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Abstract 

Temporal gravity variation measurements have been a long historical tradition in 

Central Europe, with some stations recording for decades. From the 80s, time 

varying gravity is permanently recorded at the Earth’s surface by a worldwide 

network of superconducting relative gravimeters within the Global Geodynamics 

Project of the International Association of Geodesy. 

In one of these stations, located in Strasbourg since the 1970s, the three main 

gravimeter types (relative spring gravimeter, relative superconducting gravimeter, 

and absolute gravimeter) have been set up. We use all these series to review the 

instrumental betterments. Studying the different improvements on gravimeters in 

the last years, mainly in terms of long term stability and instrumental drift, we 

show that the superconducting gravimeters can uniquely contribute to the study of 

the low frequency Earth's tides and small amplitudes waves. Also, the stability of 

the scale factor of the superconducting gravimeters is studied with the help of 

numerous calibration experiments carried out by collocated absolute 

measurements at Strasbourg Observatory. 

Finally, after estimating the values of the Free Core Nutation parameters, we 

search for the rotational normal mode called Free Inner Core Nutation (FICN), the 

gravity effect of which has never been observed before. For this purpose we 

develop a methodology to constrain the possible frequency range, through the 

detailed tidal analysis in the diurnal frequency band, using the 27-year 

superconducting gravity series recorded at J9 observatory, to separate small 

amplitude waves that have never been studied before, and which could be close 

enough to the frequency range of the FICN to be affected in terms of resonant 

amplitude. 

This work contributes to show the importance of not only the length, but also the 

quality of the data series to improve our knowledge of the Earth’s dynamics.  

Keywords: spring gravimeters, absolute gravimeters, superconducting 

gravimeters, Earth's tides, tidal potential of degree 3, long-period tides, time 

stability, instrumental drift, calibration, rotational normal modes. 
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1. General Introduction 

Gravimetry is a relatively old discipline, with the first attempts to determine the 

gravity dating back to the 1700s. Since then, it has evolved in a very fast manner, in 

theoretical, instrumental and analytical ways.  

The elasto-gravitational deformation of the Earth and the associated temporal 

gravity variations, measured on the surface of the Earth, are due to many 

geophysical phenomena with different periods and amplitudes, including among 

others, the Earth tides (which are the motions induced in the solid Earth, and the 

changes in its gravitational potential, induced by the tidal forces from external 

bodies) which have the strongest effect. 

Many methods can directly measure gravity, but only a few obtain the accuracies 

needed by geophysicists and geodesists. The increasing interest in the study of 

temporal gravity changes is due to the improvements of gravimeters and to its 

usefulness in Earth sciences.  

This study is motivated by the improvements on gravimeters in the last decades 

(especially after the development of the superconducting gravimeters), which 

allow us to have now, many years later, very long series of high quality data than 

can be exploited to benefit from the advantages of their unprecedented length.  

This thesis is divided into five parts, summarized as follows: 

The first one, as a necessary background, is devoted to remind some basic concepts 

of the tidal theory such as: the tidal forcing, the tidal accelerations, the tidal 

parameters, the tidal potential and the different tidal potential catalogues, the 

response of the solid Earth to the tidal forcing and associated resonance effects.  

Besides, we present a brief description of the different instruments that have been 

historically used to record Earth tides (not only gravimeters); the operating 

principle and characteristics of resolution, coverage and specific accuracy of the 

more important ones are described. 

We conclude by explaining the methods of signal processing that will be applied 

later on our data, and the most appropriate methods of analysis of Earth tide data.  

The second part is focused on the ‘study site’  Strasbourg Observatories  where 

the Earth tides observations, which were introduced by R. Lecolazet in the 1950s, 

have a long tradition of almost 60 years. The different locations, the gravimetric 

instrumentations and the historical results are mentioned. 

In the third part, we use some of the longest European gravity records, registered 

by spring and superconducting gravimeters, to study the sensitivity of the 

instruments through the temporal evolution of the delta gravimetric factors for the 
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main tidal waves, as well as the δM2/δO1 ratio (main semi-diurnal over main 

diurnal amplitude responses). Several temporal variations appear, which are much 

lower in the case of the superconducting gravimeters, and we try to find an 

explanation. We describe the data sets that are used in this part and in the two 

following, together with the treatments applied to these studies and we finally 

synthesize the results. In this part we also perform a detailed study of the stability 

of the scale factor of the superconducting gravimeter installed at Strasbourg 

Observatory, through the numerous calibration experiments carried out by 

collocated absolute measurements since 1997. 

In the fourth part we focus on the time series of superconducting (SG) gravity data, 

which we have shown to be better compared to the long spring gravimeter 

records, despite they are slightly shorter, to try to separate contributions of near-

frequency waves, to detect very weak amplitude signals and also to detect low 

frequency signals, that was not possible with shorter time series of gravity data. 

The fifth and final parts are devoted to the theory of two of the Earth’s rotational 

modes (the Free Core Nutation (FCN), and the Free Inner Core Nutation (FICN)), 

which provide valuable information about the deep interior of the Earth. We also 

attempt to retrieve the surface gravity effects associated with these normal modes 

in the long-term gravity data used in previous sections. The results obtained using 

first the data from J9 Observatory, and then using data from several European SG 

stations, are provided. 

This thesis entitled: ‘Analysis of long gravity records in Europe; tidal stability and 

consequences for the retrieval of small amplitude and low frequency signals 

including the Earth’s core resonance effects’ is hence located in the context of a 

thorough quest for knowledge of the interior of our planet Earth through the high 

quality gravity data. This became possible thanks to the huge efforts carried out by 

the different SGs stations to provide us with longer and better time series of data.  

The completion of this thesis has been carried out under a joint supervision 

between Universidad Complutense de Madrid and Université de Strasbourg, 

thanks to the opportunity that the Spanish Instituto Geográfico Nacional offered 

me to spend the last years at École et Observatoire des Sciences de la Terre 

(EOST), Strasbourg.  
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2.1 Earth Tides 

2.1.1 Introduction 

When we study a continuous time-record of a gravimeter, by far the tides are the 

dominant signal in the data (the semidiurnal and diurnal tides are especially 

evident). These variations can reach up to 300 µGal (1 µGal = 10 nm/s²) peak to 

peak, depending on the coordinates of the station. The tides occur at fixed 

frequencies given by the combined spin and orbital dynamics of the Moon about 

the Earth, and the Earth and the other planets around the Sun. The largest 

components are at semidiurnal and diurnal periods, but there are also long-period 

components (fortnightly, monthly, half-yearly, yearly, and an 18.6 year nutation 

corresponding to the lunar nodal cycle). The tidal potential amplitude is latitude 

dependent; the diurnal tides are at maximum at ±45º latitude and zero at the 

equator and poles, whereas the semidiurnal tides are zero at the poles and at 

maximum at the equator and the long periodic tidal waves are a maximum at the 

poles. 

Recently, Earth tides have become more important in geodesy as the increasing 

precision of measurements has required corrections for tidal effects that could 

previously be ignored. Tides affect gravity at about the 10-7 level, and tidal 

displacements (a few tens of centimeters) are about 10-7 of the Earth’s radius. 

Later on in this study, we will try to analyze as many tidal waves as possible using 

different gravity series of high quality recorded in Europe.  

To better understand the origin of tides, we should remember some basic concepts 

of the tidal theory; we describe first the tidal forcing, the tidal accelerations, the 

tidal parameters (which are our main study items in chapters 4 and 5), the tidal 

potential and the different tidal potential catalogues. We next consider how the 

solid Earth responds to the tidal forcing and what effects produces. Later in section 

2.2 we conclude with brief descriptions of several instruments for measuring Earth 

tides (gravimeters), and in section 2.3 with the analysis methods appropriated to 

Earth-tide data.  
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Earth tides 

The Earth tides are the motions induced in the solid Earth, and the changes in its 

gravitational potential induced by the tidal forces from external bodies. Tidal 

fluctuations have three roles in geophysics (Agnew 2007):  

1. Measurements of them can provide information about the Earth (structure, 

rheology). 

2. Models of them can be used to remove tidal variations from geodetic and 

geophysical measurements. 

3. Models of them can be used to examine tidal influence on some natural 

phenomena (as for example, finding the tidal stresses to see if they trigger 

earthquakes). 

First observations of tides phenomena date back to the beginning of the Christian 

era, when the Naturalis Historia of Pliny the Elder (AD 77-79) collates many tidal 

observations (as for example one on the banks of the Guadalquivir and other near 

to Seville). In his Natural History, Pliny describes the twice daily cycle and the 

occurrence of four maximum tidal ranges a few days after the new or full moon. He 

also identified that there is a locally fixed interval between lunar transit and the 

next high tide at a particular location. He further described how tides of the 

equinoxes in March and September have a larger range than those at the summer 

solstice in June and winter solstice in December.  

Nevertheless, it took several centuries until Sir Isaac Newton published his 

universal theory of gravitation in 1687, to have a scientific explanation for the tidal 

phenomenon. He discovered the nature of the tide generating force. 

 

       
    

  
  

 

 

 

Fig. 2.1.1: Diagram of Newton’s law of gravity. 

He explained in his “Principia Mathematica” how the tides are originated from the 

gravitational attraction of the moon and the sun on the Earth. He also showed in 

his theory why there are two tides for each lunar transit, the reason why spring 

and neap tides occurred, why diurnal tides are largest when the moon was furthest 

from the plane of the equator and why the equinoxial tides are larger in general 

than those at the solstices.  
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2.1.2 The tidal force 

The tidal force is a differential force appearing between a point   on the surface of 

the Earth and its center of mass  . The tidal forces arise from the gravitational 

attraction of bodies external to the Earth. Due to the high accuracy of astronomical 

theory, the tidal forcing can be described to much more precision than can be 

measured.  

We consider first the gravitational forces applied to one body (the Earth, in this 

case) by another (the Moon). The points of the Earth nearest the Moon are 

attracted toward the Moon more than is the center of the Earth. And conversely, 

the points of the Earth farthest from the Moon are attracted less. Therefore, both 

the far and near sides of the Earth are pulled radially outward away from the 

center, while the regions that are at right angles to the Earth–Moon vector are 

pulled radially inward.  

 

 

 

Fig. 2.1.2: Tidal forcing. The left plot shows the geometry of the problem for 
computing the tidal force at a point P on the Earth, given an external body M 
(Moon). The right plot shows the field of forces (accelerations) for the actual 
Earth–Moon separation. The elliptical line shows the equipotential surface under 
tidal forcing, greatly exaggerated (adapted from Agnew, 2007). 

Because of the Earth’s diurnal rotation, the tidal force at a fixed point varies 

through two complete cycles in 1 day. This semidiurnal time dependence is split 

into many periodic terms with frequencies closely spaced about 2 cycles per day 

due to the time variability of the orbital motion of the moon. Furthermore, because 

the moon is not always in the plane of the Earth’s equator (the Earth–Moon vector 

is inclined, respect to the Earth’s rotation axis) there is also significant variability 

at frequencies closely spaced about 1 cycle per day. 

Earth also experiences a tidal force from the Sun and the planets. These tidal forces 

are defined in a similar way, and can also be decomposed into semidiurnal, diurnal, 

and long period terms. 
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As we will see in section 2.1.4, the tidal force can be written as the gradient of a 

tide-generating potential (TGP), consisting of a sum of terms with sinusoidal time 

dependences where the sines and cosines have arguments involving linear 

combinations of the orbital frequencies corresponding to the Sun, the Moon and 

planets. 

2.1.3 The tidal accelerations 

The tidal acceleration     at an observation point P on the Earth’s surface  figure 

2.1.2) results from the difference between the gravitational accelerations     

generated by a celestial body at a point  , and the orbital acceleration     due to the 

motion of the Earth around the barycenter of the two-body system (the Earth and 

the Moon in our case). Because of the spatial extension of the body (the Earth), the 

gravitational accelerations due to others celestial bodies are slightly position 

dependent, whereas the centrifugal accelerations are constant within the body and 

on the surface of the body (Wenzel, 1997a). 

In figure 2.1.2, on the left plot are represented the gravitational acceleration, 

orbital acceleration and tidal acceleration for the Earth-Moon system. Using 

Newton’s gravitational law, the tidal acceleration vector       for the Moon is given 

by: 

            
   

  
 
  

 
 
   

  
 
  

 
 

Where,  

  6.6672  1                is the Newtonian gravitational constant 

        is the mass of the Moon 

        is the topocentric distance vector 

         is the geocentric distance vector 

 

For the Earth-Moon system the barycenter is located inside the Earth’s body, and 

the orbital motion of the Earth around the barycenter generates orbital 

accelerations. 

Similar considerations are valid for the other celestial bodies; the Sun and the 

nearby planets of our solar system also generate tidal accelerations on the Earth’s 

surface, but slighter (Table 2.1.1).   

The difference between the gravitational accelerations and the orbital 

accelerations generates small tidal accelerations; on the Earth’s surface, these 

(2.1) 
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accelerations correspond to about 10-7 of the Earth’s gravity  . As we will see later 

in section 2.2, the resolution of high quality gravimeters is less than 10-11 m/s2 

(~10-12g), so when we analyze their records, the tidal accelerations due to the 

nearby planets have also to be considered. 

The maximum tidal accelerations due to celestial bodies on the surface of the Earth 

are listed in Table 2.1.1.  

Table 2.1.1: List of maximum values of the tidal accelerations exerted on the Earth, 
generated by the different celestial bodies. 

Acceleration due to: Maximum tidal accelerations 

Moon 1.37 ·10-6 m/s2 

Sun 0.50 ·10-6 m/s2 

Mercury 3.64 ·10-13 m/s2 

Venus 5.88 ·10-11 m/s2 

Mars 1.18 ·10-12 m/s2 

Jupiter 6.54 ·10-12 m/s2 

Saturn 2.36 ·10-13 m/s2 

Uranus 3.67 ·10-15 m/s2 

Neptune 1.06 ·10-15 m/s2 

Pluto 7.61 ·10-20 m/s2 

 

 

2.1.4 Tidal potential 

For a quantitative description it is useful to work with the tidal potential, which 

enables an expansion into scalar spherical harmonics. This potential   is defined 

so that its gradient is the tidal acceleration vector.  

