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The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its
ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model
(accounting for social influence) with recurrent mobility of agents (as a proxy for social context), where
the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be
described as a noisy diffusive process that contains the proper anisotropic coupling topology given by
population and mobility heterogeneity. The model captures statistical features of U.S. presidential elections
as the stationary vote-share fluctuations across counties and the long-range spatial correlations that decay
logarithmically with the distance. Furthermore, it recovers the behavior of these properties when the
geographical space is coarse grained at different scales—from the county level through congressional
districts, and up to states. Finally, we analyze the role of the mobility range and the randomness in decision
making, which are consistent with the empirical observations.
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Opinion dynamics focuses on the way different options
compete in a population, giving rise to either consensus
(every individual holding the same opinion or option) or
coexistence of several opinions. Many theoretical efforts
have been devoted to clarifying the implications on the
macroscopic outcome, among other aspects, of different
interaction mechanisms, different topologies of the inter-
action networks, the inclusion of opinion leaders or of
zealots, and external fields [1,2]. To advance our under-
standing of social phenomena, these theoretical efforts need
to be complemented by empirical [3–5] and experimental
results [6–9]. In this context, elections offer an opportunity
for contrasting models of opinion dynamics with empirical
results [10]. On one hand, the data are publicly available
in many countries, with a good level of spatial resolution
and several temporal observations. On the other hand,
there is evidence that voting behavior is strongly influen-
ced by the social context of the individuals [6,7,9,11–20].
Thus it is natural to model electoral processes as systems
of interacting agents with the aim of explaining the statis-
tical regularities [21–38], as, for example, the universal
scaling of the distribution of votes in proportional elections
[21,22] or signatures of irregularities in the democratic
process [23,26].
In this Letter we assess the capacity of the voter model

to capture real voter choices and propose a microscopic
foundation for modeling voting behavior in elections.
The model is based on social influence and recurrent
mobility (SIRM): social influence will be modeled as a
noisy voter model, while recurrent mobility serves as a
proxy of the social context. In the voter model each agent
updates its state by randomly copying the opinion of one

of its neighbors [39–41]. We will consider that agents
interact at home and at work locations according to their
commuting pattern [42,43]. We first obtain the statistical
features of the U.S. presidential elections and then we
introduce and analyze the model.
Statistical regularities in elections.—The analysis

focuses on U.S. presidential elections from 1980 to 2012
(see the Supplemental Material [44]) due to the combina-
tion of data availability and an almost bipartisan system.
Thevote share per countyv for either of the twomain parties,
that is, the percentage of votes in a county, is distributed
following approximately a Gaussian distribution [Fig. 1(a)],
consistent with observations in other countries [23]. The
average vote share over all counties changes from election
to election, but the width remains approximately constant
for each year, with a standard deviation of σe ≃ 0.11. We
also find that the spatial correlation of the vote shares
decays logarithmically with the geographical distance
[Fig. 1(b)], as reported previously for turnout and winner
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FIG. 1 (color online). U.S. electoral results 1980–2012.
(a) County vote-share probability density functions. (b) Spatial
vote-share correlations as a function of distance. The dashed lines
indicate logarithmic decay.

PRL 112, 158701 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

18 APRIL 2014

0031-9007=14=112(15)=158701(5) 158701-1 © 2014 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36197716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.112.158701
http://dx.doi.org/10.1103/PhysRevLett.112.158701
http://dx.doi.org/10.1103/PhysRevLett.112.158701
http://dx.doi.org/10.1103/PhysRevLett.112.158701


party vote shares [24,25]. The spatial correlation function
is computed as

CðrÞ ¼ ðhvivjijdð~ri;~rjÞ¼r − hvi2Þ=½σ2ðvÞ�; (1)

where hvi is the average vote share over all the cells, σ2ðvÞ
its standard deviation, and hvivjijdð~rj;~riÞ¼r is averaged over
pairs of cells separated a distance r. The stationarity of
the vote-share dispersion and the logarithmic decay of the
spatial correlations will be considered as generic of the
fluctuations in electoral dynamics.
The model.—In the SIRM model N agents live in a

spatial system divided in nonoverlapping cells [45]. The
agents are distributed among the different cells according to
their residence cell. The number of residents in a particular
cell i is Ni. While many of these individuals may work at i,
some others will work at different cells. This defines the
fluxes Nij of residents of i recurrently moving to j for
work. By consistency, Ni ¼

P
jNij. The working popula-

tion at cell i is N0
i ¼

P
jNji and the total population in the

country is N ¼ P
ijNij.

