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Mutualistic communities have an internal structure that makes them resilient to external pertur-
bations. Late research has focused on their stability and the topology of the relations between the
different organisms to explain the reasons of the system robustness. Much less attention has been
invested in analyzing the systems dynamics. The main population models in use are modifications of
the r - K formulation of logistic equation with additional terms to account for the benefits produced
by the interspecific interactions. These models have shortcomings as the so called r - K formula-
tion diverges under some conditions. In this work, we introduce a model for population dynamics
under mutualism that preserves the original logistic formulation. It is mathematically simpler than
the widely used type II models, although it shows similar complexity in terms of fixed points and
stability of the dynamics. We perform an analytical stability analysis and numerical simulations
to study the model behavior in general interaction scenarios including tests of the resilience of its
dynamics under external perturbations. Despite its simplicity, our results indicate that the model
dynamics shows an important richness that can be used to gain further insights in the dynamics of
mutualistic communities.

I. INTRODUCTION

Despite its long history, there are still several open
issues in the research of ecological population dynam-
ics. Some of these questions were highlighted in the
125th anniversary issue of the journal Science [1–3]. For
example, aspects such as the mechanisms determining
species diversity in an ecosystem are under a very active
scrutiny by an interdisciplinary scientific community [4–
12]. Quantitative population dynamics goes back to 1202
when Leonardo Fibonacci, in his Liber Abaci, described
the famous series that follows the growth of rabbit popu-
lation [13]. Classical population theory began, however,
in 1798 with Robert Malthus’ An Essay on the Princi-
ple of Population [14]. Malthus argued that population
growth is the result of the difference between births and
deaths, and that these magnitudes are proportional to
the current population. Mathematically, this translates
in the differential equation:

dN

dt
= r0N, (1)

where N is the population size, r0 is the intrinsic rate
of growth of the population and equals the difference be-
tween the rates of birth and death (assuming no migra-
tions).

The Malthusian model predicts an exponential varia-
tion of the population, which if r0 > 0 translates into
an unbounded growth. In this model, r0 remains con-
stant along the process ignoring thus limiting factors on
the population such as the lack of nutrients or space. In
1838 Verhulst introduced an additional term, proposing
the so-called logistic equation (see [15]). The growth rate

must decrease as N increases to limit population growth
and the simplest way to achieve this is by making r0 a
linear function of N : r0 = r − αN , where r is the in-
trinsic growth rate and α a positive (friction) coefficient
that is interpreted as the intraspecific competition. This
approach leads to the r − α model:

dN

dt
= r N − αN2. (2)

The term with α acts as a biological brake leading the
system to a point of equilibrium for the dynamics with
a population value approaching K = r/α, usually called
the carrying capacity of the system.

The logistic equation is best known in the form that
Raymond Pearl introduced in 1930 (see [16] for an excel-
lent historical review). In this formulation, the carrying
capacity appears explicitly, and so it is known as r −K:

dN

dt
= r N

(
1− N

K

)
. (3)

The solution of this equation is a sigmoid curve that
asymptotically tends to K. This formulation has some
major mathematical drawbacks [17, 18]. The most im-
portant is that it is not valid when the initial population
is higher than the carrying capacity and r is negative.
Under those conditions, it predicts an unbounded popu-
lation growth. This issue was noted by Richard Levins,
and consequently is called the Levins’ paradox [18]. It is
important to stress that all mutualistic models derived
from Pearl’s formula inherit its limitations in this sense.

These seminal models of population dynamics did not
take into account interactions between species. When
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several species co-occur in an community there can be a
rich set of relationships among them that can be repre-
sented as a complex interaction network. In 1926, Vito
Volterra proposed a two-species model to explain the be-
havior of some fisheries in the Adriatic sea [19]. Volterra’s
equations describe prey N(t) and predator populations
P (t) in the following way:

dN

dt
= N (a− b P ) ,

dP

dt
= P (cN − d) , (4)

where a, b, c, and d are positive constants. In the Lotka-
Volterra model, as it is known today, the prey population
growth is limited by the predator population, while the
latter benefits from the prey and is bounded by its own
growth. This pair of equations has an oscillatory solution
that in the presence of further species can even become
chaotic.

While prey-predator and competition interactions have
been extensively studied, mutualistic interactions, which
are beneficial for all the species involved, have received
a lower level of attention. Interestingly, back in the
XIX century, Charles Darwin had already noticed the
importance of a mutualistic interaction between orchids
and their pollinators [20]. Actually, the relations be-
tween plants and their pollinators and seed dispersers
are the paradigmatic examples of mutualism. In this con-
text, Ehrlich and Raven [21] alluded to the importance
of plant-animal interactions in the generation of Earth’s
biodiversity. The simplest mutualistic model without ’an
orgy of mutual benefaction’ was proposed by May [22].
Each of May’s equations for two species is a logistic model
with an extra term accounting for the mutualistic ben-
efit. It is the same idea as in the Lotka-Volterra model
but interactions between species always add to the re-
sulting population. May’s equations for two species can
be written as

dN1

dt
= r1N1

(
1− N1

K1

)
+ r1N1 β12

N2

K1
,

dN2

dt
= r2N2

(
1− N2

K2

)
+ r2N2 β21

N1

K2
, (5)

where N1(N2) is the population of the species 1(2);
r1 (r2) is the intrinsic growth rate of population 1 (2)
and K1 (K2) the carrying capacity. This is the maximum
population that the environment can sustain indefinitely,
given food, habitat, water and other supplies available in
the environment. Finally, β12 (β21) is the coefficient that
embodies the benefit for population 1 (2) of each interac-
tion with population 2 (1). May’s model major drawback
is that it also leads to unbounded growth. This model
has been, anyhow, an inspiration for subsequent mutual-
ist models that incorporate terms to solve this problem.

