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Abstract
Reaction–diffusion systems have been widely successful in the theoretical
description of biological patterning phenomena, giving rise to numerous models
based on differing mechanisms, mathematical implementations and parameter
choices. However, even for models with common design features, the diversity
of mathematical realizations may hinder the identification of common behavior.
Here, we analyze three different reaction–diffusion models for cell polarity that
feature conservation of mass, rapid cytoplasmic diffusion and bistability via a
cusp bifurcation of uniform states. In all three models, the nonuniform polar
states are front solutions, and growth of domains ceases through stalling of a
propagating front. For these three models we find a characteristic parameter
space topology, comprising a region of linear instability that loops around the
cusp point and that is enclosed by a ‘comet-shaped’ region of nonuniform
domain states. We propose a minimal model based on the cusp bifurcation
normal form that includes essential characteristics of all cell polarity models
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considered. For this minimal model, we provide a complete analytical descrip-
tion of the parameter space topology, and find that the instability loop appears as
a generic property of the cusp bifurcation. This topological analysis provides a
unifying understanding of earlier mathematically distinct models and is suitable
to classify future models.

Keywords: cell polarity, reaction-diffusion equations, cusp bifurcation

The emergence of patterns in biology has long raised the interest of theorists attempting to
explain the underlying mechanisms. Cell polarity is typically defined as an asymmetric
distribution of signaling molecules, often associated with the cell membrane. It occurs in many
cell types and is fundamental to processes as diverse as cell motility, differentiation and
asymmetric cell divisions [1].

While polarization in different cell types can differ in the number and identity of
interacting protein species, the type of interactions, and the mechanisms that trigger
polarization, global features are often similar. For example, polarity proteins are often
associated with the cell membrane but can also enter the cytoplasm. Generally, these
membrane-associated systems are accompanied by no or very weak cytoplasmic gradients. This
suggests a much higher mobility for proteins in the bulk cytoplasm compared to the mobility
when associated to the membrane, leading to a separation of time scales. Furthermore, cell
polarization often occurs on time scales of minutes on which degradation or de-novo production
of proteins is negligible, thereby establishing an approximately conserved total amount of
signaling proteins inside the cell [2–6].

Several previously proposed theoretical models for cell polarization feature both strongly
diverging diffusion constants between cytoplasmic and membrane-bound states as well as
conservation of total protein amount. Based on known biochemistry and in some cases on
biophysical experiments, these models capture observations of cell polarity in chemotaxis
[2–4, 7] and asymmetric cell divisions [5, 6]. Some of these studies were also accompanied by
simplified, conceptual models in an attempt to deduce the essential ingredients [3, 4, 7].
Moreover, under certain conditions of the chemical reaction kinetics, the evolving patterns are
propagating fronts that stall via the depletion of cytoplasmic protein supply [8, 9].

Three questions arise from this. First, beyond either highlighting abstract design principles
or model behaviors at individual parameter values, what is a feasible way to comprehensively,
yet compactly, characterize the behavior of a given model even for larger variations of
parameters? Second, how does a comprehensive characterization of one model compare to other
models? In particular, do common design principles such as rapid cytoplasmic diffusion,
conservation of total protein amount and a front-stalling mechanism translate into an exactly
equivalent common repertoire of possible behaviors despite vastly different implementation of
chemical kinetics? Third, if there exists a family of models according to the above two criteria,
can a simple and representative minimal model offer new insights into the origin of the
underlying similarities?

Here we answer these questions by portraying a family of three models for cortical cell
polarity that are based on mass-conservation, rapid cytoplasmic diffusion, and bistability of
uniform states by a cusp bifurcation but differ in the number of interacting chemical species as
well as in the kinetic functions that govern their interaction. First, we recapitulate and expand
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the characterization of a single model for PAR protein polarity by investigating the makeup of
uniform states, their linear stability properties as well as the existence and distribution of
nonuniform states in parameter space. Second, we show that the same parameter space topology
found in the first model also characterizes two previously published models, thereby implying
an unexpected common repertoire of possible behaviors, despite strong differences in their
mathematical realization. Third, we define a minimal model based on the cusp bifurcation
normal form and derive analytical expressions for all topological structures. Our analysis of the
minimal model suggests further that the characteristic shape of the regime of linear instability is
a fundamental property of the cusp bifurcation.

Thus, the topology identified in this work appears as a suitable way to classify future
models of cell polarity, and to understand and communicate behavior and robustness associated
with a specific choice of parameters.

1. Common features of cell polarity models

We begin our analysis by highlighting the general features of the reaction–diffusion models
considered here. All models describe one or several chemical species i that can cycle between a
cytoplasmic state with concentration vi and a membrane bound state with concentration ui. The
only chemical reactions that occur are interconversions of protein between these two states that
conserve the total amount of each protein species individually. All models are considered on a
one dimensional (1D) line with spatial and temporal coordinates x and t. The system of
equations are of the form
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where Du i, and Dv i, represent the respective diffusivities in the cortical and cytoplasmic
compartments. f

i
denote the reaction terms that can in general depend on all N protein species.