           
  

   
   (vertical acceleration only) 

 

We can derive its expression following the development in Munk and Cartwright 

(1966). Considering      as the mass of an external body, the gravitational 

potential   derivates from it at a point   in the Earth is: 

  
     

 
 
     

 

1

 1   
 
  

 

 2 
 
      

 

Where as shown in figure 2.1.2, 

   is the distance of    from   

(2.2) 

(2.3) 
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   is the distance from    to   

   is the angular distance between    and the sub-body point of   

Using Legendre polynomials, the more general tidal potential including all degrees 

can be written in his geometry (e.g. Agnew 2007) as: 

   ,    
     

 
   

 

 
 
 

 

   

         

The     term is constant in space, so its gradient is zero and can be discarded. 

The   1 term is 

     

 
       

     

 
   

Where    is the Cartesian coordinate along the OM axis. Its gradient is a constant, 

thus the tidal potential      can be rewritten as the equation (2.4) with the two 

lowest terms removed: 

        
     

    
  

 

    
 
 

 

   

            

Where   and   are functions of time.             are the Legendre polynomials, 

which are defined respectively for degrees n=2, 3, 4 as (Hobson, 1931):  

      
 

 
     1   

      
 

 
           

      
 

 
                

Because the relation     is about 1.6·10-2 for the Moon and about 4.3·10-5 for the 

Sun, the series expansion converges rapidly.  

The tides of degree 4 (   ) are just detectable in very low noise gravimeters. In 

our case, as we will use some high quality data records in chapters 4, 5 and 6, we 

will consider    2,      and     terms. In that section, we will be able to 

retrieve in our data series some small amplitude waves in the major tidal group 

generated by the third-degree and fourth-degree potentials.  

The largest contribution to the tidal potential results from degree 2 terms with 

about 98% of  , so for a first approximation it is justifiable to terminate the series 

expansion at   2. However, as we will see in section 2.1.5, for the most accurate 

(2.4) 

(2.5) 

(2.6) 
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tidal potential catalogues we use      6 for the Moon,        for the Sun and 

     2 for the planets. 

Sometimes it is convenient to express the relative position of the point   on the 

surface of the Earth and the celestial body as a combination of geocentric and 

celestial coordinates. The geocentric coordinates are the spherical co-latitude θ 

and spherical longitude λ. The celestial coordinates of the tide generating body are 

the declination δ  the angular distance north of the celestial equator  and the local 

hour angle τ  defined as the difference in longitude between   and the tide-

generating body) 

The potential can be rewritten then as: 

     
     

    
  

 

    
 
 

 

   

1

2  1
   

          
        cos        

 

   

 

 

Where   
  is the associated Legendre function of degree   and order   (Hobson, 

1931):  

  
     

 

 
         1       

     
 

 
                

  
                     

     
 

 
         1  

  
                   

     1           

       
     1       

 

Due to the Earth’s rotation, the hour angle τ of the celestial body varies from 0 to 

2  in 24 hours. 

Each term of the sum over   in the precedent equation has a certain spatial 

periodicity (figure 2.1.3). The potential   therefore has: 

- A long period term connected to zonal harmonics    
 ,       

- A diurnal term connected to tesseral harmonics     
  ,       

- A semi-diurnal term connected to sectorial harmonics     
  ,      2    

(2.7) 
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Fig. 2.1.3: Examples of some geographical distribution of tidal potential; A, zonal 
function (for n=2, m=0); B, tesseral function (for n=3, m=2); C, sectorial function 
(for n=m=2). 

This will allow us the separation of the tidal potential into latitude dependent 

terms and time/longitude dependent terms, and the spectral representation of the 

tidal potential by a tidal potential catalogue, as we will see in section 2.1.5 

 

Table 2.1.2: Major tidal harmonic components listed in order of increasing 
frequency (f). The corresponding period         is also shown. 

Symbol Description Period (T) hours Frequency (cpd) 

Sa Second overtide of M2 
constituent, annual 

8765.5223 0.0027 

O1 First overtide of M2 constituent 25.8193 0.9295 
K1 Lunar declinational diurnal 

constituent 
23.9345 0.9973 

N2 Larger Lunar elliptic semidiurnal 
constituent 

12.6583 1.8960 

M2 Principal lunar semidiurnal 
constituent 

12.4206  1.9323 

S2 Principal solar semidiurnal 
constituent 

12.0000  2.0000 

K2 Luni-solar declinational semi-
diurnal constituent 

11.9672 2.0055 
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2.1.5 Tidal Potential Catalogues 

The way for computing a theoretical gravity tide is using the catalogue of tide-

generating potential (TGP). These catalogues consist of a table of amplitudes, 

phases and frequencies for a lot of tidal waves. 

Sir G. H. Darwin (1883) was the first to have ever computed a catalogue of tidal 

waves. He also gave names to the main tidal waves which are still used today.  

Darwin's harmonic developments of the tide-generating forces were later 

improved by A. T. Doodson (1921), who developed the tide-generating potential in 

harmonic form, distinguishing a total of 378 tidal frequencies. In his development, 

he included only terms of degrees 1 to 3 (i.e. 24, 12, and 8 hour periods) using the 

orbital and rotational data for the Earth as forced by the Sun and Moon. Currently, 

the most recent and extensive tidal developments, as for example the Hartmann & 

Wenzel catalogue (1995) or the harmonic development of Kudryavtsev (2004), 

include the perturbation effects of all the major planets and terms up to degree 6 

for the moon (4 hour period) as well as terms allowing for the non-spherical shape 

of the major bodies. 

In the last decades several tidal potential catalogues have appeared (Table 2.1.3), 

in which the truncation level has continuously been decreased and the number of 

waves and coefficients has continuously been increased. The catalogue of Tamura 

(1993) includes coefficients due to the indirect tidal potential of the planets Venus 

and Jupiter. The catalogue of Roosbeek (1996) includes the lunar tidal potential of 

degree 5 and Hartmann & Wenzel (1995) reach the degree 6 respectively. Both of 

them also include coefficients due to the direct tidal potential of the nearby planets 

and due to the flattening of the Earth. 

Table 2.1.3: List of different tidal potential catalogues available. 

Author(s) Year Nº of 
waves 

Nº of 
coeff. 

Max. 
degree 

Truncation 
(m2/s2) 

Doodson 1921 378 378 3 1.0 ·10-4 

Cartwright et al. 1971, 
1973 

505 1010 3 0.4 ·10-4 

Büllesfeld 1985 656 656 4 0.2 ·10-4 

Tamura 1987 1200 1326 4 0.4 ·10-5 

Xi 1989 2934 2934 4 0.9 ·10-6 

Tamura 1993 2060 3046 4 0.4 ·10-5 

Roosbeek (RATPG95) 1996 6499 7202 5 0.8 ·10-7 
Hartmann and Wenzel 
(HW95) 

1995 12935 19271 6 0.1 ·10-9 

Kudryavtsev (KSM03) 2004 26753 28806 6 0.1 ·10-9 
 

There are two different approaches to cataloging the TGP; these catalogues have 

either been computed by analytical spectral analysis (e.g. Doodson, 1921; Xi, 1987; 

Roosbeek, 1996) or by numerical spectral analysis (Cartwright and Tayler, 1971, 
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Cartwright and Edden, 1973, Büllesfeld, 1985, Tamura, 1987, Hartmann and 

Wenzel, 1995) of the tidal potential generated by the celestial bodies. 

The analytical spectral analysis method requires analytical ephemerides of the 

celestial bodies, whereas the numerical spectral analysis method needs numerical 

ephemerides only (the ephemerides is a catalog of apparent positions of the bodies 

in the solar system as seen from a position and time on the Earth; each body is 

defined by a longitude, latitude, right ascension and declination). For example, the 

HW95 has been computed using the DE200 numerical ephemeris of Jet Propulsion 

Laboratory, Pasadena (Standish, 1990), of the solar system bodies between 1850 

and 2150. 

All tidal potential catalogues use a representation of the tidal potential on a rigid 

Earth similar to (Wenzel, 1997a):  

         
 

 
 
 

                    
     cos          

     sin         

 

   

   

      

   

 

where 

 ,        are the normalization constants 

       is the semi-major axis of the reference ellipsoid 

  
     ,   

       are the time dependent coefficients, given by:  
 

  
         

      1 
   

  
         

      1 
   

The arguments       are given by: 

                      

      

   

 

With       

The integer coefficients     are given in the specific catalogue, while the 

astronomical arguments         can be computed from polynomials in time. 

The catalogue that we will use later on in chapters 4, 5 and 6 for performing our 

tidal analyses, is the Hartmann and Wenzel catalogue (HW95) which is the most 

widely employed in the gravimetric community. For this catalogue, the 

normalization constants D and      have been set to unity. 

Several comparisons between the different catalogues have been carried out; 

Merriam (1993) compared the catalogs of Tamura (1987) and Xi (1989) with 

GTIDE software concluding that although their differences should be detectable 

(2.8) 
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using SGs, in practice either of the catalogs could be used for SG analysis. Wenzel 

(1996a) compared also the past catalogues and concluded that the HW95 was the 

most accurate for high precision work. Roosbeck (1996) noted that this is because 

HW95 is derived from one of the benchmark series itself and its only error should 

be computational. Finally, Kudryavtsev (2004) compared the KSM03 with the 

HW95 and the RATGP95 showing that its accuracy in the frequency domain is 

close to that of HW95 and RATGP95.  

2.1.6 Tidal Parameters 

For the main tidal waves, the purpose of the tide analysis is to determine the 

transfer function between the observed tidal amplitude (in the gravimetric 

records  and the theoretical amplitude of the astronomical tide for a solid Earth’s 

model at the coordinates of the station, i.e. an amplitude ratio and a phase 

difference between the observed and the theoretical tidal vectors. These quantities 

are called tidal gravimetric factors and are commonly noted by (amplitude 

factor) and (phase difference). Through the tidal analysis, each analyzed wave 

furnishes an observed pair  A,    at its tidal frequency ω, where A  δ  A  (being 

A  the theoretical amplitude), and   is the phase. So for each wave, the amplitude 

factor δ is defined with respect to the theoretical tidal amplitude A  as the ratio  

A A   (Melchior, 1978). 

 

 

Fig. 2.1.4: For a given tidal frequency, phasor plot showing the relationship 
between the observed tidal amplitude vector    ,   , the Earth model    ,   , the 
computed ocean tides load vector    ,   , the tidal residue    ,       and 
the corrected residue    ,       , after Ducarme et al. (2009). 
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* The tidal gravimetric amplitude factor δ, which is one of the important tidal 

parameters for comparing with observations, is used to describe the transfer 

function for surface gravity variations. This factor is a frequency dependent 

coefficient. According to the conventions used for tidal data analysis (Dehant and 

Ducarme, 1987  we adopt the following definition of the gravimetric factor δ: ‘In 

the frequency domain, the tidal gravimetric factor is the transfer function between 

the tidal force exerted along the perpendicular to the ellipsoid and the tidal gravity 

changes along the vertical as measured by a gravimeter’ 

So, in the frequency domain, the amplitude factor as defined by the International 
Centre for Earth Tides (ICET) is then deduced by dividing the final amplitude by 
the vertical tidal force at the frequency ω: 

      
body tide signal measured by a gravimeter along the vertical 

gradient of the external tidal potential along the perpendicular to the reference ellipsoid
 

In the case of an Earth initially in hydrostatic equilibrium, the ellipsoidal normal is 

assumed to coincide with the local vertical. For a non-hydrostatic Earth the vertical 

is given by the perpendicular to the geoid. 

* The phase factor   , gives the delay or lead of the tidal response with respect to 

the phase of the tidal potential. 

The gravimetric factors   ,    can be used to construct the synthetic tide at any 

location. These synthetic tides are modeled by summing several wave groups with 

the specific gravimetric factors that usually have been determined in some prior 

tidal analysis at the station. 

It is common for the gravimetric factors to differ from their theoretical values 

       ,    (where    is the theoretical gravimetric factor for a particular Earth 

model), due to two main reasons. Firstly, because the ocean tidal loading (OTL) is 

automatically incorporated into the estimated factors (when the synthetic tide is 

reconstructed from the empirical gravimetric factors both the ocean loading, and 

the system phase lag will be automatically included along with the solid Earth 

tide), while ocean tides are variables. Secondly, due to the Earth model used. 

Indeed the tidal gravimetric factors are expressed as a function of the Love 

numbers and depend on the Earth’s model, as we will see in section 2.1.7. 

  

(2.9) 
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2.1.7 Earth Response 

Once that we have described the tidal forces, we consider now to the response of 

the solid Earth to these forces. The Earth, considered elastic at such frequencies, 

deforms under the tidal stress; the tidal force tends to deform the solid Earth into 

the elliptical shape (see Figure 2.1.2). This Earth’s tidal deformation is caused by 

the gravitational attraction of the Sun and Moon and, to a much lesser extent, the 

other planets (Dehant et al. 1999).  

The formalism for describing mathematically the tidal transfer functions for a 

spherical Earth was predicted by Love (1911). He showed that tidal effects could 

be represented using a set of dimensionless numbers, now called the Love 

numbers (or Love and Shida numbers, since the number   was introduced in 1912 

by T. Shida of Japan). 

Wahr (1979, 1981a) extended this formalism to an ellipsoidal, rotational Earth. His 

model contains an ellipsoidal, elastic, deformable inner core, an ellipsoidal liquid 

outer core and an ellipsoidal, elastic, deformable mantle without ocean and 

atmosphere. The Earth is assumed to be hydrostatically pre-stressed and 

uniformly rotating. 

Later, the effects of mantle inelasticity in a rotating, elliptical Earth were included 

(Wahr and Berger 1986; Dehant 1986, 1987) resulting in the use of complex Love 

numbers. 

Then, Dehant and Defraigne (1997) extended the tidal formalism to include effects 

of non-hydrostatic elliptical structure inside the Earth. 

The real Earth is, of course, inelastic and non-hydrostatic, and it is likely that the 

effects of both inelasticity and non-hydrostatic structure are large enough to have 

a significant impact on tidal observations (Dehant et al., 1999). 

