20S RNA transcripts from pLOR91, E. coli cells were grown in the absence of 541	  

kanamycin to cure the plasmid. The expression of 20S RNA and p91 in pLOR91-containing (+) or 542	  

pLOR91-cured (-) cells was examined as described in C. Note that rRNAs in E. coli have smaller sizes 543	  

compared to the yeast counterparts (23S versus 25S, and 16S versus 18S). 544	  

 545	  

Figure 5. MGADP-p91 is active in yeast to generate 20S RNA in a two-vector system. A. A yeast 546	  

strain free of 20S RNA was transformed with the 20S RNA negative strand-expressing vector pRE762 547	  

alone (lane 4) or along with p91 expressing vector pRE760 or pLS025 (lane 5 or 6). pRE760 548	  

expresses wild type p91, while p91 expressed from pLS025 has 5 extra amino acids at the N-terminus 549	  
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(MGADP-p91). Both p91-expressing vectors have a mutation at the 3’ terminus of the viral genome 550	  

(C4A) so that each vector alone cannot generate 20S RNA virus in vivo. RNA was extracted from the 551	  

cells and analyzed in an agarose gel. Ethidium bromide staining (EtBr) and Northern hybridization 552	  

with a 20S RNA probe (20S RNA probe) of the gel are shown. As controls, untransformed cells (lane 553	  

1) and cells transformed with p91-expressing vectors alone (lanes 2 and 3) were processed in parallel. 554	  

B. Diagrams of the p91 expressing vectors and 20S RNA negative strand expressing vector used in A. 555	  

PGK1: the constitutive PGK1 promoter. The C4A mutation at the 3’ end of 20S RNA genome on the 556	  

p91 expressing vectors is indicated by the asterisks.    557	  

 558	  

Figure 6. Pull down of 20S RNA expressed in E. coli with anti-p91 antiserum. A lysate was 559	  

prepared from E. coli cells harboring the 20S RNA-expressing plasmid with Shine-Dalgarno sequence 560	  

(pLOR91) or a vector alone (Vector). 20S RNA was immunoprecipitated in the presence (+) or in the 561	  

absence (-) of anti-p91 antiserum. As positive control, a lysate prepared from yeast cells carrying 562	  

endogenous 20S RNA virus was processed in parallel. 20S RNA in the immunoprecipitates was 563	  

detected with a specific probe.  564	  

 565	  

Figure 7. 20S RNA and p91 expressed in E. coli co-sediment through glycerol gradient 566	  

centrifugation. A lysate prepared from pLOR91-containing cells was applied to 10-40% glycerol 567	  

gradient centrifugation (left panel, RNase A -). As a control, the lysate was pre-digested with RNase A 568	  

and then subjected to centrifugation (right panel, RNAse A +). After sedimentation the gradients were 569	  

fractionated. The top and bottom of the gradients are indicated. 20S RNA and p91 in the fractions 570	  

were detected as described in the legend to Figure 2. The main peaks of 20S RNA and p91 in the 571	  

gradients are indicated by the arrows. L, the lysate before loading onto the gradients.  572	  

 573	  

Figure 8. 20S RNA/p91 RNP formation in E. coli requires the 3’ cis site for full activity. A. 574	  

Diagrams of the 3’ end regions of 20S RNA WT and 3’ cis mutants. Nucleotides changed are 575	  

underlined and in bold face. In the 5-bp stem mutant, the wild type sequence 12-GGCCACGG-5 was 576	  

replaced with 12-CAGGAGGC-5 (numbered from the 3’ end). B. The expression of WT and mutant 577	  
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20S RNA in E. coli (upper panel). p91 expressed from the plasmids is shown in the lower panel. Note 578	  

that the mutations analyzed do not change the amino acid sequence of p91. C. Pull-down assay. A 579	  

lysate containing WT or mutant 20S RNA was incubated in the presence (+) or absence (-) of anti-p91 580	  

antiserum to immunoprecipitate 20S RNA. The RNA was detected with a specific probe for 20S RNA. 581	  

Phenol-extracted lysates without immunoprecipitation were also analyzed as loading controls (Total). 582	  

 583	  

Figure 9. 20S RNA and 23S RNA form complexes only with their respective cognate RNA 584	  

polymerases when expressed in the same E. coli cell. A. Lysates prepared from E. coli cells 585	  

containing no plasmid (-), or harboring a 20S RNA (20S)- or a 23S RNA (23S)-expressing plasmid, or 586	  

both together  (20S+23S) were analyzed in an agarose gel and RNA was visualized by ethidium 587	  

bromide staining (EtBr). B and C. Lysates were incubated in the presence (+) or absence (-) of anti-588	  

p91 (B) or anti-p104 (C) antiserum. A set of two blots was made and each one was hybridized with 589	  

either 20S RNA (20S RNA probe), or 23S RNA (23S RNA probe)-specific probe. As a loading control, 590	  

phenol extracted lysates were blotted and the membranes were hybridized with a specific probe for E. 591	  

coli 23S ribosomal RNA (23S rRNA).  592	  

593	  
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