We describe the opinion of the agents by a binary
variable (þ1 or −1). The number of individuals holding
opinionþ1, living in county i and working at j is Vij; thus,
Vi ¼

P
lVil is the number of voters living in i holding

opinion þ1, V 0
j ¼

P
lVlj is the number of voters working

at j holding opinion þ1. We assume that each individual
interacts with people living in her own location with a
probability α, while with probability 1 − α she interacts
with individuals of her work place. Once an individual
interacts with others, its opinion is updated following a
noisy voter model [15,39,40,46,47]: an interaction partner
is chosen and the original agent copies her opinion
imperfectly (with a certain probability of making mistakes).
The evolution of the system can be expressed in terms of
the transition rates

r−ijðVÞ¼Vij

�

α
Ni−Vi

Ni
þð1−αÞN

0
j−V 0

j

N0
j

�

þNij
D
2
η−ijðtÞ;

rþijðVÞ¼ðNij−VijÞ
�

α
Vi

Ni
þð1−αÞV

0
j

N0
j

�

þNij
D
2
ηþijðtÞ; (2)

where V ¼ fVijg is the configuration of the system
according to the set of variables Vij, and r�ijðVÞ are the
rates of change of Vij by one unit to Vij � 1. These rates
include recurrent mobility, and so they are different from
those obtained for random diffusion processes [48]. The
variables η�ijðtÞ are noise terms accounting for imperfect
imitation, modeled as Gaussian noise with zero mean
and hηaijðtÞηbklðt0Þi ¼ δðt − t0Þδabδikδjl [49]. At the leading
order, which corresponds to taking into account only the
external noise coming from imperfect imitation, while the
internal noise coming from the finite number of voters is

neglected, the set of stochastic differential equations for
vij ¼ Vij=Nij is

dvij
dt

¼α
X

l

Aijlvilþð1−αÞ
X

l

BijlvljþDηijðtÞ; (3)

with Aijl ¼ ðNilÞ=ðNiÞ − δjl and Bijl ¼ ðNljÞ=ðN0
jÞ − δli

(see the Supplemental Material [44]). The first term on the
right hand side describes interactions among agents who
live in i and work elsewhere, while the second term follows
from the interactions among agents who work in j and live
elsewhere. The last term is noise coming from a combi-
nation of ηþijðtÞ and η−ijðtÞ: ηijðtÞ is also a Gaussian noise
with zero mean and hηijðtÞηklðt0Þi ¼ δðt − t0Þδikδjl. This
term represents imperfect imitation and accounts for the
combined effect of all other influences different from the
interaction between peers. This includes opinion drift, local
media, or free will of the individuals. When D ≠ 0, the
microscopic rules lead to a noisy diffusive equation, in
agreement with previous models of mesoscopic electoral
dynamics [24,25]. The equation corresponds to an Edwards-
Wilkinson equation on a disordered medium, described by
the coupling matrices A and B. In the absence of imperfect
imitation (D ¼ 0), Eq. (3) can be written as a Laplacian
ðd=dtÞ~v ¼ L~v. This implies a homogeneous asymptotic
configuration and the existence of a globally conserved
variable, namely, the total number of voters holding opinion
þ1, V ¼ P

ijVij [44,50].
When simulating the model, we integrate the stochastic

process by updating the values of the number of agents
holding opinion þ1 in each cell ij, Vij, using binomial
distributions with the rates in Eq. (2). At each Monte Carlo
step we update all cells in a random order. Therefore we
simulate the original master equation of the process.
Model calibration.—We apply the model to the U.S.