Different strategies to avoid the unlimited growth have
been adopted. Wright [23] proposed a two-species model
with saturation as a result of restrictions on handling

time, TH , which corresponds to the time needed to pro-
cess resources (food) produced by the mutualistic inter-
action. The mutualistic term can be included as a type
II functional response

dN1

dt
= r1N1 − α1N

2
1 +

a bN1N2

1 + aN2 TH
,

dN2

dt
= r2N2 − α2N

2
2 +

a bN1N2

1 + aN1 TH
, (6)

where a is the effective search rate and b is a coefficient
that accounts for the rate of encounters between indi-
viduals of species 1 and 2. Wright analyzes two possi-
ble behaviors of mutualism: facultative and obligatory.
In the facultative case, r1,2 are positive, i.e., mutual-
ism increases the population but it is not indispensable
to species subsistence. If r1,2 are negative mutualism is
mandatory to the species survival. This model has dif-
ferent dynamics depending on the parameter values, but
for a very limited region of parameters shows three fixed
points. One stable at both species extinction, another
also stable at large population values and a saddle point
separating both basins of attractions. Using a mutualis-
tic model with a type II functional, Bastolla et al. [10, 24]
show the importance of the structure of the interaction
network to minimize competition between species and to
increase biodiversity. The type II models are, however,
hard to treat analytically due to the fractional nature
of the mutualistic term. Other recent alternatives have
been proposed as, for instance, that of Johnson and Ama-
rasekare [25]. Still, these works go in the direction of
adding extra features to the type II functional rendering
more difficult an eventual analytical treatment.

Recently, the research in this area has focused on sys-
tem stability, looking for an explanation of the resilience
of these communities in the interaction networks [9–
11, 26, 27]. The dynamics is, however, as important since
changes in the parameters that govern the equations in-
duced by external factors can lead the systems to behave
differently and to modify their resilience to perturbations
in the population levels. Here, we revisit the basic model
describing the population dynamics and propose a set of
new equations that combines simplicity in its formulation
with the richness of dynamical behaviors of the type II
models.

Once introduced the classical population dynamics
equations and the review of mutualistic models, the pa-
per is organized as follows. In Section 2, we propose
a modified logistic model for mutualism, along with its
stability analysis in Section 3. Numerical simulations of
our model studying resilience to external perturbation
or to changes in the interaction networks are presented
in Section 4. The work is then closed in Section 5 with
the conclusions. More technical aspects are considered
in Appendices A, B and C with details on the stabil-
ity analysis and numerical treatment of the equations in
stochastic form, as well as the tables with the parameters
used for the simulations.
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II. A LOGISTIC EQUATION FOR
POPULATION DYNAMICS WITH
MUTUALISTIC INTERACTIONS

Our basic hypothesis is that mutualism contributes to
a variation in the species intrinsic growth rate. This as-
sumption is based on empirical observations in which the
growth rate of populations (or the fertility) correlates
with the availability of resources (see, for instance, [28–
32]). In our context, the resources are provided by the
mutualistic interactions. The simplest way to express
mathematically this idea is by expanding the intrinsic
growth rate r in terms of the populations with which the
mutualistic interactions occur. To be more specific, let
us assume that the community is composed of na ani-
mal species with populations {Na

i } and np plant species
with populations {Np

j }. The rate of mutualistic interac-
tions between a species i and another j is given by bij ,
which can be seen as elements of a matrix encoding the
mutualistic interaction network. Note that the matrix is
not necessarily symmetric if the benefit of the interac-
tion is different for the two species involved. Considering
a generic animal species i, its growth rate can then be
written as

ri = r0
i +

np∑
k=1

bikN
p
k , (7)

where r0
i is the initial vegetative growth rate. To avoid

unrealistic divergence in the population levels, the effect
of mutualism must saturate at certain point. Following
Velhurst’s idea for the logistic equation, this implies that
the friction term, αi, must also depend on the mutualis-
tic interactions. In order to keep the model simple, we
assume that the effect of the mutualism on α is propor-
tional to the benefit. This means that

αi = α0
i + ci

np∑
k=1

bikN
p
k , (8)

where ci is a proportionality constant. The expansions
for the plants are similar but with the sums running over
the animal species instead of on the plants. The expan-
sions of r and α could have been taken to higher orders
in Np

k . However, the linear version of the model should
be enough to capture the qualitative features of the pop-
ulation dynamics as long as the higher order terms con-
tribute in a similar way to α and r (with the same sign).

For the sake of simplicity in the notation whenever
there is no possible confusion the zeros will be dropped
from α0

i and r0
i . Under these assumptions, the system

dynamics is described by the following set of differential

equations:

1

Na
i

dNa
i

dt
= ri +

np∑
k=1

bikN
p
k −

(
αi + ci

np∑
k=1

bikN
p
k

)
Na
i

1

Np
j

dNp
j

dt
= rj +

na∑
`=1

bj`N
a
` −

(
αj + cj

na∑
`=1

bj`N
a
`

)
Np
j

(9)

The terms on the right-hand side of these equations can
be interpreted as a effective growth rates. Since we will
use this concept later, it is important to define it explic-
itly. The effective growth rate of an animal species i is
defined as

ref,i = ri +

np∑
k=1

bikN
p
k −

(
αi + ci

np∑
k=1

bikN
p
k

)
Na
i . (10)

The plants effective growth rates are defined equivalently
but substituting a by p. The carrying capacities of the
system are given by the non-zero fixed points of Eqs.
(9). It is easy to see that in the absence of mutualism
Ki = ri/αi for species i, as in the original logistic equa-
tions. On the other hand, under the presence of very
strong mutualism Ki tends to 1/ci. The role of the pro-
portionality constant ci is thus to establish a maximum
population for the species i in the strong interaction limit
ci
∑np

k=1 bikN
p
k � αi.

III. STABILITY ANALYSIS

A. A two species community

For simplicity, we start the stability analysis by con-
sidering a 2-species model for which we can obtain full
analytical results. Let the plant species correspond to the
index 1 and the animal species to the index 2. Equations
(9) become then

dNp
1

dt
= (r1 + b12N

a
2 ) Np

1 − (α1 + c1 b12N
a
2 )Np

1
2
,

dNa
2

dt
= (r2 + b21N

p
1 )Na

2 − (α2 + c2 b21N
p
1 )Na

2
2. (11)

Some examples with the flux diagrams for this equation
system under different parameter conditions are depicted
in Figure 1.