The total concentration of each species can be calculated according to equation (3), which is an
additional parameter of the system set by the initial condition. We consider all systems in the
limit of rapid cytoplasmic diffusion ≪D Du i v i, , . In this case, the cytoplasmic concentrations are
essentially constant throughout space =v x t v t( , ) ( )i i . Importantly, the conservation law (3) can
be used to compute the uniform cytoplasmic concentrations from the cortical concentrations

alone ∫ρ= −v t L u x t x( ) 1 ( , )di i i0,
. Substituting v t( )i in (1) then reduces the system of N2

differential equations to a system of N integro-differential equations
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wherein ∫=u t L u x t x( ) 1 ( , ) di i denotes the global average. Through this reduction, the N

mass constraints are included explicitly in the equations.
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In the following sections, we analyze several reaction–diffusion models with differing
choices of kinetic functions f

i
with respect to their uniform states, their stability properties and

the coexistence of polar nonuniform states. The combination of uniform states, stability
properties and presence or absence of a polar nonuniform state is collectively referred to as the
behavior of the given model at the chosen point in parameter space. The parameter space
topology of a given model denotes the entirety of model behaviors found for variation of the
control parameters within the range shown. Hence, two models that share a common parameter
space topology also share a common repertoire of behaviors.

Simulations of nonuniform concentration profiles were performed using a finite-difference
discretization method with Runge–Kutta 4th order integration scheme and fixed time step Δt
implemented in custom C++ code. The bistability regions were calculated using either Matcont
version 2.5.1 [10] or custom C++ code. Mathematica 7 [11] as well as custom C++ code were
employed to compute the outline of the instability loops.

2. Models of cell polarity

2.1. The PAR protein model

We recently proposed a reaction–diffusion model in the form of (4) to describe the polarization
of PAR proteins during the first asymmetric cell division in the roundworm C. elegans [6]. For
two protein species aPAR (the anterior PAR complex, ≡i A) and pPAR (the posterior PAR
complex, ≡i P), the kinetic functions were defined as

ρ Ψ

ρ Ψ

= − − −

= − − −

α

β

( )
( )

( )
( )

f u u u k u k u k u u

f u u u k u k u k u u

, , ,

, , , (5)

P A P P P P P P P PA P A

A A P A A A A A A AP A P

on, 0, off,

on, 0, off,

wherein Ψ denotes a surface-to-volume conversion factor and α and β are stochiometric
coefficients [6]. In addition to membrane association and dissociation, with respective rate
constants kon and koff , the chemical reactions in this model involve mutually antagonistic
interactions of protein complexes in their active state on the membrane represented by the
membrane dissociation terms αk u uPA P A and βk u uAP A P .

To highlight the general properties of this model, we analyze its behavior for a symmetric
parameter set in which the respective parameters of the two species are identical. For the kPA-kAP

parameter space (figure 1) we use the following set of parameters: μ= = −D D 1 m sA P
2 1,

= = −k k 0.3sA Poff, off,
1, μ= = −k k 1 msA Pon, on,

1, ρ ρ μ= = −1 m
P A0, 0,

3, α β= = 2 and

Ψ μ= −0.3 m 1. For the ρ
P0,
-ρ

A0,
parameter space (figure 2(A)) we use the same parameter set

except that the values μ= = −k k 1 m sPA AP
4 1 are kept fixed. Simulations were performed with

Δ =t 0.01 s for a system length μ=L 100 m with 200 grid points spaced Δ μ=x 0.5 m apart
and periodic boundary conditions.

In characterizing the behavior of this model as a function of the interaction rate constants
kPA and kAP, we found a region of bistability of homogeneous steady-states (figure 1(A), (iii))
which culminates in a cusp bifurcation point. Furthermore, the system is capable of supporting
inhomogeneous domain states (figure 1(C), green with dashed boundary) that resemble the final
segregation of PAR proteins when polarization is complete. Note that, contrary to other
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approaches [8], the concentration values of the homogeneous steady-states here do not have a
direct relation to the concentration values of the inhomogeneous patterns.

For a large fraction of parameter space, the transition between a homogeneous steady-state
and the coexisting domain state depends on an external trigger to overcome a finite perturbation
threshold. In vivo, such a trigger is provided by advective cortical flow [6], thereby coupling
mechanical cues to biochemical pattern formation [12].
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Figure 1. Successive construction of the parameter space topology exemplified by the
model of PAR protein polarization in C. elegans (5) explored as function of the
interaction rate constants kAP and kPA. (A) Outside the region of bistability only one
uniform steady-state exists that can either be dominated by high aPAR (i) or high pPAR
concentration. Inside the region of bistability (iii), both steady-states coexist and are
stable with respect to uniform perturbations, separated by a third steady-state that is
unstable (not shown). (B) In addition to the region of bistability of panel (A), the region
of instability (iv)–(vii) is shown, indicating the areas in which nonuniform perturbations
destabilize either all (iv), (v), exactly one (vi), (vii) or none of the homogeneously stable
uniform states (viii). Cartoons (iv)–(viii) visualize the response of each steady-state to
small nonuniform perturbations (black arrows). Small perturbations either decay back to
the stable steady-states (solid lines) or grow and form polarized patterns from unstable
steady-states (dashed lines). (α) and (β) show the largest growth rate of the unique
uniform steady-state at two parameter sets indicated in panel (B) (stars). Outside the
instability loop the growth rate is negative and perturbations below a threshold are
decaying (α), while inside the loop the system is unstable with the largest growth rate at

π=k L21 (β). (C) Shown are the same regions of bistability and instability as in panel
(B). Additionally, the region of polar inhomogeneous states is overlaid (green, dashed
boundary). Near the lower boundary the aPAR domain is wide (ix), while near the
upper boundary the pPAR domain is wide (x).



