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ABSTRACT 

The effect of different environmental stresses on the expression and enzyme activity 

levels of 13-lipoxygenases (13-LOX) and 13-hydroperoxide lyase (13-HPL) and on the 

volatile compounds synthesized by their sequential action has been studied in the 

mesocarp tissue of olive fruit from the Picual and Arbequina cultivars. The results 

showed that temperature, light, wounding and water regime regulate olive 13-LOXs and 

13-HPL genes at transcriptional level. Low temperature and wounding brought about an 

increase in LOX and HPL enzyme activities. A very slight increase in the total content 

of six straight-chain carbons (C6) volatile compounds was also observed in the case of 

low temperature and wounding treatments. The physiological roles of 13-LOXs and 13-

HPL in the olive fruit stress response are discussed. 
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1. Introduction 

 

      The group of compounds formed by six straight-chain carbons (C6) aldehydes, 

alcohols and their esters synthesized through the 13-hydroperoxide lyase (13-HPL) 

branch of the lipoxygenase (LOX) pathway are known as “green leaf volatiles” (GLVs). 

The amount of GLVs is low in intact and healthy plant tissues. However, GLVs are 

formed rapidly when the tissues are disrupted. GLVs are important molecules involved 

in plant defense against microorganisms, in attracting predator upon herbivore attack, 

and also as signal compounds within and between plants to induce transcripts of several 

defense related genes (Matsui, 2006; Stumpe and Feussner, 2006). GLVs are produced 

through the LOX pathway by the consecutive action of several enzymes. First, 

polyunsaturated fatty acids are hydrolyzed from lipids by different types of acyl-lipid 

hydrolases. Afterwards, LOX catalyzes the stereospecific oxidation of the 

polyunsaturated fatty acids containing a (Z,Z)-1,4-pentadiene structure such as linoleic 

(LA) and linolenic (LnA) acids. Plant LOXs are ubiquitous, encoded by multigene 

families and are classified with respect to their positional specificity of fatty acid 

oxygenation, which can occur either at C9 (9-LOX) or at C13 (13-LOX) of the 

hydrocarbon backbone in case of a C18 fatty acid (Mosblech et al., 2009). The 13-

hydroperoxides produced by 13-LOX are subsequently cleaved by 13-HPL into C6 

aldehydes and C12 oxoacids. 13-HPLs belong to a subfamily of cytochrome P450s 

(CYP74B) that, unlike other P450 enzymes, do not require molecular oxygen nor 

NAD(P)H dependent cytochrome P450-reductase as cofactors, using polyunsaturated 

fatty acid hydroperoxides as both substrate and oxygen donor (Gigot et al., 2010). C6 

aldehydes can then undergo reduction by alcohol dehydrogenases (ADH) to form C6 
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alcohols that can finally be transformed into the corresponding esters by means of an 

alcohol acyltransferase (AAT) (Schwab et al., 2008). 

      GLVs are also the most important compounds of the virgin olive oil (VOO) aroma 

from either a quantitative or a qualitative point of view. These C6 volatile compounds 

are synthesized de novo when enzymes and substrates meet as tissues are disrupted 

during VOO processing. The participation of the 13-HPL branch of the LOX pathway 

in the biosynthesis of the C6 volatile compounds mainly responsible for VOO aroma 

has been previously demonstrated (Olias et al., 1993). In olive, four LOX genes have 

been isolated and characterized to date: two LOX genes encoding isoforms which show 

strictly 13-LOX activity and possibly chloroplast localization (Oe1LOX2 and 

Oe2LOX2, Padilla et al., 2009) and two LOX genes encoding putative cytosolic 

isoforms that exhibit mainly 9-LOX activity, forming both 9- and 13-hydroperoxides 

from linoleic acid in a ratio of 2:1 (Oe1LOX1, Palmieri-Thiers et al., 2009) and 4:1 

(Oe2LOX1, Padilla et al., 2012). Oe2LOX2 showed an increase in its transcript level in 

mesocarp during olive fruit development and ripening, with a maximum at turning stage 

that coincides with an increase in the synthesis of volatile compounds present in VOO. 