Setting
dNp

1

dt =
dNa

2

dt = 0, one can find the fixed points
for the system dynamics. The first, obvious one is to-
tal extinction at (Np

1
∗
, Na

2
∗) = (0, 0), which is always a

fixed point regardless of the parameter values. If any
of the intrinsic growth rates r1, r2 is positive, there exist
additional fixed points accounting for partial extinctions.
The dynamics of the surviving population with positive
r follows a decoupled logistic equation, as can be seen
from (11). Therefore, its population will tend to the limit
given by a non interacting system: Either K1 = r1/α1 or
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Figure 1: Flow diagram for the dynamics of a two species community following the population equations (11). The fixed
points are marked as red circles, while the color of the arrows indicates the intensity of the flow. The four panels correspond to
different configurations of the intrinsic growth rates r1 and r2. The other parameters of the equations are set at α1 = α2 = 0.008,
b12 = b21 = 0.4 and c1 = c2 = 0.008. Mutualism is mandatory for both species in a) and b), although in different degree in
the diagram b). It is mandatory for species 2 in c), while species 1 can survive without species 2. And, finally, mutualism is
facultative for both species in d).

K2 = r2/α2. This means that there are partial extinction
fixed points at (K1, 0) or (0,K2), or both if mutualism is
facultative only for species 1 (r1 > 0), only for species 2
(r2 > 0) (see Figure 1c) or for both (r1 > 0 and r2 > 0)
(see Figure 1d), respectively.

Besides total or partial extinction, other non-trivial
fixed points may appear whenever the condition ref,i =
ref,j = 0 is satisfied. At those points, the following rela-
tions are fulfilled

Np
1
∗

=
r1 + b12N

a
2
∗

α1 + c1 b12Na
2
∗ ,

Na
2
∗ =

r2 + b21N
p
1
∗

α2 + c2 b21N
p
1
∗ . (12)

Substituting the expression for Na
2
∗ on the upper equa-

tion, one finds thatNp
1
∗

must satisfy a quadratic equation
at the fixed points:

ANp
1
∗2

+BNp
1
∗

+ C = 0, (13)

where the coefficients A, B and C are given by

A = c2 b21 α1 + c1 b12 b21,

B = α1 α2 + c1 b12 r2 − c2 b21 r1 − b12 b21,

C = −r1 α2 − b12 r2. (14)

The fixed points of Na
2
∗ are found by substituting in turn

Np
1
∗

into the bottom expression of Equation (12). There
are several possible scenarios depending on the solutions
of Equation (13):

1. Both roots are complex. There are no additional
fixed points, except for total or partial extinction.

2. A unique real root. This is a bifurcation point for
the system dynamics, the solutions are real but de-
generate. In this case, there exists a single fixed

point besides extinction. The final system fate de-
pends on the stability of this point. However, the
most likely outcome is that the populations get
eventually extinct.

3. Both roots are real and different. The situation is
similar to the one displayed in Figure 1a. There
are two non-trivial fixed points, typically one sta-
ble, and one saddle points that lies on the boundary
between two attraction basins. The position of the
saddle point determines the extension of the extinc-
tion basin and, therefore, the resilience of the sys-
tem to external perturbations. We call this point
the extinction threshold and its position will be de-
noted by (Np

1
•
, Na

2
•).

In order to study the linear stability of the fixed points,
we can expand the Equations (11) in a Taylor series
around them and calculate the Jacobian of the system
(see Appendix A for details). If the eigenvalues are neg-
ative, the fixed point is stable. Otherwise, it can be a
saddle point if one is positive and the other negative or
unstable if both are negative. Starting by total extinc-
tion, the Jacobian can be written as

J =

(
r1 0
0 r2

)
. (15)

The eigenvalues are λ1,2 = r1,2, which means that the
extinction point is linearly stable under the assumption
of r1 < 0 and r2 < 0, i.e. when both species rely on
mutualism for survival. Total extinction has in this case
an attraction basin for different population values. If
the system falls within this population levels, the only
possible fate is extinction.

On the other hand, if mutualism is facultative for one
or both species, total extinction becomes a saddle or
unstable point. However, other two fixed points can
appear for partial extinction. In this case, the con-
dition for stability of (r1/α1, 0) is that r1 > 0 and
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Figure 2: Flow diagram for the dynamics of the type II Equa-
tions (6). The fixed points are marked as red circles, while the
color of the arrows indicate the intensity of the flow. Find-
ing this dynamical configuration took a considerable effort in
parameter tuning. The equation parameters used here are
r1 = r2 = −0.1, α1 = α2 = 0.001, a = 0.066, b = 0.2 and
TH = 1.

r2 < −b21 r1/α1. Similarly, (r1/α1, 0) is stable only if
r2 > 0 and r1 < −b12 r2/α2.

The same analysis for the remaining non-trivial fixed
points leads us to the Jacobian matrix:

J =

(
−Np

1
∗

(α1 + c1 b12N
a
2
∗) Np

1
∗
b12 (1− c1Np

1
∗
)

Na
2
∗ b21 (1− c2Na

2
∗) −Na

2
∗ (α2 + c2 b21N

p
1
∗
)

)
(16)

Since the parameters c1 and c2 are always positive (re-
member that they are the inverse of the maximum pop-
ulation in the limit of strong mutualism), all the terms
of J have the sign shown in Equation (16). The diago-
nal terms are negative, while the off-diagonal are always
positive. A similar configuration for the Jacobian matrix
was observed in mutualistic models in [33]. It implies
that the eigenvalues of J are both real and that they can
be either both negative (stable fixed points) or one posi-
tive and another negative (saddle point). The condition
for the existence of a saddle point is that the determi-
nant of the Jacobian matrix at the extinction threshold
is negative, J11 J22 < J12 J21, which in terms of Np

1
•

and
Na

2
• means that

1− c1Np
1
• − c2Na

2
• > 0. (17)

All these results for two species show that our model
displays a rich dynamics. Still, it is simple enough to
understand well its different regimes and where they ap-
pear in the parameter space. In this sense, it overcomes
shortcomings inherent to the type II formulation. For in-
stance, finding a dynamic configuration as the one shown
in Figure 2 for the model of Equation (6) requires a no-
table effort in terms of parameter tuning. This dynamical
configuration with two attractors and a saddle point is
ideal to study issues such as system resilience, capacity

to bear a high biodiversity or the evolution of the mu-
tualistic interaction networks (see, for example, [10] or
[34]). Such regime appears naturally in our model, as in
Figure 1a, without the need of an elaborated parameter
search.