The transition between the homogeneous state and polarized state may also occur
spontaneously. This would be the case when the perturbation threshold vanishes and the
homogeneous states become linearly unstable, exhibiting a positive growth rate for some
exponentially growing perturbation modes. To determine whether or not the PAR protein model
(5) shows zero-threshold regimes, we performed a linear stability analysis to test the behavior of

the uniform steady-states = ( )X A P,
T

0 0 0 under small perturbations. We use the ansatz

= + ˜X X X0 where the perturbation is η σ˜ = + +( )X t ikx c cexp . , with c.c denoting the
complex conjugate. Inserting this ansatz in equation (5) and linearizing, we obtain the eigenvalue
equation σ ˜ = ˜ · ˜( ) ( )X J Xk k with the following form of the Jacobian in Fourier space:

Ψ δ α

β Ψ δ
˜ = −

+ + +

+ + +

α α

β β

−

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

D k k k k P k A P

k PA D k k k k A
. (6)

A A A k AP AP

PA P P P k PA

2
off, on, ,0 0 0 0

1

0 0
1 2

off, on, ,0 0

An instability occurs if there exists at least one growth rate σ of J̃ with positive real part. Note
that the global averages uP and uA give rise to the Kronecker-delta term δk,0 which induces a

discontinuously stabilizing shift of the zeroth Fourier mode =k 00 (figure 1(B), α β, , red dot).
As a consequence, and different from classical Turing diffusion driven instabilities, the mode
that becomes unstable first and shows the fastest growth is given by π=k L21 . Thus, the
pattern that is destabilized first and grows fastest always fits the system size. This will tend to
divide the cell into two halves independent of size, which is an attractive property for cell
polarity. Discontinuous growth rates are known from systems describing electro-chemical
pattern formation as well as surface chemical reactions [13, 14] and are a consequence of
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Figure 2.A common topology spans across diverse models for cortical cell polarity. (A)
For variations of protein amounts ρ

P
and ρ

A
the PAR protein model [6] shows a region of

bistability (orange) within a cusp bifurcation, a loop-shaped region of linear instability
(blue, blue dashed) and a region of domains (green, dashed boundary) arranged in the
same topology as for variations of the interaction rate constants (figure 1(C)). (B) The
wave-pinning model [8] shows an identical topology as the PAR protein model despite
featuring only one protein species and different kinetic functions. Color coding as in
panel (A). Yellow star indicates parameter values chosen in [8]. Note, however, that the
instability region shown here is slightly enlarged compared to the originally formulated
system [8] due to the infinite cytoplasmic diffusion. (C) A model for polarization of
small Rho-GTPases [2] again shows the same topology. Color coding as in panel (A).
Star indicates parameters chosen in [2].



globally coupled systems. All the reaction–diffusion systems of type (4) show a discontinuous
growth rate.

In studying the parameter dependence of this type of instability, we found a loop-shaped
region in which at least one uniformly stable state becomes unstable with respect to nonuniform
perturbations (figure 1(B), blue, blue dashed). Together, the regimes of uniform bistability,
domains and linear instability form a characteristic topology (figure 1(C)) in which each
distinctly colored region corresponds to a defined dynamic behavior of the system (see [6] for
details). Interestingly, this parameter space topology is conserved even if other parameters such
as the total protein concentrations ρ

P0,
and ρ

A0,
are varied while the interaction rate constants are

kept fixed (figure 2(A)).

2.2. The wave-pinning model

The inhomogeneous domain states in the PAR protein model discussed above were found to be
propagating fronts that stall based on the depletion of cytoplasmic protein supply [6]. This
phenomenon has previously been highlighted in a simpler reaction–diffusion model and was
termed wave-pinning [8]. In order to compare the two models, we now analyze the wave-
pinning model in the same way as the PAR protein model.

Based on only one protein species (N = 1) that cycles between a cortical and a cytoplasmic
compartment, the wave-pinning system conceptually describes polarization of small Rho-
GTPases in the context of chemotaxis. Substituting the cytoplasmic variable v x t( , ) in the limit
of infinitely fast cytoplasmic diffusion by ρ= −v t u( )

0
, we reduce the originally proposed

system of two differential equations to a single integro-differential equation of type (4). The
kinetic function is then defined as:

ρ γ δ= − +
+

−
⎛
⎝⎜

⎞
⎠⎟( )f u k

u

K u
u, (7)

1 0 0

2

2 2

where k0 is the basal association rate, γ the maximal reaction rate above the base line, and K the
saturation parameter. The linear stability analysis was computed analogously to the PAR
protein model. With u0 denoting the homogeneous steady-state, we find the growth rate of the
wave-pinning model as

σ γ
ρ

δ γ δ δ= − +
−

+
− − +

+
−

⎡
⎣⎢

⎤
⎦⎥

( )
( )

D k K
u u

K u
k

u

K u
u2 . (8)u f k

2 2 0 0 0

2
0
2 2 0

0
2

2
0
2 0 ,0f

Note that the Fourier modes are denoted by kf to avoid confusion with the reaction parameters

k0 and K. Similar to (6), δk ,0f
symbolizes the Kronecker-delta while δ is a reaction parameter.

By applying the same analysis of uniform states, their stability properties and domain states
to the wave-pinning model, we find a topology identical to the PAR protein model (figure 2(B)),
despite differences in both the number of involved protein species and the kinetic function. The
region of homogeneous bistability (figure 2(B), orange, compare to figure 1) again culminates in
a cusp bifurcation. The region of linear instability loops around the cusp point, this time forming
a distorted structure. Finally, the instability loop is enclosed by the comet-shaped region of
inhomogeneous domain states which eventually crosses into the bistability regime, a property
also observed in the PAR protein model for larger values of ρ

0
ʼs or kAP PA.
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We used the parameters as reported in the published work [8], specifically γ = −1s 1,

μ= −K 1 m 1, δ = −1s 1 and μ= −D 0.1 m su
2 1. Simulations were carried out with Δ =t 0.0004 s in

a system of μ=L 10 m with 100 grid points spaced Δ μ=x 0.1 m apart and no-flux boundary
conditions.