On the contrary, Oe1LOX2 exhibited constant expression levels. These results indicate a 

major involvement of the Oe2LOX2 gene in the biosynthesis of VOO volatile 

compounds (Padilla et al., 2009). In addition, different LOX isoforms have been 

purified from olive fruits (Salas et al., 1999; Lorenzi et al., 2006) and callus (Williams 

and Harwood, 2008), both soluble and membrane-bound. On the other hand, only one 

olive HPL gene has been cloned and characterized so far (OeHPL, Padilla et al., 2010). 

The OeHPL gene codes for a HPL protein with a strict specificity for 13-

hydroperoxides, putative chloroplast localization and it is expressed in olive fruit 

mesocarp displaying a slight, though significant, maximum at the onset of ripening. 
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This slight maximum preceded the fruit developmental stage which gives rise to oils 

with the highest contents of C6 aldehydes (Padilla et al., 2010). Besides, the native 

membrane-bound HPL enzyme has been purified from olive fruit (Salas and Sánchez, 

1999).  

      Different plant LOX isoforms may have different physiological roles. Antisense 

studies in potato (León et al., 2002) and Nicotiana attenuata (Allmann et al., 2010) have 

shown evidences of a metabolic interaction between a specific 13-LOX isoform and 13-

HPL for the production of GLVs. These findings are consistent with the co-localization 

of the 13-LOX isoform LOX H1 and the 13-HPL in the stromal part of the thylakoids 

reported in potato chloroplasts (Farmaki et al., 2007). LOX and HPL expression in 

plants is regulated throughout development and in response to stress. In particular, the 

effect of temperature on LOX and HPL transcript and activity levels has been studied 

during postharvest storage of fruits such as guava (González-Aguilar et al., 2004), kiwi 

(Zhang et al., 2006), peach (Zhang et al., 2011), tomato (Bai et al., 2011) and banana 

(Yang et al., 2011). However, very scarce information is available for fruits during 

development and ripening before harvesting. In contrast to the effect of light or water 

deficit where the available information is very scanty, the effect of wounding has been 

very much studied in plant leaves and fruits showing the involvement of LOX and HPL 

in the response to stress in wounded tissues (Howe and Schilmiller, 2002). In the case of 

olive fruit, wounding caused during harvesting and transport, or due to olive fruit 

infestation by olive fly can modify VOO volatile composition. In particular, a reduction 

in the total volatile compounds, especially trans-2-hexenal, in oils extracted from olive 

fruit infected by olive fly has been reported (Tamendjari et al., 2004). Furthermore, 

several studies have shown that different water regimes could also affect VOO volatile 
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content and composition (Gómez-Rico et al., 2006; Servili et al., 2007; Stefanoudaki et 

al., 2009; Dabbou et al., 2011).  

      With the aim of determining the environmental factors that regulate GLVs 

formation in olive fruit mesocarp, we have investigated in the present work the effect of 

low and high temperature, darkness, wounding, and water regime on 13-LOXs and 13-

HPL in mesocarp tissue of the main cultivars grown in Spain for VOO extraction, 

Picual and Arbequina.  
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2. Results and discussion 

 

2.1. Temperature regulation of olive 13-lipoxygenases and 13-hydroperoxide lyase  

 

      To investigate the effect of temperature on the olive 13-LOXs and 13-HPL transcript 

levels in olive fruit mesocarp from Picual and Arbequina cultivars, olive branches 

holding olive fruit with 28 weeks after flowering (WAF) (turning stage) were incubated 

at low (15 ºC) and high (35 ºC) temperature with a 12 h light / 12 h dark cycle, for 24 h. 