B. Survival watershed

We will refer as survival watershed to the repeller limit
between trajectories that evolve towards full system ca-
pacity or towards extinction. In Figure 1a, it corresponds
to the curve delimiting the attraction basin of total ex-
tinction. The watershed includes the non-trivial saddle
point (Np

1
•
, Na

2
•). Its location in the phase space is im-

portant because it determines the fragility or robustness
of the system by establishing the extension of the extinc-
tion basin. Some characteristics of the points laying on
the watershed can be analytically found at least for the
case of two species communities. The points of the water-
shed correspond to population pairs (Np

1 , N
a
2 ) for which

the system dynamics remains in the watershed and ends
at (Np

1
•
, Na

2
•).

By definition, at (Np
1
•
, Na

2
•) both effective growth

rates are zero. To reach this point from any other initial
populations, the effective growth rates of both species
need to have different signs and evolve similarly in time.
If both had the same sign (positive or negative), the sys-
tem dynamics would be attracted towards full capacity or
towards total extinction. Let us assume that the system
is approaching (Np

1
•
, Na

2
•), that the initial populations

were (Np
1

0
, Na

2
0) on the watershed and that we can write

the effective growth rates as

ref,1 =Ae−γ t,

ref,2 =−B e−γ t, (18)

whereA, B and γ are constants, unknown at the moment.
Equations (11) then become

dNp
1

dt
= Np

1 Ae
−γ t,

dNa
2

dt
= −Na

2 B e
−γ t. (19)

Integrating these equations between t = 0 and infinity,
we find that

ln
Np

1
•

Np
1

0 =
A

γ
,

ln
Na

2
•

Na
2

0 = −B
γ
. (20)

Equating the value of γ in both expressions, we get the

condition for (Np
1

0
, Na

2
0) to be part of the survival wa-

tershed:

1

B
ln

(
Na

2
•

Na
2

0

)
+

1

A
ln

(
Np

1
•

Np
1

0

)
= 0, (21)
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which means that the functional form of the watershed
is given by the power-law

Na
2

0 = C (Np
1

0
)

−B
A . (22)

C is a constant that taking into account that the water-
shed includes the fixed point (Np

1
•
, Na

2
•) can be written

as

C = Na
2
•/(Np

1
•
)

−B
A . (23)

To find the value of the exponent B
A , we must return

to the definition of the effective growth rates, ref,1 and
ref,2. According to Equations (18), at t = 0 we have that

A = r1 + b12N
a
2

0 − (α1 + c1 b12N
a
2

0)Np
1

0
,

−B = r2 + b21N
p
1

0 − (α2 + c2 b21N
p
1

0
)Na

2
0. (24)

If we know that our initial points are part of the water-
shed, dividing these two expressions we can obtain the
exponent value. Alternatively, if other points in the wa-
tershed apart from (Np

1
•
, Na

2
•) need to be found, we can

divide the previous expressions, one by the other, and us-
ing Equation (20) reach the following implicit equation

ln
(
Na

2
•

Na
2

0

)
ln
(
Np

1
•

Np
1
0

) =
(r2 + b21N

p
1

0
)− (α2 + c2 b21N

p
1

0
)Np

1
0

(r1 + b12Na
2

0)− (α1 + c1 b12Na
2

0)Na
2

0 .

(25)

Solving then numerically this equation we can find other
points in the watershed and with them an estimation of
B
A . Figure 3 shows an example of the watershed and a
comparison between the curve obtained with Equations
(22) and (25) and numerical estimations integrating the
system dynamics.

C. General communities

The generalization of the stability analysis for an arbi-
trary number of species is straightforward. The fixed
points of Equations (9) comprise the trivial solution
(Np

i , · · · , Na
j ) = (0, · · · , 0), i.e., total extinction, par-

tial extinction points if mutualism is facultative for any
species, and the populations (Na

i
∗, · · · , Np

j
∗
) for which

the effective growth rates vanish:

r∗ef,i = (ri +

np∑
k=1

bikN
p
k
∗
)− (αi + ci

np∑
k=1

bikN
p
k
∗
)Na

i
∗ = 0,

r∗ef,j = (rj +

na∑
`=1

bj`N
a
`
∗)− (αj + cj

na∑
`=1

bj`N
a
`
∗)Np

j
∗

= 0,

(26)

0 1000 2000 3000 4000 5000

N
1

0

1000

2000

3000

4000

5000

N
2

simulation

N
2
 ~ N

1

-B/A

Figure 3: Survival watershed for two species. Dots were
found performing a numerical scan of the system dynam-
ics, determining for which initial conditions the final out-
come was extinction or full capacity. Grey solid line is
the power law found with Equations (22) and (25). In
this case, B

A
= 1.2944, Np

1
• = 989, Na

2
• = 1232, b12 =

0.000041850, c1 = 0.00004, α1 = 0.000035, r1 =
−0.016, b21 = 0.00008750, c2 = 0.0001, α2 = 0.000035, r2 =
−0.02.

for animals and plants, respectively. These equations can
be rewritten as

Na
i
∗ =

ri +
∑np

k=1 bikN
p
k
∗

αi + ci
∑np

k=1 bikN
p
k
∗ =

ri + rmuti

αi + ci rmuti

=
r∗+
i

r∗−i
,

Np
j
∗

=
rj +

∑na

`=1 bj`N
a
`
∗

αj + cj
∑na

`=1 bj`N
a
`
∗ =

rj + rmutj

αj + cjrmutj

=
r∗+
j

r∗−j
.

(27)

The rates rmuti account for the effect of the mutualism on
species i, while the rates r∗+ stand for the terms increas-
ing the population growth and r∗− for those decreasing
it via intra-specific competition.