The authors reported in their original work [8] that the model does not polarize
spontaneously but requires a finite, possibly small stimulus in order to form patterns. The
parameter space now shows that this threshold behavior is parameter specific. In particular, the
chosen parameter set (figure 2(B), star) places the model close to but still outside the regime of
linear instability where the single metastable uniform state is separated from the coexisting
domain state by a threshold of variable size [6]. Slight displacement of parameters towards larger
total protein concentration, would allow this system to polarize spontaneously. Thus, this
topological analysis helps to reevaluate previously reported behaviors of the wave-pinningmodel.

2.3. The Rho-GTPase model

The wave-pinning model of the previous section highlighted principles that were underlying a
more complex and biochemically accurate system for polarization of three small Rho-GTPases
CDC-42 ( ≡i C), Rac ( ≡i R) and Rho ( ρ≡i ) in chemotaxis [2]. We therefore now analyze this
third model. After reduction to three integro-differential equations in the limit of rapid
cytoplasmic diffusion, the kinetic functions are defined as

β
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δ
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wherein ρIC R , αC R and δ ρC R denote reaction rate constants, β ρC
regulate Hill function dynamics

and n is the Hill coefficient. The linear stability analysis was again computed analogously to the
PAR protein model. We find the following form of the Jacobian in Fourier space:
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Here C0, R0 and ρ
0

denote the homogeneous steady-state. δk,0 again symbolizes the
Kronecker-delta which induces the discontinuous shift in the growth rates, and the prefactors
are given by

λ
ρ β
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=
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=
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ρ
ρ
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I
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1
. (11)C
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4

0
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0

tot 0

4

We used the parameters reported in the original publication [2], specifically μ=R 7.5 Mtot ,

μ= −I 3.4 MsC
1, μ= −I 0.5 MsR

1, μ=ρ
−I 3.3 Ms 1, α = −4.5sC

1, α = −0.3sR
1, β μ= 1 M

C
,

β μ=ρ 1.25 M, δ δ δ= = =ρ
−1sC R

1, μ= = =ρ
−D D D 0.1 m su C u R u, , ,

2 1 and n = 4. Simulations

were carried out with Δ =t 0.01s in a system of μ=L 10 m with 100 grid points spaced
Δ μ=x 0.1 m apart and no-flux boundary conditions.

Analyzing this system, we find the same parameter space topology as in the wave-pinning
and PAR model, comprising a cusp bifurcation surrounded by an instability loop and enclosed
in a comet-shaped region of nonuniform domains (figure 2(C)). Importantly, the common
topology implies an identical repertoire of possible behaviors across all three models despite
different numbers of protein species as well as different kinetic functions.

3. A minimal model for cell polarity

Motivated by the common parameter space topology, we next sought to construct a
representative model that exhibits all topological features in a simple form, and also illustrates
the reduction process. We now formulate such a minimal model of the type of (4) in which all
topological features can be described analytically.

Only one protein species (N = 1) is necessary to exhibit the desired topology. Furthermore,
bistability of homogeneous states with a cusp bifurcation appears as a hallmark property of the
family of models discussed here. The simplest function that reproduces bistability with a cusp
bifurcation is the well-studied cusp normal form [15]. This normal form can be derived locally
around the cusp point of generic dynamical systems by a weakly nonlinear analysis [16, 17].
Here, we define the kinetic function of the minimal model such that elimination of the
cytoplasmic variable by ρ= −v t u( )

0
leads to the cusp normal form extended by a global

averaging term

η μ

ηρ η μ

= + −

= − + −

f v u u

u u u . (12)
1

3

0 1
3

While the three previously discussed models produced positive concentrations, equation (12)
exhibits negative values as well, thereby ruling out the interpretation of u x t( , ) as physical
concentration. We use (12) as purely conceptual model that makes the parameter space
accessible analytically, and similar arguments have been given elsewhere [8, 18].

3.1. Nondimensionalization

In the minimal model, one dynamical species (N = 1) is cycling between a state u with slow
diffusion Du and a state v subject to fast diffusion Dv. In the case of finite diffusion Dv the generic
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formulation is given by
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( , ), ( , ) ( , )d , (13)

u

v

2

2 1
3

2

2 0
0

1

where the nondimensional parameters are defined as η η σ= ˜
−( )U2 1
, μ μ σ= ˜

−( )U
1 1

2 1
,

σ= ˜ −( )D D L Uu u
2 2 1

and σ= ˜ −( )D D L Uv v
2 2 1

. Parameters were chosen as η = 1 and = −D 10u
4.

Simulations were run with Δ =t 0.01 in a system of L = 1 with 400 grid points spaced
Δ =x 0.0025 apart and periodic boundary conditions.

3.2. Reduction process

Using the minimal model we here illustrate the implications that arise from the reduction from
N2 differential equations with N conservation laws (equations (1)–(3)) to N integro-differential
equations (in the form of (4)) in the limit of rapid cytoplasmic diffusion, a process that has been
applied to all analyzed models.