The Earth’s response to the tides can be well described with only a few 

parameters; first we can consider the Earth as an SNREI model (spherically 

symmetric, non-rotating, elastic and isotropic), of which the Preliminary Reference 

Earth Model (PREM) of Dziewonski and Anderson (1981) is the most widely used 

version. For this Earth’s model it is simple to describe the response to the tidal 

potential (Jeffreys, 1976). Because of symmetry, only the degree   is relevant, and 

these parameters (Love numbers   ,    and   for each of the   harmonics in the 

TGP) can be computed by solving the gravito-elastic equations of motion for the 

Earth and finding the surface displacement    and surface gravity potential    for 

any kind of forced deformation, as tides or tidal loading (e.g. Wang, 1997): 

   
1
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   1  
2  
 

 
   1 

 
   

where, 

      is the horizontal gradient operator in spherical polar coordinates 

          is the surface gravity. 

   is the surface gravity potential 

   is the unit radial vector 

 

The Love numbers completely describe any kind of deformation, elastic or 

inelastic, and therefore contain all the complexity of the actual Earth, that is, 

resonances for all the Earth’s normal modes, anelasticity and frequency 

dependency (Dickman, 2005). Tidal displacements of geodetic instruments on the 

Earth’s surface are usually described by   (radial) and   (tangential) (see e.g., 

McCarthy, 1996; Mathews et al., 1997), while    is used to represent tidal effects on 

the orbits of Earth-orbiting satellites (see e.g., Yoder et al., 1983: McCarthy, 1996). 

They have been frequently computed for seismic Earth models such as PREM and 

given in a number of different forms. They are in principle complex numbers 

because of the Earth’s anelasticity  e.g. Mathews 2001).  

The numerical values of the Love numbers depend on the Earth’s internal 

properties. So it is possible to learn about some of those properties by comparing 

tidal observations with predictions based on theoretical results for the Love 

numbers; tidal observations have been used to place constraints on the Earth’s 

anelastic properties, as we will point in chapter 6. We have already introduced the 

real gravimetric tidal factors    ,     in section 2.1.6.    is found from a 

combination involving    and   , as above (   is not used in gravity as it 

corresponds to the Earth response in horizontal displacement).  

Typical elastic values for a standard modern Earth model for   2,   and   

respectively are     0.6032, 0.291 and 0.175;     0.298, 0.093 and 0.043; 

yielding    1.155, 1.167 and 1.121 (A nominal pair of values for n= 2  is taken as 

   1.16,      . 

For more realistic Earth models, we should add the effects of rotation, ellipticity, 

inelasticity and anisotropy, moving away from a simple SNREI model (Crossley et 

al., 2013). 

Inelasticity causes a small tidal phase lag (time delay) due to frictional 

deformation in the Earth’s mantle, so   becomes complex with an in-phase 

component  cos    and an out-of-phase component  sin   . Although this effect 
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may produce a change in the amplitude of the Love numbers up to 7% at long 

periods, the effect is quite small for the body tides. 

The rotation and ellipticity effects act to couple the Love numbers of neighboring 

harmonic degrees, so each    factor is split into three components   ,     and    

(Dehant et al 1999). This yields a small latitude dependence where   decreases by 

about 0.1% between the equator and the poles, consistent with older spring 

gravity measurements (Dehant and Ducarme 1987). Afterward Wang (1994) 

found that this latitude dependency should be even smaller and in 2007 Agnew 

quoted a variation between the equator and the 60ºN latitude of only 4·10-4. 

Finally, the ocean tides load the crust and lead to vertical deformation; the tides in 

the ocean cause time-varying pressure loads on the surface of the solid Earth with 

the same frequencies as the Earth tides. Typically, tidal displacements of the solid 

Earth are of the order of several tens of centimeters. However, unlike ocean tides, 

Earth tides cannot be observed without sensitive instruments, because they cause 

both the ground and the observer to be displaced by the same amount. 

The most common way to detect Earth tides is with a gravimeter (i.e. gravimetric 

tide). There are three contributions to the observed tidal variations in the 

gravitational acceleration. All three contributions are roughly of the same order: 

1.-The direct attraction of the Sun, the Moon and to a lesser extent the Planets. 

2.-The change in the Earth’s gravity field due to tidal deformation within the Earth.   

3.-The change in the gravitational acceleration at the gravimeter due to the radial 

tidal displacement of the Earth’s surface under the gravimeter  commonly referred 

as the free-air gravity effect). 

Since some of the scientific results of our study will be the retrieval of small 

amplitude and low frequency signals including the core resonance effects, in the 

next section we will present the long-period tides. 
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2.1.8 Long-Period tides 

As we have seen in section 2.1.4., the potential   has a long-period (LP) term 

connected to zonal harmonics    
 . 

The long-period tides generated by this term have been studied since the time of 

Laplace (18th century). These tides are characterized as being zonally symmetric 

(similar as the example shown in figure 2.1.3.A.), by weak amplitudes and by 

periods longer than one day. They are generated by changes in the Earth's 

orientation relative to the Sun, Moon, and Jupiter; 

- The declination of the Moon relative to the Earth gives rise to the lunar 

fortnightly tidal constituent Mf (period 13.6606 days).  

- The ellipticity of the lunar orbit gives rise to a lunar monthly tidal constituent Mm 

(period 27.3216 days).  

- The motion of the Sun and Jupiter, introduced additional fundamental 

frequencies, as the major solar contributions at 6 months Ssa (period 182.6211 

days) and annual Sa (period 365.2596 days). These two contributions are 

dominated by thermal effects. 

Due to the nonlinear dependence of the force on distance, additional tidal 

constituents exist with frequencies which are the sum and differences of those 

fundamental frequencies.  

- At much longer periods there is a lunar tide at 9.3 year and 18.61 year periods 

which are extremely difficult to identify in gravity, and that we will try to detect in 

our gravimetric series in chapter 5. 

- There is also an additional gravity change which results from the gravitational 

torque acting on the Earth by the Sun and Moon due to the fact that the Earth has a 

non-spherical shape. The presence of this torque causes the Earth to develop a free 

Eulerian nutation known as the Chandler Wobble with a period of about 433 days. 

 

Figure 2.1.5 (up), extracted from Ducarme et al. (2004) shows the tidal spectrum 

in the LP band, according to the development of Tamura (1987) with periods 

between 4 days and 18.61 years. Most of the tidal constituents are generated by 

the Legendre polynomial   
 . It is easy to detect that the largest components are 

the fortnightly (Mf), monthly (Mm, Msm), semiannual (Ssa), annual (Sa) and 18.61 

year nutation constituents. 

There are also some 60 tides generated by   
  , which are shown in figure 2.1.5 

(down). The largest is the small declinational wave     , corresponding to the 

tropic month.  

The tides generated by    
  with     are almost negligible. 
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Fig. 2.1.5: Spectrum of the theoretical LP tidal gravity signal at latitude 75º (up) 
and    

  tides at latitude 75º dominated by      (down), extracted from Ducarme 
et al., 2004. 

Because a long-period tidal potential induces a second-degree zonal tidal response 

of the Earth, it causes not only the tides but also variations in the length of day 

(LOD) via conservation of angular momentum. In an elastic, spherically symmetric 

Earth, the induced variations  ΔLOD  should be proportional to the Love number 

   (Munk and McDonald, 1960). 

The tidal potential amplitude is latitude dependent so the long-period tides have 

their maximum values at the poles. Since tidal observations at high latitudes are 

advantageous for determining the LP tides, long-term observations with a 

LaCoste&Romberg ET gravimeter have been set up at the Antarctic Amundsen-

Scott station (90º S) e.g. Rydelek and Knopoff (1982). However, as we will show 

later in section 2.2, the most serious limitation of spring gravimeters for LP tides 

remains in their inherent and unpredictable drift (even if their instrumental drift 

was considerably reduced recently). The much lower instrumental drift of SGs, and 

their higher sensitivity and stability (Richter et al. 1995), permits more precise 

studies of these LP tides (Sato et al., 1997a; Hinderer et al., 1998; Mukai et al., 

2001; Ducarme et al., 2004; Boy et al., 2006a). Thus, a superconducting gravimeter 

(SG TT-70#016) was installed in 1993 at Syowa station, Antarctica, to observe 

Earth tides and Earth’s free oscillation  Sato et al. 199  . In April 2   , this 
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gravimeter was replaced by a new SG CT#043 (Doi et al. 2008). Their data has also 

been used to study several long-period tides as Mm, Mf, Mqm, Msqm, Mtm, Mstm, 

Msf and Ms (Iwano et al. 2005).  

To check the latitude dependent of these long-period tides and to obtain their 

expressions, we rewrite the potential as a function of the coordinates of the 

observation point. 

If we consider the usual projection onto the celestial sphere from the center of the 

Earth (figure 2.1.6), where C is the celestial north pole, P the place of observation 

(geocentric latitude  ), CP its meridian and M the moon (declination  , and zenital 

distance   : 

 

Fig. 2.1.6: Spherical triangle from positional Astronomy.  

In the spherical triangle CMP (figure 2.1.6): 

cos  sin  sin   cos  cos  cos      

 

So the potential degree 2 (we have already mentioned in section 2.1.4 that the 

potential of degree 2 describes the 98%) can be rewritten as a function of  ,   and 

 : 

 

     
 

 
 
 

                  2       sin 2 sin 2 cos     

         
1

 
        

1

 
   

where the first term, which is symmetrical about the equator, corresponds to the 

long-period.  ,   and   depend on the orbit of the Moon or the Sun, and also on the 

(2.10) 

(2.11) 
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Earth’s rotation. We need to know the instantaneous zenith distances of the Moon 

and Sun and their distances from the place of observation. Their instantaneous 

position in relation to the Earth are given by their coordinates relative to the 

ecliptic (true longitude    for the Sun; true longitude   and latitude   for the 

Moon) and the reciprocal distances        and    . 

Doodson (1921) expanded the equation (2.10) in a Fourier series. For this he 

chooses the 6 following independent variables, to express the arguments of the 

components of the tide, leading to a decomposition of tidal constituents into 

groups with similar frequencies and spatial variability. 

 , mean lunar time 

 , mean longitude of the Moon 

 , mean longitude of the Sun 

 , longitude of Moon’s perigee 

  , longitude of Moon’s ascending node 

  , longitude of the perihelion 

Using Doodson’s expansion each constituent of the tide has a frequency 

                      

Where the integers  ,  ,  ,  ,   and   are the Doodson numbers. So the total 

potential    becomes a sum of terms of the form 

            ,    
   ,        ,2
   ,       1

                       

 

In table 2.1.4, we show a selection of the long-period tides from Doodson’s full 

development. 

 

  

(2.12) 
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Table 2.1.4: Tidal potential coefficients for the long-period tides. 

Symbol Doodson 
Argument 

Astronomical 
Argument 

Speed 
(º/hr) 

Amplitude Origin  
(L, lunar; S, solar) 

   055·555 0 0.000000 50458 L constant flattening 

   055·555 0 0.000000 23411 S constant flattening 

   056·554      0.041076 1176 S elliptic wave 

    057·555 2  0.082137 7287 S declinational wave 

    058·554 2         0.123204 427 Elliptic tide from     

    063·655   2    0.471521 1587 Evectional tide from 

    

   065·455     0.544375 8254 L elliptic wave 

    073·555 2      1.015896 1370 Variational tide from 

   

   075·555 2  1.098033 15642 L declinational wave 

     083·655 2     2     1.569554 569 Evectional tide from 

   

    085·455 2        1.642408 2995 Elliptic tide from    

  
 

The observation of long-period tides is believed to give us a good constraint for 

investigating the anelastic response of the Earth (Sato et al., 1997a).  Compared to 

diurnal tidal periods where the Earth’s rheology is predominantly elastic, on very 

long timescales (a few tens to thousands of years) the behavior of the mantle 

becomes viscoelastic. At long periods, polar motion (i.e. for a wobble period of 14 

months  can again provide constraints on the Earth’s rheology  the relationship 

between stress and strain), as any deviation from pure elasticity will increase with 

decreasing frequencies (Crossley et al, 2013). 

In chapters 4 and 5 we will analyze the Earth tides using gravity records from 

different types of gravimeters. However, as we will see in section 2.2, there are 

several other kinds of instruments that can also be used to study the effects of 

Earth tides. 
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2.2 Instrumentation 

The first attempts to determine the gravity values date back to the 1600s (Crovini 

and Quinn, 1992). Since the first measurements with pendulums, there have been 

many different designs of gravity sensors proposed or built for measuring 

variations of the Earth’s gravitational field.  

These kinds of instruments are called gravimeters, and may be divided into 

portable or stationary devices, and into absolute gravimeters (which measure the 

exact value of gravity at a given point and a moment at the Earth's surface), and 

relative gravimeters (which measure only the temporal and/or spatial variations 

of gravity). 

Since the appearance of the first devices, we have observed much evolution in the 

instrumental design resulting in an inexorable improvement in terms of precision 

and accuracy. Indeed the historical advancement of gravity instrumentation has 

been driven by the need of a combination of increase precision, increase 

portability, reduce time consuming for each measurement and improve the easy of 

handling (Torge 1989, Chapin 1998, Nabighian et al 2005). 

Over the years the precision and accuracy of the gravimeters have been steadily 

enhanced; first gravimeters built in the sixteenth century were simple pendulums 

that could measure the value of g with an accuracy of about 10-5 g, while currently 

the most modern instruments, in specific measurement conditions, achieve 

sensitivities of one nanoGal (10-12 g). 

Figure 2.2.1 (adapted from Torge, 1989) discloses the evolution of the 

measurement accuracy of the different systems used over the time. 
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Fig. 2.2.1: Evolution of the accuracy of the gravity observation systems over time 
until 1980 (adapted from Torge, 1989). 

2.2.1 Historical Instruments: Pendulums 

Pendulums are the oldest type of gravimeters; the measurement of g exclusively 

depended on them until the beginning of the 20th century. They can be either 

absolute or relative instruments.  

The principle of operation is simple; the period of swing of a simple gravity 

pendulum depends on its length, L, on the local strength of gravity  , and on the tilt 

angle of the pendulum away from vertical  , called the amplitude. It is independent 

of the mass,   as shown by the equations hereafter. 
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Fig. 2.2.2: Diagram of a simple gravity pendulum.  

 

For small amplitudes, the period of such a pendulum depends only on the 

pendulum length and on the gravity. 

  2  
 

 
 

 

So the gravity  , is inversely proportional to the square of the period of oscillation, 

 , and directly proportional to the length of the pendulum,  . 

 

  
    

  
 

 

If the same pendulum is swung under identical conditions at two locations, or at 

two different times, relative changes in   can be found through the corresponding 

change in T, that is, the ratio of the two values of     and   ; this ratio is related to 

the ratio of the two respective periods of oscillations    and    

 

  
 

  
  

  
  

 

 

Thus, one can determine       by simply measuring times. 