Equations (9) can be linearized around the fixed
points. The corresponding Jacobian matrix has the same
appearance as its counterpart for a two species commu-
nity (Equation (16)), with negative entries on the diag-
onal and positive (and null) entries for the off-diagonal
elements. For the non-trivial fixed points (those with-
out total or partial extinctions), the diagonal terms can
be written for animals and plants, respectively, as (see
Appendix A)

Jii = −Na
i
∗

(
αi + ci

np∑
k=1

bikN
p
k
∗
)
,

Jjj = −Np
j
∗
(
αj + cj

na∑
`=1

bj`N
a
`
∗

)
. (28)

The non-diagonal terms, in turn, are

Jij = Na
i
∗ bij (1− ciNa

i
∗) (29)



7

for interactions between a generic animal species i and a
plant j, and

Jji = Np
j
∗
bji
(
1− cj Np

j
∗)

(30)

for the opposite interactions between plant j and animal
i. Given the invariance of the trace of a matrix to change
in the vector basis, the sum of the eigenvalues of the
Jacobian matrix must satisfy the relation

na+np∑
k

λk = −

(
na+np∑
k

|Jkk|

)
. (31)

The trace is negative, which means that if there are any
positive or null eigenvalues their effect must be compen-
sated by several other negative eigenvalues. Therefore,
the non-trivial fixed points can be either stable (if all the
eigenvalues are negative) or saddle points, if at least one
is positive. They cannot be purely unstable.

Another question to discuss is what occurs in case of
partial extinctions. The effect of the extinction of some
species in the system is to reduce the dimensionality of
the set of Equations (9). To fix ideas, let us assume, for
instance, that one animal species e gets extinct. This
implies that the possible fixed points for the system dy-
namics must include now that Na

e
∗ = 0. The collapse of

e can trigger the extinction of some plant species relying
on it for reproduction. After these plants, some other
animals depending on them can in turn get extinct, and
so on forming a cascade extinction event. Note that, al-
though the extinction event can be produced by external
factors to the system such as a disease or a famine, the
population dynamics for the remaining species is linked
to the full system equations. The new non-trivial fixed
points correspond to the partial extinction points of the
original complete set of equations. The stability of these
points can substantially change. The entries of the Jaco-
bian matrix for the extinct species in the new non-trivial
fixed points become Jee = re +

∑np

k=1 bekN
p
k
∗

in the di-
agonal and Jej = 0 off the diagonal. These terms do not
contribute to eigenvalues relevant for the stability anal-
ysis. The rest of entries for the Jacobian are given by
Equations (28), (29), and (30) adapted to the surviving
species. This means that the sums of Equations (28) do
not run over all the species as before, and that the diago-
nal terms can be closer to zero. The stability of the new
fixed points can thus change depending on the parame-
ters of the equations ruling the population dynamics of
the surviving species. Actually, depending on how the
interactions between species are in the remaining com-
munity, the system can become more robust to external
perturbations after a partial extinction event.

IV. NUMERICAL RESULTS

The previous analytical results are general so can be
used in any mutualistic community. However, to fix
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Pol 1 Pol 3Pol 2 Pol 4 Pol 5
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0

200

400

600

800

P
o

p
u

la
ti

o
n Plant 1

Plant 2
Plant 3
Plant 4

0 50000 100000 150000 200000 250000

Time (days)

0

100

200

300

400

P
o

p
u

la
ti

o
n

Pol. 1
Pol. 2
Pol. 3
Pol. 4
Pol. 5

Figure 4: a) Mutualistic community with four species of
plants and five species of pollinators. b) Simulation results
with the population trends for the different species (each
species is color-coded). Numerical solution shows that initial
populations are below the extinction threshold. In this sce-
nario, the system tends to total extinction. The parameters
of the simulation can be found in the C and table I.

ideas, it is important to focus on a particular example.
To be able to follow the system dynamics, a numerical
technique to integrate the Equations 9 is implemented.
We have used a stochastic approach to take into account
the discrete nature of the individuals in a population.
A similar technique has been applied before to epidemi-
ologic studies (see, for instance, [35]). Details on the
model implementation are given in B.

The intrinsic growth rates are fixed in negative values
for all the simulations, which implies that mutualism is
always obligatory for all species. Figure 4a shows a small
mutualistic community created for the purpose of this
analysis (see numerical details in C, the simulations pa-
rameters are in Table I). In many empirical studies, the
number of interacting species in each class is of the order
of tens. The network of this example has less species but
already displays the main behaviors of larger communi-
ties. The population dynamics for the first simulation
is depicted in Figure 4b. The conditions are such that
seven out of nine species have negative effective growth
rates. This leads to a decrease in all the populations ex-
cept in those of plant species 1 and 4. Still, despite their
initial growth, the decline of their mutualistic partners
turn negative their ref,i and they eventually get extinct.
This scenario shows how the system is attracted to ex-
tinction if the populations that are initially below the
extinction threshold.

The next simulation explores other fixed points of the
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Plants Polinators

Figure 5: Population dynamics and evolution of effective rates
for the different species (each species is color-coded). The
interaction network is the same as in Figure 4a. Despite the
initial negative effective growth rates for some species, the
system dynamics in this scenario tends to full capacity. The
numerical details on the simulation are in C, table II.

model dynamics. Again, all intrinsic rates are negative
but mutualistic interaction weights (terms bij) and ini-
tial populations are selected in such a way that the ef-
fective growth rates of plants 1 and pollinators 1 and 4
are positive, while the effective growth rates of all the
other species are negative (see Table B.2). Despite this
initial disadvantage, the population of these species re-
cover and the system dynamics tends to the fixed point
at full capacity (Figure 5). The speed of the recovery
process is different for all the species and even for some
of them there is an initial decline of the population size.
This short time tendencies can deceive an observer unless
the observation period is long enough to comprehend the
full system dynamics.

System stability analysis are usually performed under
the assumption of constant external conditions. How-
ever, these conditions may strongly vary in more real-
istic scenarios due to factors such as diseases, famines
or droughts. The resilience of mutualistic networks and
foodwebs has been traditionally related to a network
property named nestedness [36]. Two types of species
can be found in interaction networks: generalists, linked
to several instances of the other class, and specialists,
tied only to a small number of them. In nested networks,
there is a core of generalist species that are highly cou-
pled, whereas specialists are much more likely to be con-
nected to generalists than to other specialists. Specialists
can suffer more in an adverse scenario, but the core of
generalist is able to sustain the community. In the next
numerical simulations, we explore the effect of nestedness
on the system resilience using our model. The objective

a)

b)
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Figure 6: a) A plant-pollinator network with high nested-
ness. b) Simulation results of population trends obtained with
this network. An external perturbation attacks plant species
7, which leads to its extinction. The rest of the community
reaches a stationary state at full capacity in the reduced sys-
tem. Numerical details on the simulation are in C, including
the simulation parameters in Table III.

is to explore whether its dynamics responds similarly to
an increase in the nestedness level of the interaction net-
work. These are simple examples but they already help
to fix ideas.