presidential elections, identifying the cells with the
counties. The populations and commuting fluxes Nij are
obtained from the 2000 Census [51] and are input data
for the SIRM model. This framework can be applied to
any country or territorial division (counties, municipalities,
provinces, states, etc.). Besides these data, there are two
free parameters: D and α. The parameter α provides a
measure of the relative intensity and duration of social
relations at work and at home. According to the survey on
time use from the Bureau of Labor Statistics [52], the
average individual spends almost eight hours daily at work,
and the rest of time at her home location. Out of this home
time, close to another eight hours are spent sleeping. Thus
α will be set at 1=2, although other values give rise to
qualitatively similar results (Fig. S10 in the Supplemental
Material [44]) as long as α ≠ 0 or 1, in which cases the
system would consist of disconnected patches and thus
there would not be any spatial diffusion.
To calibrate the noise intensity D, the SIRM model is

run for a set of values of D, taking as initial condition the
results for the elections of the year 2000. The system is
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evolved for 1000 MC steps, and then the standard
deviation σ of the vote-share distribution is measured
[panel (a) in Fig. 2]. Best agreement is obtained for
D ¼ 0.03, which is taken as the level of noise for the
simulations of the model. When the noise intensity is too
low, we find basically a diffusive process, where the vote-
share distribution narrows and the correlations grow
(D ¼ 0.005 in Fig. 2). In contrast, for larger D the noise
is dominating the results (D ¼ 0.35 in Fig. 2). The vote-
share distribution widens as time goes by and the spatial
correlations vanish. For D ¼ 0.03 the standard deviation
of the vote-share distribution of the model has the same
value as the data. Not only is the standard deviation
matched, but also the shape of the vote-share distribution
agrees with the empirical one. The distribution, in addi-
tion, becomes stationary in time. Furthermore, although
we did not take spatial correlations into account for the
calibration, they show a stationary logarithmic decay for
this value of noise intensity D.

Finally, we set the equivalence between the Monte Carlo
steps and the real time between elections [Fig. 2(b)].
Equation (3) is written in arbitrary time units and is related
to the updates by dt ¼ 1=N [53]. Sets of electoral results
are produced with the model, with D ¼ 0.03 and with a
fixed number of Monte Carlo steps between elections.
Then the standard deviation δ of the vote-share trajectory
for each county, as a function of the number of conse-
cutive elections, is computed. Averaging over all different
counties and comparing with empirical data, we find that
both curves grow as

ffiffiffi
n

p
, where n is the number of elections

considered (error bars correspond to the dispersion of δ
across counties), reminiscent of a randomwalk. Both curves
have the best overlap when we set 10 MC steps/election
(equivalently, 2.5 MC steps/year).
Results.—The stochasticity of themodel introduces uncer-

tainty in the temporal evolution of the vote shares, as can be
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FIG. 2 (color online). (a) Vote-share standard deviation versus
noise intensity D. The dashed black line marks the dispersion of
the empirical data (σe ¼ 0.11). Boxes surrounding the main plot
display results obtained with the level of noise marked as squares
and include the distribution of vote shares shifted to have zero
mean, along with their spatial correlations. Darker (black) curves
are initial conditions. Results are shown for increasing time steps
from darker to lighter: 10 and 20 MC steps (top right panel); 100
and 200 MC steps (bottom right panel); 40 and 140 MC steps
(bottom left panel). (b) The average dispersion in the Democrat
vote share is plotted versus the number of elections. Best
agreement is obtained for 2.5 MC steps/year.
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FIG. 3 (color online). Parameters of the simulation are α ¼ 1=2,
D ¼ 0.03. (a) Time traces of the vote shares for Democrats in
different counties: one with high population, Los Angeles,
California [darkest (black) symbols and curves, 9.5 × 106 inhab-
itants]; one with a medium population, Blane, Idaho [light gray
(orange), 19 × 103 inhabitants]; and one with low population,
Loving, Texas [medium gray (green) line, 67 inhabitants]. Sym-
bols represent data and dashed lines represent the results of a single
realization of the model with initial conditions taken from year
2000 data; solid lines represent the average of 100 realizations of
the model and dotted lines their standard deviation. (b), (c), and
(d) Democratic vote-share probability density functions, showing
the cumulative probability density functions (PDF) [except for (d)
that shows the cumulative PDF] as predicted by the model for
counties, congressional districts, and states, respectively. Initial
condition at t ¼ 0 (black circles): vote shares obtained from the
2000 elections. (e) Vote-share spatial correlations as a function of
the distance. (f) and (g) Distribution of ratio between model
predictions and data observations for the Democrat vote shares at
county level (f) and for congressional districts (g). The colored
areas mark 80% confidence intervals.
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appreciated for three counties in Fig. 3(a). Once the average
value is discounted, the shape of the distribution of vote
shares is similar to the one observed in the empirical data
[Fig. 3(b)]: the stationarity and the particular functional
shape of the distributions are captured by the model. This
occurs not only at county level [Fig. 3(b)], but also at other
coarse-grained geographical scales such as congressional
districts [(Fig. 3(c)] and states [Fig. 3(d)]. This relates to the
ability of the model to properly capture the spatial correla-
tions in thedata [see Fig. 3(e) andFig. S7 in the Supplemental
Material [44] for a comparison with reshuffled data].
The goodness of the model is also assessed by a direct