 

Francis Bacon was one of the firsts who suggested the use of a pendulum to 

measure gravity (Bacon, 1620). He proposed to carry one up to a mountain to see 

(2.16) 

(2.17) 

(2.18) 
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if gravity varies with altitude. But it was in the mid-seventeenth century when 

Dutch astronomer Christiaan Huygens inspired by investigations of pendulums by 

Galileo Galilei, invented the pendulum clock (1656) and was the first to use 

pendulum to measure g. 

Until the early nineteenth century, all the pendulum measurements were absolute. 

The measurements were rather lengthy and complicated and were made mainly 

under laboratory conditions. In 1817 Kater designed his reversible pendulum 

(Kater, 1818), which simplified the implementation of the measurements and 

allowed greater accuracy. At that time, reversible pendulums were a fundamental 

improvement in absolute gravity measurement, with an initial precision of about 

10 mGal (10-5 g). Several incremental improvements over the next 100 years 

brought this precision to about 1 mGal (10-6 g).  

Kater also introduced the idea of relative gravity measurements, by comparing the 

gravity at two different points. Relative gravimetry was born after this 

achievement. Since then, its use has increased rapidly. 

First precise gravimetric measurements were made in 1864 in Switzerland by 

Plantamour, using a pendulum based on the idea of Bessel’s pendulum, 

constructed by A. Repsold. The first gravity measurements approaching modern 

precision were made in the early decades of the nineteenth century. 

 

Fig. 2.2.3: Repsold’s absolute pendulum used by Joaquín Barraquer y Rovira to 
realize the first absolute measurements of gravity in Spain (1982, National 
Astronomic Observatory of Madrid). Pendulum owned by The National Geographic 
Institute of Spain (IGN). 

Pendulum measurements were affected by several sources of errors such as the 

vibration of the pendulum support, the change in the pendulum length and the 

influences of different non-gravitational forces and environmental conditions. In 

1887 Von Sterneck developed a small nonreversible gravimeter pendulum that 
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was not affected by the effects of temperature and pressure and which was used 

for relative gravity measurements.  

Pendulums, used for either absolute or relative measurements, were the initial 

standard instruments of gravimetry. They have been used in various 

configurations, dominating the field until the 19  ’s and playing an important role 

until the 197 ’s; the relative pendulum gravimeters were superseded by the spring 

gravimeters in the 19  ’s. The absolute pendulums were the standard in the 

measurement of absolute gravity until free-fall devices were developed in the 

1960s. Since then, pendulum devices have rarely been used. 

Bifilar Gravimeters 

We should also do a brief remark on the bifilar gravimeters, even if these 

gravimeters were not widely used (almost all the results were obtained before 

1957, Melchior (1966)). 

Their great interest is that this kind of gravimeter has been used in the first 

attempts to measure the luni-solar variation of gravity by W. Schweydar (1914a, 

1914b) at Potsdam, and by R. Tomaschek and W. Schaffernicht (1932, 1937) at 

Marburg. A scheme of the bifilar suspension is shown in figure 2.2.4. 

 

Fig. 2.2.4: Simplified scheme of a bifilar gravimeter, after Melchior (1966), and 
picture of bifilar gravimeter owned by IPGS. 
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In this kind of gravimeters, a mass of weight     77 g in Schweydar’s apparatus 

and 52.5 g in that of Tomaschek–Schaffernicht) is suspended from a spiral spring 

which supports most of the weight       while a small part   is held up by two 

wires of equal length: a rotation through an angle   of the attachment point of the 

spiral spring is brought about a with a twisting screw and this turns the mass 

through an angle   and twists the two suspensory wires; this angle   will always 

be such that there is an equilibrium between the moment of rotation of the spiral 

and that of the bifilar suspension (Melchior, 1966). 

2.2.2 Relative gravimeters 

Relative gravimeters measure variations of the gravity field between two different 

points or between two times, so they are suitable for either spatial surveys or time-

variable gravity monitoring at a fixed point. 

Different models have been developed over the last century. In a relative 

gravimeter, the measurement of the variation of gravity is based on the principle of 

a mass subjected to the acceleration of gravity; the displacements of the mass are 

proportional to the variations of g. The mass can consist of a weight suspended to a 

spring, which is the case of mechanical models where variations in gravity cause 

variations in the extension of the spring. Or it may consist in a magnetic levitation 

of a superconducting sphere, as for the superconducting gravimeters. 

Spring gravimeters 

The relative pendulum measurements were difficult and time consuming. This led 

to the development of more accurate and portable gravity meters, the spring 

gravimeters which replaced the pendulums in the 19  ’s  Harrison and Sato, 

1984). 

A basic example of a mechanical relative gravimeter is typically composed of a 

weight attached to a spring. Variations in gravity cause variations in the extension 

of the spring, so the change in gravity force is linearly proportional to the change in 

the length of the spring. 

Historically, we can consider that the spring gravimeters have been divided in two 

types: linear or stable type, in which the equilibrium conditions are between two 

forces (elastic and gravitational) and unstable or astatized type, in which a 

condition close to equilibrium is reached by equating the momentum of the 

gravitational and elastic forces. Mostly, these types of gravimeters are mobile 

instruments dedicated to field measurements.  
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Stable-type spring gravimeters were much used in early times. The principle of 

measurement is based on Hooke’s law. The simplest way to represent this physical 

concept is to consider a mass suspended to a vertical spring (as in figure 2.2.4(a)). 

The extension of the spring is related to gravity changes through the equation: 

              , 

where   is the elastic constant of the spring, s0 is the initial position of the spring 

and s its new position. 

For two different stations or two different times, we can then compute the relative 

gravity change by: 

         
         

 
     , 

where   denotes the length of the spring,           , So the changes in gravity 

forces are linearly proportional to the changes in the length of the spring. 

The major disadvantage of stable gravimeters is the great difficulties in measuring 

small displacements. While the advantage of unstable type is that their sensitivity 

can be greatly increased through the use of astatization, where a small change in 

force results in a large change in position. 

 

 

Fig. 2.2.5: Simplified scheme of stable gravimeter principle (a), and of unstable 
gravimeter principle (b), after Steiner (1988). 

  

b a 

(2.19) 

(2.20) 
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Unstable-type spring gravimeters are innovative with respect to stable-type 

gravimeters in the way that an additional force acting in the same direction as 

gravity is applied, resulting in a state of unstable equilibrium. Usually a proof mass 

is attached to a horizontal beam which is suspended by a main spring, and 

additional springs are applied to return the sensitive measuring part to 

equilibrium (as in figure 2.2.4 (b)). Therefore, changes in gravity are measured in 

terms of the restoring force (feedback) needed to return the mass to its standard 

null position. 

More than 30 different types of spring gravimeter were designed from 1930 to 

1950, but an important break-through in relative gravimetry resulted from the 

introduction of the zero length spring, invented by Lucien LaCoste (LaCoste, 1934). 

The characteristic of this type of spring is that the restoring force is proportional to 

the entire length of the spring. 

The zero length spring was first introduced in the LaCoste-Romberg (LCR) 

gravimeter. And thanks to it, relative gravimeters become much easier to build, to 

calibrate and to use (LaCoste, 1988). Since 1934 when LaCoste designed his first 

gravimeter based on the zero length spring, this type of gravimeter has dominated 

the scene of relative gravimetry for about 50 years. Gravimeters with a zero-length 

spring have a larger sensitivity (~0.01 mGal) than previous spring gravimeters 

and the measurement can be made quicker, in a few minutes. Figure 2.2.3 shows a 

schematic diagram of a LaCoste-Romberg gravity meter. 

  

 

Fig. 2.2.6: Schematic diagram of a LaCoste-Romberg gravity meter, based on a Zero 
Length Spring, LR instruments. 
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In that case, the tension in the spring of length   , is given by the expression;  

         , 

where   is the spring constant and   is the unstretched length. 

The moment balance about the pivot in figure 2.2.6, gives; 

                          

using the law of sines; 

                     
      

 
 

Then, 

  
 

 
 
 

 
 1  

 

 
    

When   increases by   , the spring length increases by    where 

   
 

 
 
 

 
 
 

 
 
 

 
    

More recently, different easy-to-use automatic gravimeters have been developed 

(as for example Scintrex CG-3 and CG-5 which have a resolution of 1 µGal and a 

field repeatability of 5 µGal, and which were the first self-leveling instruments), or 

the gPhone Gravimeter, which has very high resolution (0.1 µGal). In these 

gravimeters, the most critical components are housed in an insulated double-oven 

for better temperature stability.  

Unfortunately, despite the most recent advances, the spring gravimeters have still 

some serious limitations. The principal problem is the elastic variability of the 

spring; the calibration factor often suffers from time variations and the 

measurements present a strong time drift, which depends as well on temperature 

changes. Also, these kinds of gravimeters suffer from the effects of mechanical 

shocks and vibrations. 

But, despite all these limitations, most practical measurements of gravity are still 

made with these relative spring gravimeters since they are small, light, easy and 

quick to operate (they are currently the only portable relative gravimeters used for 

repetitive structural gravimetry), and are cheaper compared to the absolute or the 

superconducting gravimeters.   

  

(2.21) 

(2.22) 
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Superconducting gravimeters 

Superconducting gravimeters (SGs) are also relative devices. Here, the spring 

suspension of the mass is replaced by the magnetic levitation of a superconducting 

sphere (which is a niobium sphere), where the magnetic field is generated by two 

induction coils, being superconducting themselves. The sphere and the coils are 

temperature regulated. To maintain this state of superconductivity, it is necessary 

to immerse the assembly in a liquid helium bath (temperature 4.2 Kelvins). The 

relative motion between the ground and the sphere, or any other perturbation of 

the gravity potential, moves the sphere away from its equilibrium position. The 

position of the sphere is detected by a phase-sensitive lock-in amplifier in 

conjunction with a capacitance bridge. Three capacitor plates surround the sphere 

with 1 mm clearance (Figure 2.2.7).  

The AC signal from the center ring plate is proportional to the displacement of the 

sphere from the center of the bridge. The sensor is operated in feedback mode to 

take advantage of the increased linear dynamic range and rapid response 

compared to open-loop operation. The AC signal is amplified, demodulated, 

filtered, and applied to an integrator network. The DC output is connected to a 

precision resistor in series with a five-turn coil wound on the copper magnetic 

form below the sphere. The resulting feedback force is proportional to the product 

of the feedback current and the current on the surface of the sphere. This force is 

given by (Hinderer et al, 2007): 

               

where    is the feedback current,     is the current induced on the surface of the 

sphere by the levitation field,     is the current induced on the surface of the sphere 

by the feedback field, and C is a constant.  

Because     is proportional to g and     is almost the maximum amplitude of the 

tides, the maximum nonlinearity is     /        1 
  .  

Therefore, the sensor is extremely linear. The gain (scale factor) of the sensor is 

determined by the geometry, the resistor size, the number of turns on the coils, 

and the mass of the sphere (usually 4 to 6 g for standard Observatory SGs).  

First superconducting gravimeters were developed by William Prothero and John 

Goodkind (1968) and were manufactured since then by GWR Instruments Inc. The 

introduction of SGs in the 1980s drastically improved all studies of temporal 

gravity variations over a wide range of frequencies, ranging from minutes to years, 

compared to conventional spring gravimeters (Crossley et al., 1999). 
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The superconducting gravimeter can measure variations of gravity continuously 

with a precision a hundred times better than the spring instruments. They are the 

most sensitive and stable gravity sensors currently available for ground-based 

measurements. But in contrast with spring gravimeters, the SGs are not mobile so 

they are used as stationary observatory instrument. 

The characteristics of the construction and operation of SGs are described in 

details in Goodkind (1999). The basic principle for the essential sensor elements is 

shown in figure 2.2.7. 
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Fig. 2.2.7: Main components of the superconducting gravimeter dewar and sensor 
(extracted from GWR website, http://www.gwrinstruments.com). 

These gravimeters have a very small and linear instrumental drift, greatly 

improving the problem of spring gravimeters. Also by using magnetic levitation 

rather than a mechanical device, the problems of mechanical and thermal effects 

are avoided (Crossley et al., 2013). 

Compared to mechanical spring instruments, SGs are characterized by a higher 

accuracy (in the range of the nGal (1 nGal =0.01 nm/s2) in the spectral domain 

after time integration of a year long record) and a significantly lower instrumental 

drift (of the order of few µGal per year (1 µGal = 10 nm/s2)). They also provide 

unprecedented long term stability. All these improvements allow the study of 

gravity variations related to geophysical phenomena over a very broad band of 

periods ranging from minutes to years (Richter et al. 1995; Hinderer and Crossley 

2004). 
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During the last years, major improvements that have been conducted are: 

significant reduction in size of the dewar and sensor, removal of the need for liquid 

helium refills and availability of sophisticated data acquisition system that allow 

remote monitoring. Also some dual-sphere gravimeters have been manufactured, 

which are equipped with two vertically aligned sensor units. These gravimeters 

were developed in order to detect small (a few nm/s2) instrument-induced offsets 

in the gravity data, (Richter and Warburton, 1997). Recently, GWR has introduced 

a new model of SG, called iGrav (figure 2.2.8) which is much smaller and more 

portable than previous models (Warburton et al 2010a, 2010b). The iGrav was 

designed to reduce size and weight of the SG, to make it more portable and to be 

much less complicated for field setup and use. 

 

Fig. 2.2.8: New iGrav superconducting gravimeter, manufactured by GWR 
Instruments (extracted from GWR website, http://www.gwrinstruments.com). 

In view of the worldwide development of SG sites and in order to coordinate SG-

based research works, the pioneer SG groups decided to form the GGP (Global 

Geodynamics Project). This project began in 1997 as a long term initiative to 

establish a worldwide network of SG stations, with an open database and unified 

data formats. It aims to exchange data gravity, atmospheric pressure and 

sometimes environmental parameters, to facilitate studies on a global scale 

(Crossley et al., 1999). The high accuracy and time stability of these gravimeters 

are useful to study a wide range of geophysical applications (Hinderer et al., 2007) 

ranging from seismic modes, tides and seasonal to long-term tectonic processes. 
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Fig. 2.2.9: Map of the global network of superconducting gravimeters grouped 
within the GGP project for the period 1997-2013, including new sites. (Extracted 
from GGP website, http://www.eas.slu.edu/GGP/ggphome.html). 

All relative gravimeters, spring or superconducting models, require to be 

accurately calibrated in order to determine how changes of spring length or of 

electrical current, correspond to given gravity changes. This is usually performed 

using parallel absolute gravity measurements. 