In the first example, a network with seven species of
plants and five of pollinators is considered (Fig. 6a). We
are not going to develop a formal justification, but this
network is strongly nested with an easy to identify core of
generalist species and specialists tied to generalists of the
other class. Initial populations have been chosen to be
above the survival threshold. The system is evolved until
it reaches population capacity until year 100 (day 36500,
see Fig. 6b). Then, a disruption is introduced in the form
of plague attacking plant species 6. This plant suffers an
additional 0.20 yearly death rate and it becomes extinct.
Plant species 6 is only linked to pollinator species 1, the
most generalist of its class. The effect of its extinction
is negligible since mutualistic benefit of the rest of plant
species is high enough to balance it.

In the last example, a slight modification of the net-
work is used (Fig. 7a), that breaks the strong nestedness
of previous example. This time plant species 6 is linked
to pollinator species 5, an specialist. We also remove the
link connecting plant 1 and pollinator 5 and add a link
between plant 7 and pollinator 5. Numerical values of
the rates for the interaction network are described in C,
Table IV. The simulation is then repeated but this time
with less nested network. All initial effective rates even-
tually turn positive by the growth of the system. At year
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Figure 7: a) A low nested interaction network. b) Simu-
lation results depicting population trends in the low nested
network. As before, an external perturbation attacks plant
species 6. The system, however, does not recover and a small
scale extinction event is triggered. Numerical details of the
simulation can be found in C, the simulation parameters are
included in Table IV.

100, plant species 6 suffers the same attack as before, an
additional 0.20 yearly death rate, that triggers its extinc-
tion. However, the effect this time is different. Pollinator
species 5 depends for its survival on plant species 6, so the
slope of its population becomes negative and will even-
tually vanish. Plant 7, connected to specialist pollinator
5 and with a weak tie with pollinator 1, losses its main
source of mutualistic benefit and also faces extinction.
So, an external event on plant 6 has dragged plant 7 to
extinction because they were indirectly linked by special-
ist pollinator 5. If both plant species share links with a
generalist pollinator this cascade effect is more unlikely.

V. CONCLUSIONS

In this work, we have introduced a model derived from
the logistic approach to study population dynamics un-
der mutualistic interactions. The proposed equations
overcome the drawbacks of May’s model when dealing
with negative growth rates, an important issue when the
system is far from equilibrium and mutualism is obliga-
tory. Our model also allows for an easier analytical treat-
ment since the nonlinearities are simpler than for instance
those of the type II models. This simplicity makes it also
easier to estimate from empirical data the different rates
involved in the equations or to assign them an ecologi-
cal interpretation. This is a key point because empirical
mutualistic interaction datasets are scarce since its com-
pilation is a painstaking task.

We have studied the dynamics of the model finding the
dynamics fixed points and their stability analytically for
a simple case, and numerically for a more involved com-
munity. Our model shows the fixed point structure of
May’s model with the notable addition of a saddle point
that controls the stability of the whole system. In this
regard the model is as rich in dynamic behaviors as the
type II models but with a much simpler mathematical
structure. We have analyzed numerically the resilience
of our model to external perturbations introducing per-
turbations in a simple but relatively involved mutualistic
network. As in other communities described in the litera-
ture, the system resilience is a function of the structure of
the network. We hope that this new model can be used
to gain further insights in the mutualistic communities
due to its rich dynamics and simplicity.
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Appendix A: Detailed Linear Stability Analysis

For sake of simplicity, we drop the use of the super-
scripts for plants and animals. The equations system
(11) can be expanded in a Taylor series around the sin-

gular point (N∗
1 , N

∗
2 ) as N1 = N∗

1 +Ñ1 and N2 = N∗
2 +Ñ2

[37]:

dÑ1

dt
= r1 + b12(N∗

2 + Ñ2) − (α1 + c1b12(N∗
2 + Ñ2))(N∗

1 + Ñ1)

dÑ2

dt
= r2 + b21(N∗

1 + Ñ1) − (α2 + c2b21(N∗
1 + Ñ1))(N∗

2 + Ñ2)

(A1)

and retaining only the linear terms we get:

dÑ1

dt
= Ñ2(b12 − c1b12N

∗
1 ) − Ñ1(α1 + c1b12N

∗
2 ) ≡ f1(Ñ1, Ñ2)

dÑ2

dt
= Ñ1(b21 − c2b21N

∗
2 ) − Ñ2(α2 + c2b21N

∗
1 ) ≡ f2(Ñ1, Ñ2)

(A2)

The Jacobian matrix entries are:
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J11 = ∂f1
∂Ñ1

= −N∗
1 (α1 + c1b12N

∗
2 )

J12 = ∂f1
∂Ñ2

= N∗
1 b12 (1− c1N∗

1 )

J21 = ∂f2
∂Ñ1

= N∗
2 b21 (1− c2N∗

2 )

J22 = ∂f2
∂Ñ2

= −N∗
2 (α2 + c2b21N

∗
1 )

(A3)

and it can be written in terms of positive entries Jij as

J =

(
−J11 J12

J21 −J22

)
The eigenvalues λ1,2 can be obtained from:

|J − λI| = 0 (A4)

whose solutions are

λ1,2 = 1
2

(
tr(J)±

√
tr2(J)− 4 Det(J)

)
= 1

2

(
− (J11 + J22)±

√
(J11 + J22)

2 − 4 Det(J)

)
= 1

2

(
− (J11 + J22)±

√
(J11 − J22)

2
+ 4 (J12J21)

)
(A5)

The last expression indicates that the two eigenvalues
are real. In addition, eigenvalues satisfy:∏

k

λk = Det(J) (A6)

so the singular point will be a saddle point when
Det(J) < 0. Expanding the determinant of the Jacobian
matrix we obtain a condition for the singular point:

1− c1N∗
1 − c2N∗

2 > 0 (A7)

The partial extinctions are also singular points, and
correspond to N∗

1,2 = 0. For the sake of simplicity, we
only write the equations for the singular point (N∗