When olive fruit of the Picual cultivar were incubated at 15 ºC, a strong and transient 

increase in Oe1LOX2 and OeHPL gene expression levels and a slight increase for 

Oe2LOX2 was observed, reaching a maximum after 6 h of incubation, and then, 

decreasing to initials levels (Fig.1). In the case of Arbequina cultivar, the expression 

levels of the three genes were slightly up-regulated with a maximum at 3-6 h of 

treatment. The same expression patterns have been described in both cultivars, 

respectively, for a 9-LOX gene (Oe2LOX1; Padilla et al., 2012). The transient increase 

of transcript levels of a 13-LOX in response to low temperatures has also been reported 

in leaves of maize and Caraganata jubata plants incubated at 4 ºC, for the ZmLOX10 

(Nemchenko et al., 2006) and CjLOX (Bhardwaj et al., 2010) genes, respectively. In the 

same way, bean seeds germinated at 4 ºC showed an increase in the level of expression 

of a LOX2 gene (Porta et al., 1999). In contrast, to our knowledge, no increase in 13-

HPL transcripts in response to low temperature has been reported so far in leaves or in 

planta ripening fruits.   

      To check if the observed increases in transcript levels were accompanied of 

increases in the corresponding enzyme activity levels, crude extracts from mesocarp of 
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olive fruit of both cultivars incubated at 15 ºC were obtained, and the LOX and HPL 

activity levels were determined. As shown in Fig. 2A, an increase in the LOX and HPL 

activity levels was detected, which correlates with the increase of expression of the 

corresponding genes observed during the first 6 h of treatment. However, not all the 

detected increase in LOX activity can be necessarily attributed to 13-LOX, since crude 

extracts obtained from olive fruit mesocarp exhibit both 9- and 13-LOX activity in a 

approximately 60:40 ratio (Olias et al., 1993). 

      In the same way, to verify if the observed increases in expression and activity levels 

of olive 13-LOXs and 13-HPL brought about the corresponding increase in the content 

of the main volatile compounds (C6), homogenates from mesocarp of olive fruit of both 

cultivars incubated at 15 ºC were obtained to analyze volatile compounds (Fig. 2B). No 

significant differences were found in the volatile contents along time except for the C6 

volatile compounds generated from LA in cultivar Picual, which showed a slight 

significant increase after 6 h. 

       Several factors can contribute to explain this discrepancy between transcript, 

activity and volatiles levels. Firstly, the participation of other LOX genes with 13-LOX 

activity and/or the existence of post-transcriptional regulatory mechanisms cannot be 

ruled out. On the other hand, previous studies modifying the 13-LOX activity load 

during the oil extraction process have shown that 13-LOX activity could be a limiting 

factor for the synthesis of the volatile fraction, this limitation being significantly higher 

in Picual cultivar that in Arbequina, in line with the lowest content of volatile 

compounds in the oils obtained from the former (Sánchez-Ortiz et al., 2012b). In 

addition, 13-LOX isoenzymes could compete with 9-LOX isoenzymes for LA and LnA 

as substrates. In fact, it has been shown that the expression levels of a 9-LOX gene 

(Oe2LOX1) transiently increase when olive fruit from both cultivars were incubated at 
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15 ºC (Padilla et al., 2012). Not only 13-LOX enzyme activity, but also polyunsaturated 

fatty acids acting as substrates have been suggested as limiting factors for the biogenesis 

of the VOO aroma in Picual and Arbequina cultivars (Sánchez-Ortiz et al., 2007). 

Finally, the involvement of non-enzymatic lipid peroxidation has also been proposed 

(Yilmaz et al., 2001).  

      Regarding a possible physiological explanation for the increase of LOX transcript 

and activity level when plants are exposed to low temperature, LOX-mediated lipid 

peroxidation has been proposed as a source of active oxygen species, particularly under 

stress conditions (Blokhina et al., 2003). In vegetative tissues such as roots, increased 

LOX activity and up-regulation of transcripts in response to low temperature have been 

associated with chilling tolerance (Lee et al., 2005). 

       Unlike low temperature, the incubation of olive fruit at high temperature (35 ºC) 

caused a decrease in the expression levels of the three genes studied in both cultivars 

(Fig. 3). A similar expression pattern has been described in Picual and Arbequina 

cultivars for a 9-LOX gene (Oe2LOX1; Padilla et al., 2012).  Furthermore, a decrease in 

the LOX gene expression level has been reported in banana fruit incubated at 30ºC 

(Yang et al., 2011). High temperature could affect not only the transcriptional level of 

the mentioned genes, but also the activity level of some of the encoded proteins.  In fact, 

it has been shown that after 30 min in vitro incubation of purified recombinant proteins 

at 35 ºC, Oe1LOX2 and Oe2LOX2 exhibit only about 40% of the initial activity, 

whereas OeHPL maintains 100% activity level (Padilla et al., 2012).  