2.2.3 Absolute gravimeters 

A distinction is drawn between relative gravimeters, which measure local 

variations of gravity in time or gravity differences between observation sites, and 

absolute gravimeters (AGs), which measure the local and instantaneous gravity 

value. 

The advantage of such measurements is that they are independent of a reference 

system; they can determine the gravity at any location to a known accuracy. 

Besides they are not affected by instrumental drift. But on the other hand, they are 

very sensitive to site-specific conditions; indeed the accuracy of AG measurements 

is highly dependent on the quality of the site (level of microseismic noise, thermal 

stability, earthquakes, etc...). Moreover, because of mechanical degradation 

(dropping object) and logistical reasons, AGs are rarely used for continuous 

monitoring. 

As previously mentioned, absolute pendulum gravimeters were largely replaced by 

instruments using the free-fall method. First AG built in the sixteenth century 

http://www.eas.slu.edu/GGP/ggphome.html
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(pendulums) could measure the value of g with an accuracy of about 10-5g. While 

now, the most accurate AGs are able to measure the acceleration of a falling body 

with a relative accuracy of about 10-9g. 

In 1946, the first free-fall measurements were carried out in Sevres by C. H. Volet. 

In 1963, after the first instruments which used geometrical optics (Martsyniak 

(1956), Preston-Thomas et al. (1960) and Thulin (1960)), J. E. Faller developed 

the first free-fall interferometric instrument. The same year also appeared the rise-

and-fall interferometric instrument designed by A. Sakuma. In 1967, the absolute 

gravimeter of Alan H. Cook was presented, and also the first transportable AG of 

the free-fall type, from Hammond and Faller. By the early 1970s the best 

measurements were in the range of 0.01 to 0.05 mGal (Sakuma 1973).  

The first commercial AGs were produced in 1986, when 6 identical AGs were 

constructed by the Joint Institute for Laboratory Astrophysics (JILA) (Niebauer, 

1987), reaching a precision of a few µGal. At the same time, the National Institute 

of Standards and Technology (NIST), the National Oceanic and Atmospheric 

Administration (NOAA), and the Institute for Applied Geodesy (IFAG), Germany, 

joined forces to develop the ballistic FG5 device. This new instrument appeared in 

the 1990s and became the worldwide standard for absolute gravimetry. It is 

manufactured by Micro-g-solutions (USA) and routinely provides 12 μGal 

accuracy measurements at a site with runs lasting from a few hours to several days 

(Niebauer et al 1995). 

This type of AG is based on measuring the acceleration of a body in free fall, where 

g can be directly determined by measuring length and time. A freely falling 

reflective test mass is dropped into a vacuum chamber (figure 2.2.10.). The 

trajectory of the mass is determined with a precision of about ~ 10-6 m by laser 

interferometry, while the fall time is measured by a Rubidium atomic clock 

(sometimes controlled by GPS) with a precision of 2  1    Hz. The height of the 

fall is about 0.2 m and it takes around 0.2 s for the test mass to fall.  

 



40 
 

 

Fig. 2.2.10: Simplified scheme of measure principle of a FG5 free-fall absolute 
gravimeter. Copyright © 2008 Micro-g LaCoste, Inc. 

 

For each drop, the value of g is determined by a least squares fit of the trajectory 

data using approximately 700 pairs of time and distance traveled by the mass. The 

trajectory of the test mass at the time t is given by  FG  absolute gravimeter user’s 

manual, microglacoste, 2008): 

  

           
1

2
    

  

where   ,    and    are the initial position, velocity and acceleration of the mass at 

     

In practice, this situation is more complex due to the local vertical gradient of 

gravity   (which is usually ~ -  μGal/cm, corresponding to the free-air gravity 

gradient 2g0/r) that generates changes in the value of g during the trajectory of the 

mass. So, the standard equation should be modified as follows: 
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and taking into account the different time delays: 
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with: 

(2.23) 

(2.24) 
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where   is the speed of the light. 

A mean value of g is given for each set (about 100 drops are averaged to give a set 

value). Several sets must be performed. The whole measurement system is isolated 

from seismic noise by using a "superspring" unit that compensates the high-

frequency ground vibrations. 

In the following years, the time of the falling distances got smaller and the number 

of drops per set increased, appearing the A10 gravimeter which is a portable AG 

developed also by Micro-g LaCoste, Inc. (MGL) designed for use in the field. It has 

the same working principle and processing than the FG5, but is lighter, has a 

smaller drop chamber, and is easier to use. The A10 measurement possesses an 

accuracy of 10 μGal, mainly due to the use of a less stable laser. Also, more recently, 

some modifications of the FG5 have been introduced to give birth to the smaller 

FG5-L and extended FGX devices. 

Even if the absolute gravity world is dominated by free-fall-type instruments (FG5, 

A10, JILAg), other AG prototypes have been developed over the years, as for 

example the IMGC-02 developed by the Italian Institute for Metrological Research-

INRIM  D’Agostino et al., 2  2 , a memory of the original IMGC instrument which 

is based on the principle of Sakuma’s instrument. 

But the most relevant ones are based on cold-atom interferometry (CAG), which 

opens up a new way to perform the free-fall experiment (Peters et al. 1999). In this 

new kind of instruments there is no dropping or launching mechanisms of a solid 

body in free fall but atoms are dropped. So there is no mechanical friction and 

hence no mechanical limitation in the duration of measurements, except for the 

laser power. Another important advantage is that CAG can measure more 

frequently (several times a second) than the optical types. Initial results compared 

with the FG5, by B. Desruelle et al. at the 2013 AGU meeting, seem promising even 

if no complete precise inter-comparison has been performed yet.  

Since 1981, periodic inter-comparisons of AG campaigns are conducted in order to 

detect possible systematic errors and to define the accuracy level of the 

methodology. The Bureau International des Poids et Mesures, Sèvres, France, has 

hosted eight campaigns (1981, 1985, 1989, 1994, 1997, 2001, 2005, 2009), and 

also several comparisons were held in Walferdange, Luxemburg at the European 

Center for Geodynamics and Seismology (ECGS) (2003, 2007, 2011, 2013). 

Not only gravimeters have been used for measuring variations of the Earth’s 

gravitational field, but there have been several other types of instruments, less 

used or very specific, such as the torsion balance developed by Baron Roland van 
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Eötvös in 1896 and used to measure the gradients of gravity and differential 

curvature. Also the vibrating string gravimeter (Lozhiskaya, 1959, Breiner et al., 

1981) was used in Russian and in China. The borehole gravity meters, which were 

first developed in the 1950s in response to the need by the petroleum industry for 

accurate down-hole gravity data. The underwater gravity instruments, the 

shipborne gravity instruments and the gravity gradiometers can also be quoted. 

2.2.4 Instruments used in this study 

Throughout this thesis, we have used data recorded by different types of relative 

and absolute gravimeters. 

Regarding the relative gravimeters, data from several models of spring 

gravimeters have been analyzed. Most of these mechanical models are astatized, 

such as the Lacoste and Romberg (L&R) or the North-American gravimeters. Data 

from stable types have been used too, like the Askania model. 

A large number of superconducting gravimeters has also been used; few of them 

belong to the first models built in the 1980s, although most of them belong to the 

compact type (like the SG C026 at J9) or to the new generation of OSG 

(Observatory SG). There are even a few double-sphere instruments among them. 

Regarding the absolute gravimeters, only records from FG5 models have been 

analyzed in detail, though data from JILAg instrument, already treated, have been 

also used. 

Table 2.2.1: General specifications of different gravimeters used in this study. 

Instrument Resolution 

(µGal) 

Precision 

(µGal) 

Drift rate (µGal/period) 

Spring* 1.0 0.1 ~15/day 

Superconducting  0.01 0.001 few/year 

Absolute  10.0 2.0 NO 

 

(*) As several types of spring gravimeter have been used, with different 

specifications, in the table we have only indicated the characteristics of a Lacoste 

and Romberg type, since we have mainly used data from two gravimeters of this 

type, the L&R ET005 and the L&R ET19 installed at J9 Observatory and Black 

Forest Observatory respectively. 

A list of relevant papers on the use of superconducting gravimeters can be found 

at: http://www.gwrinstruments.com/published-papers.html  

A list of relevant papers on the use of absolute gravimeters can be found at:  

http://www.microglacoste.com/grav bib.php 
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As a large part of this thesis is devoted to data treatment and analyses of relative 

gravimeters, in the next part we will detail the pre-processing of raw data and then 

the analysis methods used to retrieve some information on the Earth’s response to 

tidal forcing.  
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2.3 Gravimetric data analyses 

The classical analysis tools (tidal analysis software, spectral FFT methods) require 

having relatively clean data series. So before introducing the tidal analysis 

software, we present the pre-processing method which aims at preparing data 

before exploitation. 

2.3.1 Pre-processing of both spring and SG records 

As most of the geophysical signals, any gravity time series requires specialized pre-

processing before we can use it with fullest advantage. Indeed, some tools can deal 

with irregularly sampled data or series with missing samples (gaps) such as 

statistical spectral method (for instance the Lomb-Scargle periodogram, Lomb, 

1976). Nevertheless, we will show in the following that our pre-processing does 

not impact our tidal analysis results, but, on the contrary, by filling up gaps with a 

well-known local tidal model (inferred from long-term observations at the station) 

we will be able to take full advantage of the length of our time-series.  

So, in this section we will explain the methodology that we have applied to all the 

series from different gravimeters that we will use in the next sections. 

The main disturbances contained in the raw gravity series are spikes, steps 

(sudden offsets) and gaps (missing samples), which are mainly due to 

instrumental problems, human intervention, and also from true geophysical 

signals such as earthquakes. These corrections are done to avoid that the 

disturbances alter any treatment realized on these series, such as tidal analysis or 

spectral estimation. A simple example of preprocessing is shown in figure 2.3.1. 
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Fig. 2.3.1: Example of correction of gravity residuals. Upper plot shows 1 month 
(May 2005) of SG raw data at J9 Observatory. Second plot shows g (residuals) 
when g (removed) consists of a local tide model + a nominal pressure correction. 
Third plot shows the cleaned residuals, where all the spikes and earthquakes were 
previously replaced by a simple linear interpolation. And finally, corrected series is 
shown in the bottom.  

As it is well described in Hinderer et al. (2002), many different processing 

methods are available and almost any user group possesses its own strategy to 

pre-process the data. They also show that not just the applied methodology is 

significant, but there are also ‘human factors’, because even when using the same 

processing tool, personal factors can enter into the treatment leading to significant 

long period changes in the gravity signal after different cumulative corrections.  

Independently of the treatment used later to clean them, first we have to compute 

the gravity residuals from our raw data series. Usually, the classical preliminary 

step consists of subtracting from the gravity series, g (observed), all the 

contributions that can be modeled with some confidence g (removed), leading to 

the gravity residual series, g (residual). 
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g (residual) = g (observed) – g (removed),     (2.25) 

where 

g (removed) = contributions than we can model at our station   (2.26) 

These gravity residuals are usually small amplitude signals which permit us to 

detect and correct more easily any kind of disturbance than if we use the original 

observed gravity series. When all problems have been fixed in g (residual), we just 

have to add back the previously removed signals, to obtain the corrected gravity 

series, g (corrected). 

g (corrected) = g*(residual) + g (removed)     (2.27) 

where  g*(residual) is the g (residual) corrected  “clean residuals” . 

Removed Effects  

Depending on the quality of the data and the auxiliary information available at 

each station, we are able to model the contributions of the largest amplitude 

signals that can be removed from the observed gravity series. We can decompose 

our temporal gravity observed series into a series of additive effects:   

g(observed) = g(disturbances) ( instrument and site origin, earthquakes) 

+g(tides) (solid Earth, ocean) the largest periodic contribution  

+g(non-tidal loading)(atmosphere, ocean currents) second largest   

effect 

+g(polar) (polar motion effect) 

+g(drift ) (instrument drift function) 

+g(hydro) (rainfall, soil moisture, groundwater, surface water, 

ice) 

+g(other) (tectonics, deformations, slow earthquakes and all other 

possible signals)        

       (2.28) 

 

We can divide all these contributions into two types of signals:  

 Periodic signals: tides, polar motion (annual forced motion and Chandler 

wobble), seismic elastic normal modes.  

 Non periodic signals: atmospheric pressure, hydrology, volcanic, non-tidal 

ocean circulation and general Earth deformation. 
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In our case, to calculate the residual gravity data we have only subtracted the 

standard models (local tides, local atmospheric pressure effect, polar motion and 

instrument drift). For each series of this study we have performed the following 

steps:  

* We have first calibrated the raw gravity records by using the appropriate 

amplitude calibration factor (expressed in µGal/V or nms-²/V) for each instrument 

to convert the observed gravity to their equivalent gravity values. Calibration 

issues are discussed in more detail in section 4.5. 

* We have subtracted the body tides and the ocean tidal loading using a local tidal 

model. In some of the stations, this model could be computed from the luni-solar 

tidal potential using tidal parameters (amplitude and phase factors) originating 

from a previous tidal analysis at the same station. In the stations where such 

previous analysis was not available, we have computed a synthetic local tidal 

model using latitude dependent tidal factors, obtained for an inelastic non-

hydrostatic Earth model like DDW99 model (Dehant et al., 1999). 

Gravity data are principally dominated by the tidal signal. The amplitude of this 

contribution usually varies between 100 and 300 µGals, depending mainly on the 

station latitude and the phase of the luni-solar cycle. 

* We have subtracted the local pressure effects using a standard empirical 

barometric admittance of – 0.3 µGal/hPa (e.g., Spratt, 1982; Müller and Zürn, 1983; 

Richter, 1983, Crossley et al. 1995) for the spring gravimeter series (because 

sometimes the pressure series are also affected by gaps or offsets, they should be 

corrected before removing their effects to the gravity series, in order to avoid 

introducing artificial signals in the gravity residuals). For the SG stations we have 

used the complete (local + non-local) atmospheric loading effects estimated at 

each GGP station by Jean-Paul Boy, available at http://loading.u-strasbg.fr/GGP/. 

These atmospheric loading effects are computed by convolving surface pressure 

fields provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) and the appropriate Green's functions (Boy et al., 2002) describing the 

elastic Earth response and the direct Newtonian attraction to the atmospheric 

pressure loading. 

Up to 10% of the signal may come from the atmosphere. Atmospheric effects on 

gravity became an important consideration with the higher precision and lower 

noise of the SG compared to previous instruments (Warburton and Goodkind 

1977). A number of well-studied empirical and physical methods exist for making 

a pressure correction to the gravity data, but even with the most sophisticated 

treatments it is not possible to completely remove the atmospheric pressure effect. 