1 =
r1/α1, N

∗
2 = 0). With the Taylor expansion around this

point the system equations can be written:

dÑ1

dt
= r1N

∗
1 − α1N

∗2
1 + r1Ñ1 + b12Ñ2N

∗
1 − 2α1N

∗
1 Ñ1+

−c1b12Ñ2N
∗2
1

dÑ2

dt
= r2Ñ2 + b21N

∗
1 Ñ2

The Jacobian is now

J =

(
−r1 b12N

∗
1 (1− c1N∗

1 )
0 r2 + b21N

∗
1

)
The eigenvalues are the diagonal entries. This sin-

gular point will be a stable node when r1 > 0 and

r2 < −b21r1/α1. The symmetric solution is (N∗
1 =

0, N∗
2 = r2/α2) and it will be a stable node when r2 > 0

and r1 < −b12r2/α2.
The generalization for na + np species is

dNi
dt

=

ri +

na∑
j=1

bijNj

Ni −

αi + ci

na∑
j=1

bijNj

N2
i

dNj
dt

=

(
rj +

np∑
i=1

bjiNi

)
Nj −

(
αj + cj

np∑
i=1

bjiNi

)
N2
j

(A8)

where the subscript i runs for all plant species and the
subscript j runs for all animal species.

The singular points of this set of equations are: the
trivial solution (Ni=1···np = 0, Nj=1···na = 0), i.e. the
total extinction point, and the solution of effective growth
rates equal to zero:

r∗ef,i =

(
ri +

na∑
j=1

bijN
∗
j

)
−

(
αi + ci

na∑
j=1

bijN
∗
j

)
N∗

i = 0

r∗ef,j =

(
rj +

np∑
i=1

bjiN
∗
i

)
−

(
αj + cj

np∑
i=1

bjiN
∗
i

)
N∗

j = 0

(A9)

that can be rewritten as an implicit equation set.

N∗
i =

ri+
∑na

j=1 bijN
∗
j

αi+ci
∑np

i=1 bijN
∗
j

=
ri+r

Mut
i

αi+cirMut
i

=
r∗+i

r∗−i

N∗
j =

rj+
∑np

i=1 bjiN
∗
i

αj+cj
∑na

i=1 bijN
∗
i

=
rj+rMut

j

αj+cjrMut
j

=
r∗+j

r∗−j

where the rates r∗+ and r∗− stand for the positive ef-
fective growth rate and the per capita negative effective
growth rate, respectively.

The system [A8] can also be expanded around the sin-
gular point.

dNi
dt

= ri +
na∑
j=1

bij(N
∗
j + Ñj) − (αi + ci

na∑
j=1

bij(N
∗
j + Ñj))(N

∗
i + Ñi)

dNj

dt
= rj +

np∑
i=1

bji(N
∗
i + Ñi) − (αj + cj

np∑
i=1

bji(N
∗
i + Ñi))(N

∗
j + Ñj)

(A10)

where the subscript i stands for plant species and the
subscript j stands for animal species.

The set of na + np equations can also be rewritten
retaining only the linear terms as:

dNi

dt
=

na∑
j=1

Ñj (bij − cibij N
∗
i ) − Ñi(αi + ci

na∑
j=1

bij N
∗
j )

dNj

dt
=

np∑
i=1

Ñi

(
bji − cjbjiN

∗
j

)
− Ñj(αj + cj

np∑
i=1

bjiN
∗
i )

(A11)
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The coefficients of Ñi,j are the entries of the Jacobian
matrix. The absolute values of the diagonal terms (for
any i-plant species and any j-animal species) are:

Jii = N∗
i

αi + ci

na∑
j=1

bijN
∗
j


Jjj = N∗

j

(
αj + cj

np∑
i=1

bjiN
∗
i

)
(A12)

and the non-diagonal terms:

Jij = N∗
i bij (1− ciN∗

i )

Jji = N∗
j bji

(
1− cjN∗

j

)
(A13)

So, the Jacobian matrix can be written as:

J =



. . . · · · · · · · · · · · ·
· · · −Jii · · · Jij · · ·
...

...
. . .

...
...

· · · Jji · · · −Jjj · · ·

· · · · · · · · · · · ·
. . .


where the diagonal entries are all negatives and the off-
diagonal terms are all positives.

The sum of eigenvalues satisfy:

na+np∑
k

λk = −

(
na+np∑
k

Jkk

)
(A14)

This means that not all the eigenvalues are positives,
and then the singular point is not an asymptotically un-
stable node. On the other hand the eigenvalues cannot
be complex because all the terms of the Jacobian matrix
out of the diagonal are zero or positives values so they
are stable nodes or saddle points.

Appendix B: Numerical treatment of the equations

Population models deal with sets of discrete entities
such as animals or plants and computer simulation is a
powerful tool to describe the dynamics and stochastic
behavior. The choice of a specific simulation method de-
pends on its accuracy and computational efficiency, and
sometimes is a challenge.

For instance, Discrete Markov models have been fre-
quently used for this kind of simulation, but this ap-
proach has a number of disadvantages compared with
Discrete Stochastic Simulation (Poisson simulations or
Binomial Simulations). In moderate size Markov mod-
els, the set of states may be huge, while Binomial or
Poisson Simulation aggregate state variables make them
much faster [35, 38].

We have chosen Binomial Simulation to solve the equa-
tions of our mutualistic population model. This tech-
nique is a stochastic extension of Continuous System Sim-
ulation and a reasonable choice when the outcome of the
random process has only two values. For instance, sur-
vival over a finite time interval is a Bernoulli process,
the individual either lives or dies. Breeding may also be
described by a Bernouilli trial if time interval is small.