 

2.2. 13-lipoxygenases and 13-hydroperoxide lyase genes from olive are repressed by 

darkness 
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      In order to study the effect of darkness on the Oe1LOX2, Oe2LOX2 and OeHPL 

gene expression levels in olive fruit mesocarp from Picual and Arbequina cultivars, 

olive branches were incubated at 25 ºC in the darkness for 24 h. A reduction in the 

transcript levels of the three genes studied was observed, especially in Picual during the 

first 3 h of treatment (Fig. 4). A maize 13-LOX gene (ZmLOX10; Nemchenko et al., 

2006) has been reported to exhibit the characteristics of a circadian-regulated gene since 

it maintains the same cyclic expression pattern when the plants were transferred from a 

12 h light / 12 h dark photoperiod into constant darkness. On the contrary, the decrease 

of Oe1LOX2, Oe2LOX2 and OeHPL transcript levels observed when olive fruit were 

shifted to darkness indicates a light-dependent transcriptional regulation of these three 

genes, as it was previously described for an olive 9-LOX gene (Oe2LOX1; Padilla et al., 

2012). 

 

2.3. Regulation of olive 13-lipoxygenases and 13-hydroperoxide lyase in response to 

wounding 

 

      To study the effect of wounding on the 13-LOXs and 13-HPL genes expression in 

olive fruit mesocarp, olive branches of Picual and Arbequina cultivars were incubated at 

standard conditions, except that olive fruit were subjected to mechanical damage with 

pressure using forceps with serrated tips. Oe1LOX2 and OeHPL transcript levels were 

transiently increased after wounding, especially in Arbequina cultivar, reaching a 

maximum after 1 h incubation and then, decreasing rapidly to initial levels (Fig. 5). On 

the contrary, Oe2LOX2 expression level was not altered by wounding. Based on the 
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high degree of sequence similarity and expression pattern of these two olive 13-LOX 

genes to those previously well characterized in potato (Royo et al., 1996) and tomato 

(Heitz et al., 1997), it has been proposed that Oe1LOX2 should be wound-inducible and 

involved in the synthesis of jasmonic acid, whereas Oe2LOX2 could be implicated in 

the generation of volatile compounds (Padilla et al., 2009). The present data support this 

hypothesis. On the other hand, the induction of the 13-HPL gene in wounded leaves has 

been reported for several plants like Arabidopsis (Bate et al., 1998), potato (Vancanneyt 

et al., 2001), and Nicotiana attenuata (Halitschke et al., 2004), but no information was 

available in wounded fruits. 

      The observed increase of Oe1LOX2 and OeHPL expression levels caused by 

mechanical damage was accompanied of increases in the corresponding enzyme activity 

levels. As shown in Figure 6A, crude extracts from mesocarp of wounded olive fruit of 

Arbequina cultivar exhibit an increase in both LOX and HPL activities, which is 

parallel to the increase of transcript levels of the corresponding genes detected during 

the first 3 h after treatment. Nevertheless, given that crude extracts obtained from olive 

fruit mesocarp show both 9- and 13-LOX activity in a 60:40 ratio (Olias et al., 1993), 

13-LOX isoforms are not necessarily the exclusive responsible for the detected increase 

in LOX activity. In fact, a transient increase in response to wounding has been reported 

for a 9-LOX gene (Oe2LOX1) in both cultivars (Padilla et al., 2012). Similar increases 

in LOX and HPL activity have also been observed in wounded leaves of rice seedlings 

(Wang et al., 2008) and rough lemon (Gomi et al., 2003), respectively.  

      Likewise, to check if the detected increases in transcript and activity levels of olive 

13-LOXs and 13-HPL produced the corresponding increase in the content of the C6 

volatile compounds, homogenates from mesocarp of wounded olive fruit of Arbequina 
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cultivar were obtained to analyze volatile compounds. A significant increase in the total 

content of C6 volatile compounds generated from LnA was observed at 0.5 h (Fig. 6B).  