The homogeneous system without diffusion can be illustrated in phase space of the two
dynamic variables u0 and v0 (figure 3(A)). For a given set of parameters, the uniform steady-

states of a mass-conserved system must satisfy =( )f u v, 00 0 , which defines a curve in phase

space (figure 3(A), dotted line). Its intersection with the lines ρ
0
1,2 for constant mass determines

the uniform steady-state concentrations (figure 3(A), blue filled circle, see also [19]).
Importantly, any perturbation of the uniform steady-state that respects conservation of mass
(figure 3(A), green solid arrow) can only move the system to another point along the same line
of mass (figure 3(A), blue open circle) from which it relaxes back to the same steady-state. Any
motion perpendicular to that line (figure 3(A), green dashed arrow) corresponds to a change of
mass, and hence is forbidden (figure 3(B)).

The homogeneous two-equation system can be exactly reduced to one-equation by
substituting ρ= −v u0 0 0, thereby incorporating the previously external constraint ρ

0
explicitly

into the equations. As a consequence, the previously 2D phase space collapses to a 1D line
along which any perturbation respects the conservation law (figure 3(C), green solid arrow).
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3.3. Linear stability analysis of the minimal model

We begin the analytical description of the parameter space by highlighting the bistability
region. For a homogeneous system, diffusion is absent and the global coupling simplifies to

=u u. Then, the region of bistability is known to be bounded by [20]

ρ
μ η

η
μ η

= ±
− −

2
3 3

, (14)
0

1 1

with the cusp bifurcation occurring at μ η= = 1
1

(figure 5(A)).
Next, we turn to derive an analytical form of the instability loop. Linearizing equations

(13) around the homogeneous steady-states ( )u v,0 0 leads to a Jacobian of the form

=
−

− − −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟J

f D k f

f f D k
, (15)u u v

u v v

2

2
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Figure 3. In the 2D phase space of the uniform system, movements are constrained by
the conservation law. (A) Schematic of phase space. Red lines represent all states
allowed for a system with conserved amount ρ

0
1,2. Blue solid circles represent the

steady-states that are determined as intersection with the line =( )f u v, 00 0 . A
perturbation that respects conservation of mass (green solid arrow) leads to another
point on the same line (blue open circle) from which the system relaxes back to the
steady-state (blue arrow). A perturbation that violates mass conservation, e.g. by
changing v0 while leaving u0 constant (green dashed arrow), leads to a system on a

different line with ρ
0
2 from which the system relaxes to a new steady-state. (B) The

dynamics of the system along the line of constant protein amount is damped with
growth rate λ = −− f f

u v
. However, the forbidden dynamic perpendicular to the lines is

reflected in the marginal growth rate λ =+ 0. (C) In the reduced system, the variable v0 is
replaced by ρ − v

0 0. Since there is no restriction on the perturbations of the one-variable
system, the marginal growth rate is eliminated and replaced by the damped value λ−,
hence leading to a discontinuously displaced zeroth Fourier mode.



with eigenvalues

σ = − − +

± − − + − + −

±
⎡⎣

⎡⎣ ⎤⎦
⎤
⎦⎥

( )

( ) ( )

( )

( )

f f D D k

f f D D k D D k D f D f k

1 2

4 . (16)

u v v u

u v v u u v u v v u

2

2 2 4 2

For the uniform system k = 0, the smaller eigenvalue occurs at σ = −− f f
u v

, while the larger
eigenvalue is always marginal σ =+ 0, such that the overall response of the system to any
homogeneous perturbation will be a relaxation back to the uniform steady-state. The marginal
growth rate at k = 0 enforces any band of unstable wave numbers to range from ⩽ ⩽k k0 c, an
interval that is not strictly bounded away from k = 0. As a consequence, the emerging pattern
will occur on a large length-scale close to the instability threshold. We identify this as type II
long-wave instability as defined in [21].

For increased cytoplasmic diffusion, the magnitude of the growth rate of the membrane-
bound variable increases and its maximum moves toward k = 0 (figures 4(A), (B)). For rapid
cytoplasmic diffusion → ∞Dv and substitution of the cytoplasmic concentration by

∫ρ= −v t L u x t x( ) 1 ( , )d0 0
, one of the growth rates is eliminated, leaving only its maximum

as displaced node at k = 0 (figure 4(C)).
The single remaining growth rate is in general described by

σ δ= − + +D k f f .u u u k
2

,0

For the specific case of the kinetic function in (12) this reduces to

σ μ η δ= − + − −( )k Dk u3 . (17)k
2

1 0
2

,0

The Kronecker-Delta symbol δk,0 arises from Fourier transformation of the global coupling u .

The magnitude of the discontinuous shift f
u

is given by =∂ ∂ ·∂ ∂ = −f v u f v f
u v

.

Therefore, the new position of the homogeneous mode is the tip of the second growth rate
σ = −− ( )k f f

u v0 that was eliminated in the reduction process (figure 4(B)). From the growth
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Figure 4. Rapid cytoplasmic diffusion leads to a discontinuously stabilized zeroth
Fourier mode. Shown are the two growth rates σ± ( )k for the two-variable minimal

model with cytoplasmic diffusion = −D 10v
3 (A) and = −D 10v

2 (B) and the single
growth rate σ for infinite cytoplasmic diffusion → ∞Dv in the reduced system (C) with

μ = 0.8
1

, η = 1 and = −D 10u
4. Solid lines indicate continuous functions for an infinitely

long system, blue dots represent discretization for a finite system length of L = 1. Red
dot in C highlights the discontinuously shifted zeroth Fourier mode k0.



rate and the homogeneous steady-state we find the analytical form of the instability loop in
parameter space as the function (figure 5(B), blue, blue dashed):

ρ
η

μ
η

μ
= ± − +

−
⎜ ⎟⎛
⎝

⎞
⎠D k

D k1
2

3
1
3 3

, (18)u
u

0
1

1
2 1 1

2

which has to be evaluated at the first unstable node π=k L21 . Thus, smaller system lengths L
or larger diffusion constants Du lead to shrinkage of the region of instability.