Among the different approaches used to correct gravity changes for the effects of 

atmospheric pressure changes we can find (Hinderer et al., 2014): 

http://loading.u-strasbg.fr/GGP/
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- A first option (which we have used for all the spring gravimeter stations) is to use 

a single barometric admittance (Crossley et al., 1995). This coefficient is computed, 

in the time domain, by minimizing (in the least squares sense) the difference 

between observed gravity residuals      and the observed barometric pressure 

     and solving for the real coefficient    which means no phase lag  to determine 

the corrected gravity residual: 

                 

 

Minimizing        
 

 assumes that errors in      and residuals       are 

uncorrelated.  

The nominal value of   is close to – 0.3 µGal/hPa and corresponds to a model 

where pure attraction (– 0.42 µGal/hPa for a Bouguer plate) is partly reduced by 

crustal elastic deformation and the Earth’s curvature  Niebauer, 1998; Warburton 

and Goodkind, 1977).  

We should point out that in this case there is no change either in time or in 

frequency of this factor; however this simple model is able to cover 90% of the 

total air pressure effect. 

 

- A second option is the frequency-dependent admittance (Neumeyer, 1995; 

Kroner and Jentzsch, 1999; Abd El-Gelil et al., 2008). 

A frequency dependent correction coefficient can be estimated by cross spectral 

analysis, a method to determinate the frequency response function for a single 

input – single output model. For this model, the frequency response function      

can be calculated after Bendat and Piersol (1986) by: 

      
       

       
 

 

where     is the auto spectral density and    the cross spectral density of the 

input series      and the output series     , sampled at equally spaced time 

intervals     ,1, … ,  1 . 

The gain factor      and the phase factor      of the frequency response function 

can be estimated at a frequency  , varying from 0 to Nyquist, by: 

(2.29) 

(2.30) 



49 
 

        
          

           
 

       
 

            
         

         
  

After determination of the frequency response function, the frequency dependent 

atmospheric pressure correction can be carried out for the gravity data, using FFT 

techniques in the frequency domain, or using convolution techniques in the time 

domain (Neumeyer, 1995). 

This approach is still constant in time, and some studies have shown that the 

admittance may also vary as a function of time (Merriam, 1995; Crossley et al., 

2002). An approach based on a wavelet technique to filter out the atmospheric 

pressure effect simultaneously in time and frequency was proposed by Hu et al. 

(2005). Such approaches remain incomplete as they deal only with the local 

atmospheric pressure effect.  

- The last option, which we have used for the SG stations, is to consider not only 

local pressure changes but rather a pressure distribution around the gravity 

station which may not be uniformly distributed. This leads then to a loading 

computation including both Newtonian attraction and elastic deformation (Farrell, 

1972; Spratt, 1982). There are several loading approaches; from 2D pressure 

loading (Sun, 1995; Boy et al., 1998, 2001, 2002; Mukai et al., 1995) to the full 3D 

atmospheric models, where the atmospheric parameters are available at different 

vertical levels (Swenson and Wahr, 2002; Boy and Chao, 2005; Neumeyer et al., 

2004; Kroner and Jentzsch, 1999; Klügel and Wziontek, 2009; Abe et al., 2010). 

In this approach, the response of the Earth to pressure forcing is expressed using 

Green’s functions  Farrell, 1972 .  

** The Newtonian effect corresponds to a direct gravitational attraction by air 

masses on the gravimeter (Merriam 1992): 

    ,    
              

           2           
 
  

 

 

where   is the altitude of the atmospheric elementary volume of density    and 

spherical coordinates    ,    ,    is the Newtonian constant of gravitation,   is the 

angular distance between the gravimeter of coordinates   ,    and the elementary 

atmospheric mass. 

  

(2.31) 
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** The elastic effects at   ,    is equal to: 

       
 

    
  2  

     1   
          

 

   

 

 

For a comparison of 2D (surface loading), 2.5D and 3D models at two SG locations, 

Strasbourg (France) and Djougou (Benin), we refer the reader to Hinderer et al. 

(2014).   

These loading computations are usually based on global models whose data 

assimilation systems contain observations from ground stations, radiosondes, 

satellites and many other sources; as for example the reanalysis models from the 

ECMWF, http://www.ecmwf.int/. 

 

* We have corrected for the gravity effect induced by polar motion using IERS data 

(http://www.iers.org/). This signal, mainly composed of an annual term and the 

14-month oscillation of the rotation pole (Chandler Wobble) is very well defined 

by IERS data, although at a level of only 5 µGal/yr (or 0.01 µGal/day) it is not 

important for gaps of less than a week or so.   

A simple conversion is usually made between the coordinates’   ,    amplitudes of 

polar motion    ,      in radians and the gravity effect δg in µGal through the 

centrifugal effect (Wahr, 1985): 

           2  cos      sin        

 

where   ,    are station latitude and longitude,   the Earth’s rotation rate.    is the 

gravimetric factor of degree-2, expressing the response of the Earth to the 

variation of rotational potential and is equal to 1.16 for a purely elastic Earth, 

whereas fitted solutions are usually closer to   1.18 (e.g. Loyer et al, 1999, 

Harnisch and Harnisch 2006), that is to say closer to the response of an elastic 

Earth with a static global ocean.  

* We have finally subtracted the instrument drift. From an instrumental point of 

view (e.g. Goodkind 1999) drift is likely to be either a linear or exponential 

function of time, but its amplitude is not easy to predict. Drift in the spring 

gravimeters is irregular and strong, even though in the 1980s they have 

incorporated electrostatic feedback that considerably improved their linearity and 

drift performance (Larson and Harrison 1986). For the SGs, drifts are 

characterized by a small initial exponential followed by a small linear term. 

(2.32) 

(2.33) 

http://www.ecmwf.int/
http://www.iers.org/
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Representative values of instrument drift are usually less than 4 µGal/yr for the 

linear part where these have been checked carefully with AGs. 

Instrument drift is not to be confused with a secular change of gravity, even though 

the two cannot be separated except using combined SG-AG observations. An 

example of SG drift correction using parallel AG measurements at J9 is shown in 

figure 2.3.2.   

All these steps lead us to the gravity residuals series, which we then have to clean 

from disturbances (as shown in figure 2.3.1).  
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Fig. 2.3.2: Correction of the SG drift using 132 independent absolute 
measurements, recorded in parallel at J9 Observatory. Upper plot: superposition of 
AG measurements (red dots with the respective error bars) and the C026 residuals 
(blue line). Lower plot: superposition of AG measurements and the C026 residuals 
corrected from the estimated instrumental drift. 

Once we have obtained all our gravity residuals series, we carried out the 

treatment of the disturbances with the help of the TSOFT pre-processing package 

developed by the Royal Observatory of Belgium (Van Camp and Vauterin, 2005) to 
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detect and visualize the disturbances in the data series, and to apply different 

manual corrections to remove spikes and offsets, reduce the earthquake 

perturbations and fill up gaps. 

This software offers us the possibility of applying several manual corrections such 

as linear and cubic interpolations, or removing steps or gaps. 

 

 

Fig. 2.3.3: Graphical representation of the different correctors offer by TSOFT, in 
unapplied state (upper) and in applied state (bottom). Left: linear and cubic 
interpolations; middle: step; right: gap (from TSOFT manual).   

Earthquakes: we corrected the residuals for any earthquake disturbance by 

replacing it by a linear segment or by a cubic interpolation, depending on its 

length.  

Spikes: we also removed spikes contained in the signal by replacing them by a 

linear interpolation.  

Offsets: the offset correction (especially the one with small amplitude) is the most 

delicate step and has always been debated because sometimes it is impossible to 

decide without auxiliary information whether they are purely instrumental or due 

to geophysical phenomena (e.g. rain). The consequences are important for the 

study of the long term gravity changes because of the cumulative effect of the offset 

corrections. In particular, the drift estimate of the SG will be affected by this effect. 

One constraint can be introduced by repeating absolute gravity measurements at 

the same site which will clearly help in determining the physical long term gravity 

evolution (Hinderer et al., 2002). 

Gaps: in our series, the smaller ones (up to some hours) have been filled up using 

the local tidal model for the station, and the longer ones (from few days up to 10 

months for the L&R ET005) were not filled up at all. In this case, the total series 

remained divided into several blocks. 
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The problem of data gaps is in fact different for spikes and offsets because the 

information is missing rather than corrupted, leading to unevenly spaced data sets 

with all the inherent restrictions in using standard codes such as ETERNA (Wenzel 

1996b) or simply an FFT (Hinderer et al, 2002). 

The processing explained above has been applied with several small differences 

depending on the raw data and information available to us for each station: 

- For the superconducting gravimeter stations, data were obtained from the GGP 

database (http://isdc.gfz-potsdam.de/), so we disposed both of raw gravity and 

pressure data, and all the necessary information such as the calibration factor and 

the time delay specific for each gravimeter. Also some of the stations provided 

information files indicating instrumental problems, offsets due to helium refills, 

changes in the electronics, etc. This information is very useful when deciding 

which type of corrections should apply to the series. 

- Regarding the data from spring gravimeters, we had the air pressure 

measurements at the different stations except at Walferdange, where 40 year 

reanalysis data from the ECMWF were used (Uppala et al., 2005).  

For these types of instruments, data were calibrated by comparing with theoretical 

tides as suggested by (Goodkind 1996) (while the SGs were calibrated using 

parallel absolute gravity measurements). Because these gravimeters underwent 

several improvements during our study period, it was necessary to re-estimate the 

amplitude calibration factors and the phase lags for each time block, while for SG 

data a single value was used for the total series (except for stations where the 

acquisition system has been updated and new phase lag had to be estimated for 

the new system). Moreover the irregular and strong instrumental drift affecting 

the spring gravimeters requires careful modeling, because of its impact on the 

calibration errors. 

Since the spring gravimeters are very sensitive to the changes of temperature and 

air pressure, the thermal and atmospheric contributions are important for the 

noise in the diurnal and semidiurnal bands. So to avoid these perturbations the 

spring gravimeters should be installed in particular conditions. For example, at 

Potsdam, the Askania GS15 222 gravimeter was installed in an insulating chamber 

inside an airtight container, with a temperature stabilized about 23 ºC and a 

relative humidity not higher than 40%. The ET-19 at Black Forest Observatory is 

installed behind two airlocks in a container with an air-drying system, at a 

constant temperature of 10 ºC stable to 0.003 ºC in the gravimeter vault. And the 

ET-005 was installed in an isolated box thermostatically controlled at 35 ºC. The 

box was located in a room at 25 ºC inside an old underground fort (J9 

Observatory). The sealed box protected also the sensor against the direct influence 

of barometric pressure variations.  
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There are two different approaches used to solve problems in the data: the first 

one consists on leaving gaps in the series when there is a problem in a segment. 

The second one consists on removing the disturbances in the residuals and to fill 

the gaps with a synthetic signal using a local tidal model.  

In our case we have chosen the second approach (except for the really large gaps), 

which indeed is the preferred approach within the gravity community, although it 

requires more caution about what level of disturbances to correct or not.  We have 

chosen it in order to have a uniformly sampled time series for applying, as much as 

possible, the same treatment to all gravity series (filtering, tidal analysis and 

spectral comparisons). Mainly because it is more convenient dealing with 

continuous data rather than series of data divided in sequences of blocks and gaps 

and because computer algorithms are also easier to implement for continuous data 

than for discontinuous ones. 

The question of filling gaps and removing disturbances rather than maintaining the 

integrity of the signal with a Least Square Spectral Analysis (LSSA) technique like 

in Pagiatakis (2000) or with BAYTAP-G, which is a tidal analysis code using 

Bayesian information adapted to data with irregularities in drift, occasional steps 

and other disturbances (Tamura et al. 1991), is often a matter of debate, even if the 

percentage of the disturbances and gaps is very small with respect to the data 

length (mainly in the SGs series where the gap proportion is almost negligible, of 

about ~2% for J9 series). 

To estimate the impact that the manual correction of these disturbances (using 

Tsoft) could have on the stability of the tidal analysis that we will compute in 

chapter 4, we have performed the following test, which is shown in detail in Annex 

A:    

 We have generated a synthetic series for J9 station using DDW99 non 

hydrostatic Earth’s model  Dehant et al., 1999  and NAO99 ocean model 

(Matsumoto et al. 2000).  

 This series has been degraded by adding Gaussian white noise (with a standard 

deviation of 10 nm/s2), random gaps (up to 2500h in total, corresponding to 

about 3% of our time length), 4 offsets of different size (5, 10, 15 and 20 nm/s2) 

and 10% of spikes distributed all along the series.  

 Finally, we have corrected this degraded series manually with the help of 

TSOFT, in a similar way as we have done for all the observed series used in this 

study. 

We have performed similar tidal analysis on all these synthetic signals (pure 

synthetic tides, synthetic tides degraded with white noise, synthetic tides degraded 

with disturbances, synthetic tides degraded with both white noise and 

disturbances and finally the worst degraded synthetic signal after manual 

correction with TSOFT package). These tidal analyses have been performed using 
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ETERNA 3.4 software on yearly segments shifted month by month, in all the series 

and they have been used to compute the variability of the main diurnal and semi-

diurnal tides. 

From the obtained time variability of the main diurnal and semi-diurnal tidal as 

computed in Annex A, we can infer the following remarks:  

- We found that the variations due to numerical effects in the tidal analysis are 

almost negligible.  

- We found that the presence of disturbances (offsets, spikes and gaps) increases 

the variability. This variability is much higher when white noise is added. 

- We found that the variations of delta-factors after manual corrections (pre-

processing) are similar to the variations obtained from the noisy series before pre-

processing. So no variability is added by the pre-processing itself.  

Therefore, we can conclude that the corrections applied to our observed series do 

not distort the tidal results that will be shown in the following sections. Thus, the 

variations that we will study in chapter 4 on the tidal parameters, can neither be 

due to numerical and analysis noise, nor to the pre-processing of gaps, spikes and 

offsets. Rather, we will see that they are related to the noise contained in the signal 

(Calvo et al. 2014a).  

We then present the tidal analysis methods that were developed in the past and 

the one that will be employed in this thesis.  