comparison between model predictions and data for vote-
share fluctuations. In Figs. 3(f) and 3(g), we show the
distribution of the ratios between model and data of the
vote-share deviations from the national average, vi − hvi,
where h·i denotes spatial average (not average over realiza-
tions of the model). We evolve the model for an election,
starting with the initial conditions from the electoral results
from year 2000, and compare with the electoral results from
year 2004, finding that 80% of the ratios fall between 0.6 and
1.5. These numbers become 0.9 and 1.1 at the congressional
district level, attesting the quality of the model predictions.
As a final point, we investigate the role played by the

mobility network on the model results. The links connect-
ing only geographically neighboring counties can be
extracted and used as a baseline network. The rest of the
links are then added, filtering by the distance that separates
the centroid of the residence county to that of the work
county. The result of performing this operation is a network
that includes more and more links as the threshold of the
filter is increased. The model has to be calibrated for each
new network [Fig. 4(a)]. Once the optimal value for the
noise level of the imperfect imitation D� is found, the
model simulations running on different networks can be
compared with the empirical data. In Fig. 4(b), we show
how the vote-share spatial correlations change when the
network is modified. Long links are important to recover
correlation values similar to those observed empirically.
Discussion.—We have introduced a microscopic model

for opinion dynamics, the main ingredients of which are
social influence (modeled as a noisy voter model), mobility,
and population heterogeneity. The model can be approxi-
mated by a noisy diffusion equation on an anisotropic

substrate that is given by the highly heterogeneous popula-
tion and commuting data. It reproduces generic features of
the vote-share fluctuations observed in data coming from
three decades of presidential elections. It is important to note
that the model is not aimed at predicting the winning party,
only the local fluctuations over the national average vote
share. In this sense, it is able to capture the empirical
distributions of vote-share fluctuations, the spatial correla-
tions, and even the evolution of the local vote-share fluctua-
tions. This agreement between model predictions and
empirical data is maintained when the geographical areas
considered are coarse grained, showing thus that the model
accounts for the main mechanisms at play in the dynamics
of the system at different scales. We have studied, as well,
the relevance of the mobility range for the quantitative
agreement of the model. Despite the various heterogeneity
sources of the system (population, geography, topology,
and commuter fluxes), the model still displays logarithmic
spatial correlations as in a two-dimensional diffusion [54].
This robustness is connected to the spatial decay of the cells
[44,55]. The field of random walks on heterogeneous media
could also provide valuable insight [56].
The present Letter offers—with the use of demographic

data as input—a comparison of a theoretical model with
real data, which is used both for calibration and to evaluate
the results. It proposes a path for further research in opinion
dynamics, as it establishes a method to bridge the gap
existing between microscopic mechanisms of social inter-
change and macroscopic results of surveys and electoral
processes. One limitation of the work is the use of census
data, which translates in a lack of fine structure for the
interaction network. The use of digital data will provide the
necessary information to fill this gap. Another important
issue is the dynamics of the average vote share. To this end
further elements need to be included, as, for example, the
effects of social and mass media.
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