      As mentioned above, the divergence between transcript, activity and volatiles levels 

could be related to different factors such as the participation of other LOX genes with 

13-LOX activity, the possible occurrence of post-transcriptional regulatory 

mechanisms, the limitation of 13-LOX activity (Sánchez-Ortiz et al., 2012b) and 

polyunsaturated fatty acids acting as substrates (Sánchez-Ortiz et al., 2007) for the 

synthesis of the volatile fraction, the competition of 9-LOX isoenzymes with 13-LOX 

isoenzymes for LA and LnA acids as substrates (Padilla et al., 2012), as well as the 

contribution of non-enzymatic lipid peroxidation (Yilmaz et al., 2001).  

 

2.4. Effect of water regime on 13-lipoxygenases and 13-hydroperoxide lyase genes from 

olive 

 

       The induction of LOX genes in hypocotyls of plants subjected to water deficit such 

as soybean (Bell and Mullet, 1991) or common bean (Porta et al., 1999) has been 

previously described.  In addition, the transcript abundance of two LOXs and a HPL 

gene was up-regulated significantly by water deficit in grape berries during 

development and ripening (Deluc et al., 2009). For those reasons, the effect of two 

different water regimes (natural rainfall and additional irrigation) on the olive 13-LOXs 

and 13-HPL transcript levels has also been studied in olive fruit mesocarp from Picual 

and Arbequina cultivars. Similar expression levels of Oe1LOX2 and OeHPL genes were 

detected for both cultivars in the two water regimes (Fig. 7), as it was reported for an 

olive 9-LOX gene (Oe2LOX1; Padilla et al., 2012). In contrast, a higher expression 
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level was observed for the Oe2LOX2 gene when both cultivars were grown with natural 

rainfall only. This increase could be related to the alteration of the functionality of the 

cell membranes. It has been shown that water deficit increases LOX activity and the 

hydroperoxide content of the lipid ester fraction, leading to changes in membrane 

fluidity and permeability, ultimately giving rise to dysfunctioning of the lipid bilayer 

(Maccarrone et al., 1995). 
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3. Concluding remarks 

 

      In the present work, the transcriptional regulation of olive 13-LOXs and 13-HPL 

genes by temperature, light, wounding and water regime has been shown. In addition, a 

significant increase in LOX and HPL enzyme activities has been also detected in the 

case of low temperature and wounding stresses. However, only a very slight increase in 

the total content of C6 volatile compounds was observed for both treatments. Our 

results also support the previous hypothesis that Oe1LOX2 could be involved in the 

synthesis of jasmonic acid, whereas Oe2LOX2 can be implicated in the formation of 

GLVs in combination with OeHPL. This research represents an important step towards 

the understanding of the factors involved in the regulation of the synthesis of GLVs in 

fruits. In the case of olive, this knowledge will allow the development of molecular 

markers to be used in the marker-assisted selection of new cultivars with improved 

VOO aroma. 
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4. Experimental 

 

4.1. Plant material and stress treatments 

 

      Olive (Olea europaea L.) trees cv. Picual and Arbequina were grown in the 

experimental orchards of Instituto de la Grasa, Seville (Spain), with drip irrigation and 

fertirrigation from the time of full bloom to fruit maturation. In the case of no irrigation, 

the olive trees received only natural rainfall. For the stress treatments, branches with 

about 100 olive fruit at 28 WAF (turning stage) were collected from Picual or 

Arbequina olive trees and incubated in a growth chamber at 25 ºC with a 12 h light/12 h 

dark cycle to mimic physiological conditions of the tree. The light intensity was 11.5 

µmol m
-2 

s
-1

. With these standard conditions, no changes in gene expression levels were 

detected in the mesocarp of the olive fruit. For stress treatments, standard conditions 

were modified depending on the effect studied. For low and high temperature 

experiments, the branches containing the olive fruit were incubated at 15 or 35 ºC, 

respectively, at the standard light intensity. To assess the effect of the darkness, light 

was turned off and the standard temperature was maintained. To study the effect of 

wounding, the whole surface of the olive fruit was mechanically damaged affecting 

mesocarp tissue, with pressure at zero time using forceps with serrated tips. The zero 

time of each experiment was selected 2 h after the beginning of the light period to 

preserve the natural photoperiod day/night of the olive fruit. For RNA isolation, olive 

mesocarp tissues were sampled, frozen in liquid nitrogen and stored at -80 ºC. In the 

case of crude extracts preparation or analysis of volatile compounds, fresh mesocarp 

tissue was always used.  
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4.2. Total RNA extraction, cDNA synthesis, and quantitative real-time PCR (qRT-PCR) 