3.4. Inhomogeneous domain states

Finally, we investigate the inhomogeneous domain states of the minimal model. Numerical
integration of equation (4) with the function f given in equation (12) shows that the nonuniform
concentration profiles are front solutions, as before. Furthermore, they are found to exist in the
familiar comet-shaped region (figure 5(C), green with dashed boundary) touching the instability
loop at its tip. The simplicity of the minimal model allows to characterize this domain region
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Figure 5. A minimal model makes the topology accessible analytically. Shown here are
the region of bistability (A), linear instability (B) and existence of nonuniform domains
(C) analogously to figure 1. Schematic concentration profiles show the uniform steady-
states (A) (i)–(iii), their individual response to small spatially inhomogeneous
perturbations (B) (iv)–(viii), (xi)–(xii), and the typical shape of domain profiles (C)
(xi)–(x). Perturbations either decay for stable uniform states ((B), solid lines) or grow for
unstable states ((B), dashed lines). The solid line that encloses the domain region in panel
(C) is given by equation (19) and marks the maximum extend of the domain region for

→ ≠D D0, 0u u .



analytically [18]. Specifically, analytical calculation of the front propagation speed as a function
of the uniform cytoplasmic concentration shows that the front reaches steady-state and stalls
when v = 0, or equivalently ρ=u

0 0
.

Using this stalling criterion and neglecting diffusion away from the front interfaces, we
compute the domain width. From this, we find the lower and upper boundaries of the domain
region in parameter space as the simple form

ρ μ= ± , (19)
0 1

in good agreement with numerical simulations (see figure 5(C), solid line). Note that (19) can be
rephrased as the necessary condition, μ ρ μ− < <

1 0 1
, on the protein amount that allows for

front-stalling to occur.

3.5. The cusp bifurcation induces the instability loop

We noted earlier that the minimal model (12) represents a modified cusp normal form.
Furthermore, we found that the bistability region with the cusp (14) and the instability loop (18)
approach the same asymptotic function in the limit of large values of the parameter μ

1
. Both

observations raise the question if a cusp bifurcation is sufficient to give rise to the common
topology of models described so far.

To investigate a possible connection between the cusp and instability loop in the minimal
model, we focus on the growth rate (17) of the homogeneous system at =k 00 (figure 6(B), top
row) as a function of ρ

0
with different parameter values of μ

1
(figure 6(A)). As generic property

of cusp bifurcations the single uniform state outside the bistability region is stable (figure 6(B),
solid lines), while inside the bistability region two stable states (figure 6(B), blue and yellow)
are separated by a third one (figure 6(B), red) that is unstable (figure 6(B), dashed lines). For the
most unstable mode ≠k 01 of the inhomogeneous system, we find that the growth rate is simply

shifted upwards by a constant magnitude η − D ku 1
2 everywhere in parameter space (figure 6(B),

bottom row). This shift reveals that the uniformly stable states become unstable for spatial
perturbations particularly close to the edges of the bistability region (figure 6(B), rightmost
column), thereby causing the ascending and descending unstable branches along the boundary
of the region of bistability (figure 6(A)). The shift in growth rates also explains that the cusp
point always appears inside of the instability loop.

Because the shift between the growth rates of the uniform system σ ( )k0 and fastest

growing mode of the nonuniform system σ ( )k1 is constant throughout parameter space, our
minimal model relates the instability loop to the cusp bifurcation in a simple form. In more
complex models, the shift will generally not be constant but parameter dependent.
Consequently, the size of the unstable regions will also be dependent on their location in
parameter space, hence leading to distortions and asymmetries of the loop as seen for instance
in the wave-pinning model (7) (figure 2(B)).

Loop shaped regions of linear instabilities around a cusp bifurcation have been reported for
other models unrelated to cell polarity. Examples include electrochemical systems where a
diffusing species undergoes pattern formation due to the interaction with an electrical potential
[22], as well as systems describing surface chemical reactions [14]. Furthermore, in absence of a
Hopf bifurcation, the FitzHugh–Nagumo model shows classical Turing diffusion-driven
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instabilities in the form of a loop around a cusp bifurcation [23]. Taken together, these examples
suggest that the cusp bifurcation gives rise to the loop shaped region of linear instability.

We next ask the question if bistability of uniform states via a cusp bifurcation also implies
inhomogeneous patterns that are front solutions and stall via a wave-pinning type mechanism.
To answer this question, we consider a one-species (N = 1) conceptual model for CDC-42
polarization in yeast [4]. After the reduction for rapid cytoplasmic diffusion ρ= −v t u( )

0
,

the kinetic function of this model is given by

α ρ β ρ γ ϵ= − + − − +( ) ( )f E u u E u u u , (20)c c
2

0 0

wherein ∫= +
−

( )E E g u1 ( )dsc c S

0
1

represents a conservation law for one of the parameters. As

the authors note, this second integral constraint is not necessary for the pattern forming ability
of equation (20) and we therefore ignore it here, setting ≡E 1c . An additional parameter ϵ was
added to equation (20) which takes the value ϵ = 0 in the original work.