For a species with intrinsic growth r, we can assume
that probability of breeding over an interval ∆T is expo-
nentially distributed with an average value 1/r. So, the
probability of reproduction is:

P =

∫ ∆T

0

e−r T dt = 1− e−r∆T (B1)

In particular, a population of N individuals in time t,
with pure exponential growth, will be in t+ ∆T :

N(t+ ∆T ) = N(t) + sgn (r)Binomial (N(t), P ) (B2)

The set of equations (9) becomes in stochastic form:

Na
j (t+ ∆T ) = Na

j (t) + sgn
(
r̂aef,j

)
Binomial

(
Na
j (t), P aj

)
Np
l (t+ ∆T ) = Np

l (t) + sgn
(
r̂pef,l

)
Binomial (Np

l (t), P pl )

(B3)

where r̂aef,j is the class a jth-species effective growth rate

in the simulation period, and P aj , P
p
l , the probabilities of

growth according to equation B1. In particular, working
with one day steps, as we do:

r̂ef = eref/365 − 1 (B4)



12

Appendix C: Data tables

Pl 1 Pl 2 Pl 3 Pl 4

b1j
(
10−6

)
1 12 12 16

b2j
(
10−6

)
12 4 11 0

b3j
(
10−6

)
12 10 0 0

b4j
(
10−6

)
6 10 0 0

b5j
(
10−6

)
10 0 0 0

Ninit j 700 600 500 200

cj
(
10−4

)
1 1 1 1

αj
(
10−6

)
7 12 12 10

rbirth j 0.004 0.01 0.01 0.005

rdeath j 0.005 0.04 0.05 0.0055

Pol 1 Pol 2 Pol 3 Pol 4 Pol 5

b1m
(
10−6

)
14 13 10 10 20

b2m
(
10−6

)
12 6 1 10 0

b3m
(
10−6

)
2 5 1 0 0

b4m
(
10−6

)
10 1 0 0 0

Ninitm 500 300 500 200 150

cm
(
10−4

)
1 1 1 1 1

αm
(
10−6

)
10 10 8 10 30

rbm 0.28 0.02 0.05 0.02 0.02

rdm 0.44 0.058 0.065 0.034 0.038

Table I: Mutualistic coefficients and conditions for the first
simulation (fig. 4). Top, pollinator-plant interaction matrix;
bottom, plant-pollinator matrix

Pl 1 Pl 2 Pl 3 Pl 4

b1j
(
10−6

)
1 12 12 16

b2j
(
10−6

)
12 4 11 0

b3j
(
10−6

)
12 10 0 0

b4j
(
10−6

)
6 10 0 0

b5j
(
10−6

)
10 0 0 0

Ninit j 1500 2000 1200 1500

cj
(
10−4

)
1 1 1 1

αj
(
10−6

)
7 12 12 10

rbirth j 0.004 0.01 0.01 0.005

rdeath j 0.005 0.04 0.05 0.0055

Pol 1 Pol 2 Pol 3 Pol 4 Pol 5

b1m
(
10−6

)
14 13 10 10 20

b2m
(
10−6

)
12 6 1 10 0

b3m
(
10−6

)
2 5 1 0 0

b4m
(
10−6

)
10 1 0 0 0

Ninitm 700 600 1000 700 500

cm
(
10−4

)
1 1 1 1 1

αm
(
10−6

)
10 10 8 10 30

rbm 0.28 0.02 0.05 0.02 0.02

rdm 0.44 0.058 0.065 0.034 0.038

Table II: Mutualistic coefficients and conditions for the second
simulation (fig. 5).

Pl 1 Pl 2 Pl 3 Pl 4 Pl 5 Pl 6 Pl 7

b1j
(
10−6

)
20 12 16 16 19 25 35

b2j
(
10−6

)
12 14 4.1 2 22 0 0

b3j
(
10−6

)
20 11 3.1 20 0 0 0

b4j
(
10−6

)
11 24 0 0 0 0 0

b5j
(
10−6

)
1 0 0 0 0 0 0

Ninit j 1200 1500 800 770 700 800 400

cj
(
10−4

)
1 0.5 1 2 1 1 1

αj

(
10−6

)
20 30 10 10 50 10 10

rbirth j 0.004 0.01 0.02 0.005 0.004 0.02 0.025

rdeath j 0.03 0.04 0.04 0.055 0.03 0.03 0.028

Pol 1 Pol 2 Pol 3 Pol 4 Pol 5

b1m
(
10−6

)
14 13 23 30 23

b2m
(
10−6

)
19 26 10 10 0

b3m
(
10−6

)
2 25 10 0 0

b4m
(
10−6

)
1 11 10 0 0

b5m
(
10−6

)
1 1 0 0 0

b6m
(
10−6

)
1 0 0 0 0

b7m
(
10−6

)
1 0 0 0 0

Ninitm 1200 1500 1300 1000 700

cm
(
10−4

)
1 1 1 0.7 2

αm

(
10−6

)
10 10 20 10 20

rbm 0.08 0.02 0.02 0.05 0.02

rdm 0.11 0.078 0.068 0.07 0.028

Table III: Mutualistic coefficients and conditions for the sim-
ulation of a high nested network (fig. 6).

Pl 1 Pl 2 Pl 3 Pl 4 Pl 5 Pl 6 Pl 7

b1j
(
10−6

)
20 12 16 16 19 0 45

b2j
(
10−6

)
12 14 4.1 2 22 0 0

b3j
(
10−6

)
20 11 3.1 20 0 0 0

b4j
(
10−6

)
11 24 0 0 0 0 0

b5j
(
10−6

)
0 0 0 0 0 25 1

Ninit j 1200 1500 800 770 700 400 1000

cj
(
10−4

)
1 0.5 1 2 1 1 1

αj

(
10−6

)
20 30 10 10 50 10 10

rbirth j 0.004 0.01 0.02 0.005 0.004 0.02 0.025

rdeath j 0.03 0.04 0.04 0.055 0.03 0.024 0.04

Pol 1 Pol 2 Pol 3 Pol 4 Pol 5

b1m
(
10−6

)
14 13 23 30 0

b2m
(
10−6

)
19 26 10 10 0

b3m
(
10−6

)
2 25 10 0 0

b4m
(
10−6

)
1 11 10 0 0

b5m
(
10−6

)
1 1 0 0 0

b6m
(
10−6

)
0 0 0 0 5

b7m
(
10−6

)
1 0 0 0 30

Ninitm 1200 1500 1300 1000 700

cm
(
10−4

)
1 1 1 0.7 2

αm

(
10−6

)
10 10 20 10 20

rbm 0.09 0.02 0.02 0.05 0.02

rdm 0.11 0.058 0.04 0.07 0.025

Table IV: Mutualistic coefficients and conditions for the sim-
ulation of low nested network (fig. 7).
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