 

      Total RNA isolation was performed from 1-2 g of frozen mesocarp tissue from 

different olive fruit as described by Hernández et al. (2005). RNA quality verification, 

removal of contaminating DNA, and cDNA synthesis were carried out according to 

Hernández et al. (2009). 

      Gene expression analysis was performed by qRT-PCR using a Mx3000P
TM

 real-

time PCR System and the “Brilliant
®
 SYBR

®
 Green Q-PCR Master Mix (Stratagene, La 

Jolla, USA) as previously described (Hernández et al., 2009). Primers for gene-specific 

amplification (Padilla et al., 2009; 2010) were designed using the Primer3 program 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). The specificity of the PCR 

amplification and the presence of primer dimers was monitored by melting curve 

analysis following the final step of the PCR, and beginning at 55 ºC through 95 ºC, at 

0.1 ºC s
-1

. Additionally, PCR products were also checked for purity by agarose gel 

electrophoresis. PCR efficiencies (E) of all primers were calculated using dilution 

curves with eight dilution points, two-fold dilution, and the equation E = [10
(-1/slope)

] – 1. 

The housekeeping olive ubiquitin2 gene (OeUBQ2, AF429430) was used as an 

endogenous reference to normalize. The real-time PCR data were calibrated relative to 

the corresponding gene expression level at zero time for each treatment and cultivar.  In 

both cases,   the 2
-ΔΔCt

 method for relative quantification was followed (Livak and 

Schmittgen, 2001). The data are presented as means ± standard deviation (SD) of three 

reactions performed in different 96-well plates, each having two replicates in each plate. 

 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi


  

17 
 

4.3. Crude extracts preparation from olive fruit mesocarp 

 

      Crude extracts to measure LOX activity were obtained by grinding 4 g of fresh 

mesocarp tissue from different olive fruit in 16 ml of 100 mM sodium phosphate buffer 

(pH 6.7) containing 0.1 % Triton X-100, 1 mM EDTA, 0.1 mM benzamidine, 5 mM α-

aminocaproic acid, 0.1 mM phenylmethylsulfonyl fluoride, and 5 % PVPP. For HPL 

activity assay, crude extracts were obtained by grinding the same amount of mesocarp 

tissue in 20 ml 50 mM HEPES-NaOH (pH 7.5), 20 mM KCl, 2 mM MgCl2, 2 mM 

EDTA, 2 mM Na2S2O5, 7 mM DTT, 0.1 % ascorbate, 0.5 % Triton X-100, and 12.5 % 

PVPP. In both cases, grinding was carried out in two 1 min periods with an Ultraturrax 

homogenizer. The homogenates were filtered under vacuum through Miracloth and 

centrifuged at 27000g for 20 min at 4 ºC. The supernatant was centrifuged again at 

10000g for 10 min at 4 ºC and used as crude extract. 

 

4.4. LOX and HPL activity assay 

 

     Monitoring the conjugated diene formation, that occurs during the hydroperoxidation 

of the fatty acids, was used as approach to measure the level of LOX activity in olive 

fruit crude extracts as it has been also used previously in different publications on olive 

fruit (Olías et al., 1993; Salas et al., 1999; Lorenzi et al., 2006; Williams and Harwood, 

2008, Patui et al., 2010) and other fruits (Gonzalez-Aguilar et al., 2004: Zhang et al., 

2006; Bai et al., 2011).  In vitro LOX activity was determined spectrophotometrically 

by continuously monitoring at 234 nm the formation of the conjugated diene. The 
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standard assay mixture consisted of 1.5 ml of 100 mM sodium phosphate buffer (pH 

6.5), 25 µl of substrate solution (10 mM LnA, 0.85 % Tween-20), and the amount of 

enzyme solution (2-25 µl) giving rise to a slope no higher than 1 dA234 min
-1

. One unit 

(U) of LOX activity is defined as the amount of enzyme catalyzing the formation of 1 

µmol of product min
-1

. 