This model shows bistability of homogeneous states with a cusp bifurcation under
variations of parameters γ and ϵ. Moreover, a region of instability loops around the cusp point,
albeit in strongly distorted form. However, the inhomogeneous patterns can not be propagating
front solutions because this model violates the conditions necessary for wave-pinning to occur
[8]. Thus, bistability via a cusp bifurcation is coupled to the loop shaped region of instability,
but is not sufficient for front-like inhomogeneous patterns.
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Figure 6. The instability structure of the cusp bifurcation induces the instability loop.
(A) Region of bistability and instability in the minimal model (same color coding as in
figure 5(B)). Inset schematically shows the structure of the growth rate. Vertical lines
indicate cuts along ρ

0
for those four values of μ

1
that are investigated in panel (B). (B)

Top row shows the growth rates for uniform perturbations σ ( )k0 as a function of ρ
0
for

the four values of μ
1
indicated in panel (A). For μ

1
1,2 only one stable uniform state exists

(blue, solid lines). For μ
1
3,4 inside the bistable region, two stable steady-states (blue,

yellow, solid lines) are separated by a coexisting unstable state (red, dashed line).
Bottom row shows the growth rate for the fastest growing mode σ ( )k1 which is identical

to σ ( )k0 shifted upwards by an amount η − D ku 1
2.



4. Discussion

Reaction–diffusion systems have been applied to a wide-range of contexts ranging from
ecological to subcellular scales [24]. Instrumental for this is the freedom in the design of
governing equations in terms of the number of involved protein species as well as the kinetic
functions that define their interactions.

However, the complexity of spatially extended, nonlinear dynamical systems and the
diversity of model designs entails a range of difficulties as well. First, the comprehensive
characterization of the repertoire of possible behaviors under large variations of parameters
rather than for a single parameter set poses a challenge in any individual reaction–diffusion
model. Second, it remains a nontrivial task to compare two distinct models by explicitly stating
which behavior is common to both and which behavior is specific to one of the models.
Specifically, it is rather unlikely to find two models that are clearly distinct, yet can both be
characterized in the same framework. Third, even if models according to these criteria could be
identified, more fundamental understanding about the origin of their similarity for example in
form of a minimal model would be required.

Here, we have presented a family of reaction–diffusion models that meet all three of the
above benchmark criteria. First, we recapitulated the comprehensive analysis of a
reaction–diffusion system for cell polarity of PAR proteins with respect to existence of
uniform steady-states, linear instabilities and the existence of inhomogeneous domain states.
Second, we applied the same analysis to two other models that share the properties of mass-
conservation, rapid cytoplasmic diffusion as well as bistability of the reaction rates, but
otherwise differ in the number of interacting chemical species and in the kinetic functions. We
found that the topology of the PAR protein model more generally captures this family of
systems. Different models have traditionally been compared by classifying the interacting
species as either activator, substrate or inhibitor [25], by classifying the type of instabilities [21],
or more recently by defining abstract design principles necessary for a specific stalling behavior
of patterns [8]. Still, the topological analysis presented here provides a more specific
characterization about the actual behavior observable in the model.

Third, based on the cusp bifurcation normal form, we presented a representative minimal
model in which all parameter space elements can be calculated analytically. From this minimal
model, we demonstrated that the instability loop appears as a generic property of the cusp
bifurcation. In other contexts, the instability that loops around the cusp bifurcation can be a
Hopf instability [14], a classical Turing instability [23] (where the unstable wave numbers are
strictly bound away from zero), a long-wave instability (where the unstable wave-numbers are
not bound away from zero), or a displaced-node instability that appears as a limit of Turing and
long-wave instability for infinitely rapid cytoplasmic diffusion (17). Examples for instabilities
looping around a cusp point have been found in excitable systems [23], in electro-chemical
settings [22] and in models of surface catalysis [14].

Other reported models for cell polarity differ to various degrees from the family of models
discussed here. The model by Otsuji [3], for instance, does not show bistability of uniform
steady-states, thus illustrating that inhomogeneous patterns can occur independent of bistability
of homogeneous states. The inhomogeneous patterns themselves are not front solutions. The
CDC-42 model [4], in contrast, features bistability of uniform steady-states and shows the cusp
bifurcation and the instability loop. However, similar to the model by Otsuji, the patterns in the
CDC-42 model can not be front solutions, thereby clarifying that bistability of uniform states is
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not sufficient for wave-pinning like behavior. Finally, the family of models discussed here adds
front-like inhomogeneous patterns in a comet-shaped region to the bistability of uniform states
and the loop shaped region of instability, hence suggesting that the condition for front-stalling
patterns [8] likely is the strongest condition that defines the topology described here.

To conclude, this work illuminates the need to investigate the parameter space of models
for cell polarization, to judge the robustness of model behavior to changes in parameters, to
uncover generic topological features and to describe the full range of dynamical behaviors.

Acknowledgments

We thank J S Bois for helpful discussions and comments on the manuscript. SWG
acknowledges funding from the European Research Council/ERC Grant agreement no 281903.