2.3.2 Earth tides analysis 

The Earth tides have been studied in different ways, although the background of all 

analyses is based on the early development of tidal potential by George Darwin 

(1883). About 1867, William Thomson (Lord Kelvin) introduced the method of 

harmonic analyses, and it was Laplace who realized that tides might be expressed 

by the cosine of an angle increasing uniformly with time, applying the essential 

principles of the harmonic analysis to the reduction of high and low waters. In the 

20th Century different methods appeared, such as the combinations of Doodson 

(1921, 1954), the summations of Lecolazet (1956b, 1958a , the Pertsev’s method 

(1958, 1961), before the development of the least squares method with Chjonicki 

(1972) or Venedikov (1961, 1966a). Throughout the century, the tidal analysis 

techniques evolved from the use of complicated analysis tables to determine a 

restricted number of tidal parameters, to the modern tidal analysis, which are 

computational methods. Nevertheless, most of the past and present methodologies 

kept the basic Darwin principle unchanged (Melchior 1966). 



56 
 

Essentially, tidal analysis consists of determining the tidal parameters (observed 

amplitudes and phases) of tidal waves at specific frequencies using observed data. 

An Earth tides analysis method basically establishes a comparison between the 

theoretical gravity signal at a station  which is computed for a given Earth’s model; 

for example the Wahr-Dehant-Zschau Earth model (Dehant 1987) is used in 

ETERNA software) using the coordinates of the station and a tidal potential 

catalogue and the cleaned observed tidal gravity signal, to estimate a suite of tidal 

parameters for the station. However, as the oceanic tidal waves have practically 

the same spectrum, they cannot be separated from the body tides and what we get 

in our results is the superposition of both solid Earth and ocean tide effects.  

The number of tidal waves that can be determined and the precision obtained in 

our analyses depend on the record data length and on the noise characteristics of 

the instrument used. 

Spectral separation of tidal waves 

The number of tidal groups that can be separated depends on the data length. 

However, even if we have very long records it is not possible to determinate the 

tidal parameters for each wave listed in the tidal potential catalogue. So, following 

the Rayleigh-criterion we assemble the closest waves in groups assumed to have 

similar properties. For each of these groups the tidal parameters are then 

estimated. 

In principle, two tidal frequencies   and    can be separated on an interval of   

equally spaced observations if their angular speeds differ at least by  6  /  

(Rayleigh criterion).  

          6   

where T is the data length (number of samples n times the sampling rate   ). It is 

equivalent to request that their periods are within the interval        

  
     
     

 

Sampling rate 

Besides, the sampling interval of the records,   , limits the maximum frequency 

that can be achieved because of the Shannon-Nyquist theorem. Hence a two-hour 

interval between samples is well sufficient for the Earth tides analysis, although 

the usual procedure is to use hourly readings. Because of the Nyquist-Shannon 

criterion, for    = 1h, the maximum frequency is 12 cpd (Nyquist frequency).  
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The 1 minute sampling rate has been conventionally adopted by the GGP network 

of superconducting gravimeters, even if most of the stations use higher sampling 

rates from 1 to 10 seconds. A first decimation (after applying a low-pass filter to 

avoid aliasing of high-frequency content) is then performed on the original data to 

get one minute sampled data.  

2.3.3 Modern tidal analysis software 

As said before, an analysis program basically establishes a comparison between 

the theoretical gravity signal for the station and the corrected observed tidal 

gravity signal to estimate a set of tidal parameters for the station.  

Currently, three programs are mainly used for Earth tidal analysis within the SG 

community; two of them are based on the least squares approach: ETERNA 

(moving window filtering and global evaluation of the tidal families following T. 

Chojnicki) and VAV (non overlapping filtering and separation of the tidal families 

following A. P. Venedikov), and the third one is based on a Bayesian method 

(BAYTAP-G). 

ETERNA. This package became the most popular one and its associated data 

format became the official transfer format adopted by the International Centre for 

Earth Tides (ICET). It was developed over many years by H. G. Wenzel (1994a, 

1994b, 1996b), who generated a set of several FORTRAN codes for dealing with all 

the common aspects of processing gravimeter data. Among these codes, ANALYZE 

is the one used for tidal analysis, which is based on a method first developed by 

Chojnicki (1972) and improved later by Schüller (1977).  

It is based on a least squares adjustment to estimate simultaneously the tidal 

parameters, the meteorological and hydrological regression parameters, the pole 

tide regression parameters and the Tschebyscheff polynomial bias parameters for 

drift determination. It is valid for all tidal components: potential, gravity, tilt, 

strain, displacements. The user can decide to use different sampling rates, and also 

can choose among different tidal development catalogues: from less than 400 

waves  Doodson’s catalogue  up to more than 1 ,    waves for the tidal potential 

catalogue of Hartmann and Wenzel (1995). 

The model used for least squares adjustment is: 

                   

 

   

                                

 
 

 

Where 

     = Observed gravity signal 

(2.34) 
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    = Improvements to the observations 

  ,  = Linear form of unknown parameters (amplitude factor      and phase 

differences,       for each wave group  :  

      cos     

      sin     

   ,   = Factor of theoretical tidal parameters    (amplitude) and    (phase) for 

each wave of frequency    in the wave group  , starting with wave    and ending 

with wave   : 

       
   

    
   cos 2       ) 

       
   

    
   sin 2       ) 

  
  = Amplification factor from digital highpass filter (equal to 1 if the drift is 

approximated by polynomials) 

  ,    =  Coefficients (  ) of TSCHEBYSCHEFF-polynomials    of degree   

  ,   = Regression coefficients (  ) of additional channel number m (  ) 

A possible drift in the data can be eliminated by highpass filtering (the filter 

coefficients for different numerical digital filters are included in the ETERNA-

package) or is approximated by TSCHEBYSCHEFF–polynomials (  ) whose 

coefficients (  ) are also estimated in the least square adjustment.  

VAV. It is based on the method of tidal harmonic analysis called MV66, developed 

by Angel P. Venedikov (1966a, 1966b), and its improvements through the 

successive program code SV and NSV (Venedikov et al., 1997). VAV is also 

widespread used for tidal analysis purposes. The last version of VAV was described 

most recently by Venedikov et al. (2003; 2005). In addition to the modelling of the 

tidal signal, according to the last published version, the following features of VAV 

can be highlighted: 

- Transformation of the observed data from the time domain into a time/frequency 

domain and application of the method of least squares on the transformed data, 

allowing frequency-dependent estimates of the tidal parameters. 

- A flexible model of the drift calculated using low power polynomials in the 

filtered data. 
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- A model for the estimation and/or elimination of the effect of perturbing signals 

such as the air pressure effect, through the own filtering process. 

- Processing of data with arbitrary time step, and also with gaps without the need 

of interpolation. 

As it is explained in Venedikov et al. (2001), the fundamental idea of the program 

consists in 2 steps: 

1. Filtering of the original data on independent (without overlapping) intervals to 

eliminate the drift and to transform the data in separate pairs of series, each pair 

corresponding to one of the tides the user is interested in (a wide spectrum of 

frequencies can be chosen by the user). 

2. Processing of the filtered numbers by the method of the Least Squares applied in 

the time/frequency domain. The series are processed independently, and the 

parameters for each tidal species are determined individually, although 

simultaneously (using all the separated tidal species in a single least squares 

adjustment). 

The original data set   is divided into   intervals       of central epochs 

    ,   …   

Each interval contains   data points       total number of data points ,   

differs between the intervals if the data are unequally spaced. 

In a first stage of VAV, the hourly data      in every      are transformed by 

filtering into even and odd filtered numbers  ,    , as shown by (2.33):  

      ,                    

 

    

 

For hourly data we can define 12 frequency bands      11     

Due to the use of a time window    we can relate the processing in an initial stage 

to a limited number of basic frequencies that we denote as     , …  .  

For evenly spaced data, VAV uses the same filters for all      while for unevenly 

spaced data, the filters are built up separately for every     :  

The transformation in the time/frequency domain of the tidal data is a classical 

idea which was already used by Doodson (1928) and Lecolazet (1958a). These 

methods applied narrow band-pass filters, aimed to separate perfectly the main 

tidal species, concentrated at the first frequencies. The VAV program applies more 

simple filters that used in MV66 and NSS, closer to cosine/sine Fourier filters, 

which do not attempt to get a complete separation of the main tidal species.  

(2.35) 
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VAV constructs the filters as follows; first stage consists in the creation of the 

cosine/sine complex vectors, for a given      and all frequencies    

   ,              …            
 ,     , … ,    

 

Later, VAV transforms the    ,    into the filters    ,   ; which are vectors with 

the same structure as    ,   : The transformation is made as follows:  

(i)    ,    is a linear combination of     ,    ,    ,… ,    ,    ,  

(ii)    ,    , … ,    ,     are orthonormal, so that; 

     ,    
        ,          ,    

     ,      
          
1        

  

(iii) with respect to the matrix of drift coefficients      ,    ,           

when Δ  2   ;     1 ,   ,   , 6 , 7 , 9     /  , for evenly hourly data we have 

the trivial transformation: 

   ,       ,    2 Δ   

These are pure cosine/sine filters, having also the property. 

   ,    
    ,      

           

 Δ 2         
  

Which implies that the filter    ,     amplifies its corresponding frequency   

   and eliminates all other main frequencies. 

For other situations, we have some deviations from this last equation.  

The application of the filters    ,    on the      consists in the computation of the 

complex filtered numbers 

   ,       ,         

 

Once that filters have been applied, VAV implements the least squares on   ,    as 

if   ,    are the observations. As a result, it provides the estimates of the 

unknowns, in which we are interested, the adjusted    ,     of the observed   ,     

and the residuals  

                    

(2.36) 

(2.37) 
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for all the values of   and  . 

BAYTAP-G. This method was developed by Tamura et al., (1991) during the 1980s. 

It is based on a method called Bayesian prediction from Harrison and Stevens 

(1976) adapted to the use of Earth tide data. The user can choose between the tidal 

potential catalogues of Tamura (Tamura 1987) or Cartwright-Taylor-Edden 

(1973).  

It is a hybrid method using a combination of harmonic series and the response 

method (Lambert 1974) to estimate the various components of a gravity record. 

These components (tidal parameters, drift and meteorological parameters) are 

estimated through an iterative method similar to least squares adjustment, by 

minimizing the term  Tamura 199   using Akaike’s Bayesian Information Criterion 

(Akaike, 1979, Tamura et al. 1991): 

             

 

   

 

   

               

   

   

      
  

        2          
 

 

   

 

                   
           

  

 

   

 

where: 

          are the linear expressions of the unknowns amplitude factor and phase 

lead for each   of the M groups at all.  

           are computed from the tidal potential catalogue using all j waves 

contained in the mth wave group. 

The tidal part is subtracted from each observation    (n datapoints in total) 

together with the drift-value    and the term describing the influence of additional 

channels       onto the measurement.   and WEIGHT are called hyperparameters 

and can be defined in the parameters file. 

  

(2.38) 
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2.3.4 Comparative analysis ETERNA 3.4/VAV 

Dierks and Neumeyer (2002) compared all three programs using both synthetic 

data and a 1-year observed SG data set from station Sutherland (SU). They found 

the performance of the three programs to be similar, but with different treatments 

of the statistics between signals (tides, air pressure, and drift) and residual gravity. 

Also, several comparisons exist between ETERNA and VAV programs (Ducarme et 

al. 2006b). Ducarme pointed out that the computation of the root mean square 

errors (RMS) carried out by ETERNA was not done in the most appropriate way in 

the least square method. Wenzel improved the program, and here we used the 

latest version, ETERNA 3.4, which was corrected for the error in the SNR 

computation. 

In our case, we have realized several comparisons between ETERNA 3.4 and VAV 

06 software to compare their results in terms of delta amplitudes and phase 

differences. We don’t take into account the differences obtained in term of error 

evaluations, because both programs estimated them in a different way; VAV 

evaluate it through the RMS error on the unit weight   , while least square 

solutions generally underestimate the errors as they suppose a white noise 

structure and uncorrelated observations i.e. a unit variance-covariance matrix 

(Ducarme e al. 2006b). 

Program BAYTAP-G was discarded because it is not able to use more than 31 wave 

groups, and in the next sections we will be interested in analyzing as many waves 

as possible using very long records. 

Synthetic data; first, we have generated synthetic series for J9 station using an 

elastic DDW99 non hydrostatic Earth’s model  Dehant et al., 1999  and the tidal 

potential catalogue from Hartmann and Wenzel (1995): 

 A short series of 1 month data 

 A medium series of 1 year data 

 A long series of 10 years data 

Observed data; we have selected data intervals from the total record in J9 

Observatory, with the same length as the theoretical records:  

 A short series of 1 month data   (2001/01/01 – 2001/01/31) 

 A medium series of 1 year data  (2000/01/01 – 2000/12/31) 

 A long series of 10 years data  (1997/01/01/ - 2006/12/31) 

All these series have been analyzed using ETERNA 3.4 and VAV 06 software. The 

wave grouping used was the same in both cases. 

- In a first step, all analyses have been carried out using Tamura’s catalogue in both 

software. 
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- In a second step, new ETERNA analyses have been carried out with Hartmann 

and Wenzel’s (HW) catalogue. 

The obtained results for 1 month data are compared in Table 2.3.1 for the 

synthetic data and in Table 2.3.2 for the observed data. The results for the more 

detailed analysis of 1 year and 10 year data are shown in Annex B.  
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Synthetic data 

* 1 month data 

Table 2.3.1: Comparison of the results (amplitude factor, phase differences and standard deviations) obtained in the diurnal band (up) 
semi-diurnal band (middle) and ter-diurnal band (down) for the same synthetic data series (1 month data) using VAV 06 (left columns), 
ETERNA 3.4 with TAMURA catalogue (middle columns) and ETERNA 3.4 with HW catalogue (right columns). 