      In vitro HPL activity from crude extracts could not be tested using the coupled 

HPL/alcohol dehydrogenase (ADH) method according to Vick (1991) due to strong 

inhibition of ADH by components in the olive crude extracts (Sánchez-Ortiz et al., 

2012a).  To circumvent this problem, an approach for measuring the HPL activity in 

olive fruit crude extracts was chosen by monitoring the decrease of A234 due to the 

disruption of the conjugated diene chromophore of the substrates at 25 °C, which has 

been previously described in other publications on olive fruit (Olías et al., 1993; Salas 

and Sanchez, 1999; Luaces et al., 2007;  Patui et al., 2010). The 1.5 ml standard assay 

mixture consisted of 100 mM sodium phosphate buffer (pH 8.0), 8 µl of 10 mM 

substrate solution and 10-20 µl of enzyme solution. One unit (U) of HPL activity is 

defined as the amount of enzyme catalyzing the formation of 1 µmol of product min
-1

. 

The 13-hydroperoxy isomer from the LnA utilized as substrate was prepared using 

soybean LOX according to the method of Hamberg and Samuelsson (1967). 

 

4.5. Analysis of volatile compounds 

 

      The analysis of volatile compounds was carried out through the fruit homogenate 

approach according to Riley and Thompson (1998) modified by Sanchez-Ortiz et al. 

(2012a). For this purpose, 4 g of fresh olive fruit mesocarp was homogenized with 8 mL 
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of distilled water by means of an Ultraturrax at 24000 rpm for 1 min. After an 

equilibrium period of 5 min at 25 °C, homogenate aliquots of 1.5 mL were taken into 10 

mL vials containing 1.5 mL of a saturated CaCl2 solution that halts enzymatic changes 

which might induce quantitative and qualitative alterations in the samples’ volatile 

profile following the olive mesocarp homogenization. Then vials were sealed and stored 

at −18 °C until analysis. Homogenate samples were conditioned to room temperature 

and then placed in a vial heater at 40 °C. After 10 min of equilibrium time, volatile 

compounds from headspace were adsorbed on a solid-phase microextraction (SPME) 

fiber DVB/Carboxen/PDMS 50/30 μm (Supelco Co., Bellefonte, PA) according to 

Luaces et al. (2003). The sampling time was 50 min at 40 °C, and it was carried out in 

triplicate. Desorption of volatile compounds trapped in the SPME fiber was done 

directly into the GC injector. Volatiles were analyzed using a HP-6890 gas 

chromatograph equipped with a DB-Wax capillary column (60 m × 0.25 mm i.d., film 

thickness 0.25 μm; J&W, Scientific, Folsom, CA, USA). Operating conditions were as 

follows: N2 as carrier, gas injector and detector at 250 °C, column was held for 6 min at 

40 °C and then programmed at 2 °C min
−1

 to 128 °C. Quantification was performed 

using individual calibration curves for each identified compound by adding known 

amounts of different compounds to re-deodorized high oleic sunflower oil. Compound 

identification was carried out on a HRGC-MS Fisons series 8000 equipped with a 

similar stationary phase column and two different lengths, 30 and 60 m, matching 

against the Wiley/NBS Library, and by GC retention time against standards. Main 

volatile compounds were clustered according to the polyunsaturated fatty acid origin 

into different classes. Quantitative data for every volatile class is the sum of the content 

of the following compounds, showing their Kovats indices in square brackets. C6/LnA 

compounds: (E)-hex-3-enal [1137], (Z)-hex-3-enal [1156], (Z)-hex-2-enal [1218], (E)-
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hex-2-enal [1233], (E)-hex-3-enol [1364], (Z)-hex-3-enol [1383], and (E)-hex-2-enol 

[1399]. C6/LA compounds: hexanal [1074] and hexan-1-ol [1355].  