References

[1] Goldstein B and Macara I G 2007 The PAR proteins: fundamental players in animal cell polarization Dev.
Cell 13 609–22

[2] Jilkine A, Marée A F and Edelstein-Keshet L 2007 Mathematical model for spatial segregation of the Rho-
family GTPases based on inhibitory crosstalk Bull. Math. Biol. 69 1943–78

[3] Otsuji M, Ishihara S, Co C, Kaibuchi K, Mochizuki A and Kuroda S 2007 A mass conserved reaction-
diffusion system aptures properties of cell polarity PLoS Comput. Biol. 3 e108

[4] Goryachev A B and Pokhilko A V 2008 Dynamics of Cdc42 network embodies a Turing-type mechanism of
yeast cell polarity FEBS Lett. 582 1437–43

[5] Dawes A T and Munro E M 2011 PAR-3 Oligomerization may provide an actin-independent mechanism to
maintain distinct par protein domains in the early caenorhabditis elegans embryo Biophys. J. 101 1412–22

[6] Goehring N W, Khuc Trong P, Bois J S, Chowdhury D, Nicola E M, Hyman A A and Grill S W 2011
Polarization of PAR proteins by advective triggering of a pattern-forming system Science 334 1137–41

[7] Otsuji M, Terashima Y, Ishihara S, Kuroda S and Matsushima K 2010 A conceptual molecular network for
chemotactic behaviors characterized by feedback of molecules cycling between the membrane and the
cytosol Sci. Signal. 3 ra89

[8] Mori Y, Jilkine A and Edelstein-Keshet L 2008 Wave-pinning and cell polarity from a bistable
reaction–diffusion system Biophys. J. 94 3684–97

[9] Jilkine A and Edelstein-Keshet L 2011 A comparison of mathematical models for polarization of single
eukaryotic cells in response to guided cues PLoS Comput. Biol. 7 001121

[10] Govaerts W, Kuznetsov Y A, De Feo O, Dhooge A, Govorukhin V, Khoshsiar Ghaziani R, Meijer H G E,
Mestrom W, Riet A and Sautois B 2008 MatCont continuation software in Matlab, version 2.5.1.
Technical Report Universiteit Gent, Utrecht University (http://sourceforge.net/projects/matcont/ and http://
www.matcont.UGent.be/)

[11] Wolfram Research 2008 Mathematica, Version 7.0 Wolfram Research (Champaign, Il)
[12] Howard J, Grill S W and Bois J S 2011 Turingʼs next steps: the mechanochemical basis of morphogenesis

Nat. Rev. Mol. Cell Biol. 12 392–8
[13] Krischer K, Mazouz N and Flätgen G 2000 Pattern formation in globally coupled electrochemical systems

with an S-shaped current-potential curve J. Phys. Chem. B 104 7545–53
[14] Hildebrand M 2002 Self-organized nanostructures in surface chemical reactions: mechanisms and

mesoscopic modeling Chaos 12 144–56

New J. Phys. 16 (2014) 065009 P Khuc Trong et al

17

http://dx.doi.org/10.1016/j.devcel.2007.10.007
http://dx.doi.org/10.1007/s11538-007-9200-6
http://dx.doi.org/10.1371/journal.pcbi.0030108
http://dx.doi.org/10.1016/j.febslet.2008.03.029
http://dx.doi.org/10.1016/j.bpj.2011.07.030
http://dx.doi.org/10.1126/science.1208619
http://dx.doi.org/10.1126/scisignal.2001056
http://dx.doi.org/10.1529/biophysj.107.120824
http://dx.doi.org/10.1371/journal.pcbi.1002271
http://sourceforge.net/projects/matcont/
http://www.matcont.UGent.be/.
http://www.matcont.UGent.be/.
http://dx.doi.org/10.1038/nrm3120
http://dx.doi.org/10.1021/jp000548s
http://dx.doi.org/10.1063/1.1448807


[15] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (Applied Mathematical Sciences) 2nd edn
(Berlin: Springer)

[16] Pismen L M 2006 Patterns and Interfaces in Dissipative Dynamics (Berlin: Springer)
[17] Rubinstein B, Slaughter B D and Li R 2012 Weakly nonlinear analysis of symmetry breaking in cell polarity

models Phys. Biol. 9 045006
[18] Mori Y, Jilkine A and Edelstein-Keshet L 2011 Asymptotic and bifurcation analysis of wave-pinning in a

reaction–diffusion model for cell polarization SIAM J. Appl. Math. 71 1401–27
[19] Ishihara S and Kaneko K 2006 Turing pattern with proportion preservation J. Theor. Biol. 238 683–93
[20] Strogatz S H 2001 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and

Engineering (Cambridge, MA: Perseus Books Group)
[21] Cross M C and Hohenberg P C 1993 Pattern formation outside of equilibrium Rev. Mod. Phys. 65 851
[22] Mazouz N and Krischer K 2000 A Theoretical study on turing patterns in electrochemical systems J. Phys.

Chem. B 104 6081–90
[23] Metens S, Dewel G, Borckmans P and Engelhardt R 1997 Pattern selection in bistable systems Europhys.

Lett. 37 109–14
[24] Murray J D Jan 2003 Mathematical Biology II (Berlin: Springer)
[25] Gierer A and Meinhardt H 1972 A theory of biological pattern formation Kybernetik 12 30–39

New J. Phys. 16 (2014) 065009 P Khuc Trong et al

18

http://dx.doi.org/10.1088/1478-3975/9/4/045006
http://dx.doi.org/10.1137/10079118X
http://dx.doi.org/10.1016/j.jtbi.2005.06.016
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1021/jp000203+
http://dx.doi.org/10.1209/epl/i1997-00119-4
http://dx.doi.org/10.1007/BF00289234

	1. Common features of cell polarity models
	2. Models of cell polarity
	2.1. The PAR protein model
	2.2. The wave-pinning model
	2.3. The Rho-GTPase model

	3. A minimal model for cell polarity
	3.1. Nondimensionalization
	3.2. Reduction process
	3.3. Linear stability analysis of the minimal model
	3.4. Inhomogeneous domain states
	3.5. The cusp bifurcation induces the instability loop

	4. Discussion
	Acknowledgments
	References