 

4.5. Statistical analysis 

 

      Data for enzyme activity and volatile compounds were statistically evaluated using 

Statgraphics Plus 5.1 (Manugistic Inc., Rockville, MD). Analysis of variance (ANOVA) 

was applied and comparison of means was done by the Student-Newman-Keuls/Duncan 

test at a significance level of 0.05. 
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Figures legends 

 

Fig. 1. Effect of low temperature on the relative expression levels of Oe1LOX2, 

Oe2LOX2 and OeHPL genes in the mesocarp tissue from Picual and Arbequina 

cultivars. Olive tree branches with about 100 olive fruit (28 WAF) were incubated using 

standard conditions except that the temperature was 15 ºC. Relative expressions levels 

at different times were determined by qRT-PCR using the expression level of the 

corresponding gene at zero time as calibrator. 

 

Fig. 2. Effect of low temperature on the LOX and HPL activity levels in the mesocarp 

tissue (A) and on the content of C6 volatile compounds synthesized from LnA (black 

bars) or LA (white bars) in homogenates obtained from mesocarp tissue (B), 

corresponding to Picual and Arbequina cultivars. Olive tree branches with about 100 

olive fruit (28 WAF) were incubated using standard conditions except that the 

temperature was 15 ºC. At the indicated times, crude extracts and homogenates were 

obtained from the corresponding mesocarp tissues and used to determine LOX and HPL 

activity and volatile composition, respectively. Values for each enzymatic activity or 
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volatile class with different letters within each olive cultivar are significantly different 

(P ≤ 0.05). Each class of volatile compounds comprises compounds listed in 

Experimental section. 

 

Fig. 3. Effect of high temperature on the relative expression levels of Oe1LOX2, 

Oe2LOX2 and OeHPL genes in the mesocarp tissue from Picual and Arbequina 

cultivars. Olive tree branches with about 100 olive fruit (28 WAF) were incubated using 

standard conditions except that the temperature was 35 ºC. Relative expressions levels 

at different times were determined by qRT-PCR using the expression level of the 

corresponding gene at zero time as calibrator. 

 

Fig. 4. Effect of darkness on the relative expression levels of Oe1LOX2, Oe2LOX2 and 

OeHPL genes in the mesocarp tissue from Picual and Arbequina cultivars. Olive tree 

branches with about 100 olive fruit (28 WAF) were incubated at 25 ºC under darkness 

conditions for 24 h. Relative expressions levels at different times were determined by 

qRT-PCR using the expression level of the corresponding gene at zero time as 

calibrator. 

 

Fig. 5. Effect of wounding on the relative expression levels of Oe1LOX2, Oe2LOX2 and 

OeHPL genes in the mesocarp tissue from Picual and Arbequina cultivars. Olive tree 

branches with about 100 olive fruit (28 WAF) were incubated using standard conditions 

except that olive fruit were mechanically damaged at zero time. At the indicated times, 
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relative expressions levels were determined by qRT-PCR using the expression level of 

the corresponding gene at zero time as calibrator. 

 

Fig. 6. Effect of wounding on the LOX and HPL activity levels in the mesocarp tissue 

(A) and on the content of C6 volatile compounds synthesized from LnA (black bars) or 

LA (white bars) in homogenates obtained from mesocarp tissue (B) corresponding to 

Arbequina cultivar. Olive tree branches with about 100 olive fruit (28 WAF) were 

incubated using standard conditions except that olive fruit were mechanically damaged 

at zero time. At the indicated times, crude extracts and homogenates were obtained from 

the corresponding mesocarp tissues and used to determine LOX and HPL activity and 

volatile composition, respectively. Values for each enzymatic activity or volatile class 

with different letters are significantly different (P ≤ 0.05). Each class of volatile 

compounds comprises compounds listed in Experimental section. 

 

Fig. 7. Effect of water regime on the relative expression levels of Oe1LOX2, Oe2LOX2 

and OeHPL genes in the mesocarp tissue of Picual and Arbequina cultivars cultivated 

with irrigation or natural rainfall. Relative expression levels were determined by qRT-

PCR using the expression level of the corresponding gene in 12 WAF mesocarp tissue 

from irrigated Picual as calibrator. 
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