Diurnal VAV 06 ETERNA (TAMURA) ETERNA (HW) 
  MSD  MSD  stdv  stdv  stdv  stdv 

Q1 1.1510 0.0008 0.0220 0.0370 1.1533 0.0001   -0.0068   0.0064   1.1534 0.000001 0.0001 0.0001 
O1 1.1523 0.0002 0.0070 0.0090 1.1532 0.0000   -0.0074   0.0016   1.1532 0.000000 0.0002 0.0000 
K1 1.1363 0.0001 -0.0970 0.0110 1.1322 0.0001   -0.0162   0.0061   1.1322 0.000001 0.0002 0.0001 
J1 1.1579 0.0016 0.2870 0.0810 1.1558 0.0004   -0.0152   0.0180   1.1552 0.000004 0.0001 0.0002 
OO1 1.1753 0.0064 -0.5920 0.3100 1.1542 0.0012   0.2339   0.0616   1.1545 0.000013 0.0008 0.0006 

 

Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  MSD  MSD  stdv  stdv  stdv  stdv 
2N2 1.1570 0.0006 -0.0430 0.0320 1.1569 0.0003   -0.0230   0.0137   1.1575 0.000001 0.0004 0.0001 
N2 1.1573 0.0002 0.0130 0.0090 1.1575 0.0001   -0.0168   0.0036   1.1575 0.000000 0.0004 0.0000 
M2 1.1571 0.0000 0.0050 0.0020 1.1574 0.0000   -0.0066   0.0009   1.1575 0.000000 0.0004 0.0000 
L2 1.1543 0.0016 0.1720 0.0810 1.1583 0.0007   0.0500   0.0363   1.1575 0.000003 0.0003 0.0002 
S2 1.1575 0.0001 0.0260 0.0110 1.1574 0.0001   -0.0118   0.0069   1.1575 0.000001 0.0004 0.0000 

 

Ter 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  MSD  MSD  stdv  stdv  stdv  stdv 
M3 1.0697 0.0015 0.2890 0.0790 1.0695 0.0003   -0.0529   0.0172   1.0694 0.00001 0.0005 0.0003 
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Observed data 

* 1 month data 

Table 2.3.2: Comparison of the results (amplitude factor, phase differences and standard deviations) obtained in the diurnal band (up) 
semi diurnal band (middlel) and ter diurnal band (down) for the same observed data series recorded at J9 (1 month data, 2001/01/01–
2001/01/31) using VAV 06 (left columns), ETERNA 3.4 with TAMURA catalogue (middle columns) and ETERNA 3.4 with HW catalogue 
(right columns). 

Diurnal VAV 06 ETERNA (TAMURA) ETERNA (HW) 
  MSD  MSD  stdv  stdv  stdv  stdv 

Q1 1.1476 0.0019 -0.2520 0.0930 1.1495 0.0006 -0.3116 0.0287 1.1496 0.0005 -0.3048 0.0271 
O1 1.1495 0.0005 0.0770 0.0230 1.1503 0.0001 0.0629 0.0070 1.1503 0.0001 0.0704 0.0066 
K1 1.1422 0.0002 0.1920 0.0290 1.1383 0.0005 0.2763 0.0272 1.1383 0.0005 0.2927 0.0257 
J1 1.1667 0.0041 0.3470 0.2040 1.1631 0.0017 0.1266 0.0803 1.1625 0.0016 0.1417 0.0757 
OO1 1.1793 0.0161 -0.4320 0.7770 1.1611 0.0056 0.4141 0.2742 1.1613 0.0052 0.1801 0.2584 

 

Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  MSD  MSD  stdv  stdv  stdv  stdv 
2N2 1.1529 0.0016 2.6560 0.0810 1.1544 0.0011 2.6306 0.0545 1.1549 0.0012 2.6538 0.0600 
N2 1.1733 0.0005 2.6330 0.0220 1.1730 0.0003 2.6043 0.0140 1.1730 0.0003 2.6214 0.0154 
M2 1.1880 0.0001 2.1680 0.0050 1.1883 0.0001 2.1523 0.0034 1.1884 0.0001 2.1593 0.0037 
L2 1.2079 0.0041 3.5600 0.1960 1.2076 0.0029 3.2865 0.1379 1.2068 0.0032 3.2380 0.1522 
S2 1.1901 0.0003 0.6720 0.0280 1.1893 0.0006 0.6723 0.0268 1.1893 0.0006 0.6847 0.0296 

 

Ter 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  MSD  MSD  stdv  stdv  stdv  stdv 
M3 1.0664 0.0033 0.9630 0.1690 1.0633 0.0063 0.4561 0.3411 1.0632 0.0062 0.5098 0.3351 
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In both cases, using theoretical or observed data, the numerical results for the 

amplitude ratio and phase difference obtained with VAV 06 do not significantly 

differ to those obtained with ETERNA 3.4. (<0.08% for   and 0.02% for    for 

theoretical data, and <0.07% for   and 0.02% for    for observed data) Also the 

results from ETERNA 3.4 using different tidal potential catalogues (TAMURA or 

Hartmann & Wenzel) are almost same, being the ones with HW potential the more 

accurate. 

We can conclude that none of these softwares is clearly better than the other. 

Nevertheless, we have chosen to use ETERNA 3.4 all along this thesis instead of 

using VAV 06, mainly due to the fact that ETERNA 3.4 allows us to use the newest 

tidal potential catalogue from Hartmann and Wenzel (1995), which is not possible 

with VAV.  

We have finished introducing the theory, the methods and the instruments. Before 

turning to the analyses of real data and to the results we have obtained during this 

thesis, we will present the gravimetric observatory in Strasbourg which has been 

our reference site for various studies.  

 



 
 

 
 
 

Chapter 3 
 
 
 
 

3. Gravimetric 
Observation in 

Strasbourg (1954-2014) 
 

 



 
 

Throughout this thesis we analyze data recorded by different types of gravimeters 

installed in several gravimetric stations located in Europe. The gravity records at 

the station in Strasbourg will be studied more in detail and we will use this station 

as comparison site to study the differences and improvements between data sets 

obtained from different kinds of gravimeters. Therefore in this section we will deal 

with some historical aspects and will show some major results obtained at the two 

Gravimetric observatories, belonging to the EOST (Ecole et Observatoire des 

Sciences de la Terre), located in Strasbourg along the last six decades. 

There is a traditional gravity recording of Earth tides at Strasbourg which was 

initiated by Pr. Robert Lecolazet (1910 – 1990) in the 50s. Since 1937 he was 

working at the ‘Institut de Physique du Globe de Strasbourg  IPGS ’. After 19 8 he 

focused his work in the gravity field, especially devoted to the study of Earth tides. 

Hence since the 1950s, the surface time gravity changes have been measured 

locally using different kinds of gravimeters (spring, absolute and superconducting 

types) at two different stations (figure 3.0); first in the Seismological Observatory 

of Strasbourg for almost 20 years and later on in the 70s at the J9 Observatory, 10 

km far away from Strasbourg city. Over these years many kinds of improvements 

have been observed in terms of instrumentation, of tidal potential developments 

and more specifically in terms of data analysis techniques, which have allowed 

obtaining some fundamental results as we will see later. 
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Fig. 3.0: Summary of the time periods when various gravimeters have been recording at the Seismological Observatory of Strasbourg 
(1954-1967), and later at J9 Observatory (1970-today). 
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3.0 Gravimetric tides before 1954 

 

 

 

΄Le Bureau des Recherches Géologiques et Géophysiques a fait 

procéder durant quatre jours, du 5 au 9 juillet 1948, à une longue 

série de mesures de la gravité en un même point. Les déterminations, 

effectuées d’heure en heure, avaient un double objet : d’une part, 

examiner le comportement du gravimètre ‘North-American’ au point 

de vue de la stabilité et de la sensibilité ; d’autre part, étudier 

l’influence de l’action luni-solaire sur les mesures gravimétriques de 

précision. Le Service Hydrographique de la Marine, en se chargeant 

du dépouillement des résultats, a permis de donner à cette 

expérience une portée plus générale.˙ 

 

 

 

 

 

We transcribed in this epigraph the beginning of the text from Bollo and Gougenheim 

(1949). This text, which is one of the first texts published in Europe, describes the 

state of the study of tidal gravity at that date. It even reproduces the same title as an 

article of Truman (1939) published in the United States, which somehow marked the 

renewal of the instrumentation developed since the design of the zero-length spring 

gravimeter, invented by Lucien Lacoste in 1934. 

The data shown by Bollo and Gougenheim were not, of course, the first 

measurements of the Earth’s tides. It is easy to scan the previous results, through the 

reports on the tides of the Earth’s crust presented by W. D. Lambert, in the reports of 

the International Union of Geodesy and Geophysics (IUGG). 

Rebeur  1882  estimated a γ factor using a pendulum measurement, registered at 

Strasbourg. But the first measurement using data recorded by gravimeters was made 

in 1913 by Schweydar with a bifilar gravimeter in Potsdam. He found a value of 

δ 1.2  for the gravimetric factor  Schweydar, 191 a).   

Almost 20 years later, there were new observations by Tomaschek and Schaffermigh 

at Marburg, using also a bifilar gravimeter. Unfortunately their results were not good 

and they found δ < 1  Lambert, 19 6 . 
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These early works seem to have been intended for research on the Earth’s elasticity 

and especially to improve the knowledge of Love numbers insofar as the combination 

(1      , which were already known from the observation of the deflection of the 

vertical. 

From the 1935s began a study of gravity anomalies to better constrain geophysical 

exploration using more accurate and portable instruments. However, to achieve 

greater precision it was also necessary to correct the measurements of tidal effects. 

This was a major cause to boost interest in the study of Earth’s tides. 

There were many trials, but the most significant results were those of Truman 

between 19 6 and 19 7  Lambert 19 9 , where he found an average δ 1.1 . And 

also the works performed in USA by the ‘Gulf Research and Development 

Corporations’ in 19 9, described by Eckhardt  Lambert 19 9  where using 11 gravity 

records, they found an average δ 1. 7, ranging from 1. 6 to 2.2 . 

In France, the first campaigns to obtain a map of gravity anomalies began in 1940 and 

persisted after the 2nd World War. This led to the paper cited above (Bollo and 

Gougenheim, 1949) where they presented a four day series registered at Chambon la 

Forêt, 100 km south of Paris, using a North American gravimeter. These results were 

indicative of the state of the art (figure 3.1) 

 

Fig. 3. 1: Theoretical (lower plot) and observed (upper plot) gravity variations from 
5/07/1948 to 9/07/1948 at Chambon la Forêt Observatory. 

Few years later, in 1953 Prof. R. Lecolazet from IPGS acquired a North American 

gravimeter to be used for teaching geophysics, but also for the study of tidal gravity. 

Thereby, the studies of Earth’s tides begun in Strasbourg. 
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3.1. Seismological Observatory of Strasbourg (1950-1970) 

The first location where Pr. R. Lecolazet chose to install permanent gravimeters to 

record Earth tides was inside the Seismological Observatory of Strasbourg (figure 

3.2), a building belonging to the University of Strasbourg in the city center (48.583 N, 

7.767 E, 138 m). The first observations were carried out in 1954 using a spring 

gravimeter, the North American 138, which was equipped with a photographic 

recording device (figure 3.3). 

 

 
Fig. 3.2: Building of the Seismological Observatory of Strasbourg, where was installed 
the first spring gravimeter devoted to record gravity Earth tides. 

 

 
Fig. 3.3: North American 138 which was installed at the Seismological Observatory of 
Strasbourg in consecutive periods from 1955 until 1967. 

 

Pr. Lecolazet and co-workers obtained more than 5 months of consecutive record, 

precisely 163 days from October 1954 to March 1955. This series was published as 

the longest series recorded at that time (Lecolazet, 1956a, Melchior 1957). Since then, 

they continued to gradually improve their equipment obtaining longer and better 

data series. In November 1964 they installed the sensor in an isolated box 

thermostatically controlled. The gravimeter was equipped, among other 

improvements, with a permanent electrostatic calibration device. Moreover the 

photographic recording system was highly improved. As expected, the instrumental 

drift became much more regular and decreased, making it possible to study long-

period waves.  
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3.1.1. Observation of Long Period tidal waves 

Since November 1964 this gravimeter was continuously recording for almost 3 years. 

Using the first 13 months of this series, they were able to observe for the first time 

the monthly, fortnightly and ter-monthly tidal waves Mm, Mf and Mtm (figure 3.4 - 

Lecolazet and Steinmetz, 1966). These first results were still not precise enough but 

were very encouraging. Such observations were possible not only because of the data 

quality, but also because of the use of new techniques of signal processing. 

 
 

Fig 3.4: First observation of the monthly, fortnightly and ter-monthly waves Mm, Mf 
and Mtm, using the 3 year series recorded by the North American 138 gravimeter 
installed in Strasbourg from 1964 until 1967 (extracted from Lecolazet and 
Steinmetz, 1966). Upper plot: theoretical waves. Medium plot: observed waves. 
Lower plot: observed air pressure variation.  

The North American 138 continued recording at the same site until 1967. Another 

North American gravimeter (NA 167) was recording in parallel during 82 days at the 

end of 1957 and beginning of 1958. The aim was to study and compare the sensitivity 

and accuracy of both instruments (Lecolazet 1958b). Using the last period of data 

recorded by the North American 138 (1012 days between November 1964 and 

August 1967) they were able to observe the Free Core Nutation resonance (section 

3.1.2). 
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Finally, we have to mention that a Geodynamics model, the GEO730 owned by J.T. 

Kuo, recorded during 79 days between September and December 1970. Within the 

international context of the station, these data were included in different 

international tidal gravimetry profiles and networks (Melchior et al., 1976, Melchior 

et al., 1981). 

3.1.2. First observation of Free Core Nutation resonance with gravimetric data 

As previously described in section 2.1.9, the fluid core resonance phenomenon affects 

the amplitude of the tidal waves close to the Free Core Nutation (FCN) period in the 

diurnal frequency band. As the rest of the gravity community, Lecolazet became 

interested in searching evidence for the FCN in gravity records after the theoretical 

works of Jeffreys, Vicente and Molodensky in the middle of last century, concentrating 

much effort to try to detect it in the data series recorded at Strasbourg station.  

In a first step, the study of the existence of the Earth’s FCN focused on the relative 

values of the gravimetric delta factors δ of the main diurnal tides (O1 and K1). 

Lecolazet initiated the search for a clear evidence of the FCN by its associated 

resonance effects on the diurnal tides using the 5-month data recorded with the 

North American AG 138 from October 1954 until March 1955. Unfortunately, the first 

results he published were in disagreement with the theoretical models (Lecolazet 

1957, Melchior 1957). Two years later, using the series from 1957 to 1958, he 

published the first clear observation of δ O1    δ K1) in agreement with Jeffreys’ 

theory (Lecolazet, 1959). Then Lecolazet (1960) obtained even better results using 

the complete series of 860 days of the NA 138 registered between August 1957 and 

December 1960.  

In a second step, once the existence of this resonance was confirmed, efforts were 

focused on the search for its frequency. After some failed attempts (Lecolazet and 

Steinmetz, 1973) where they were not able to locate correctly the frequency, 

Lecolazet and Steinmetz published in 1974 the first results of the discovery of the 

resonance of the core (Lecolazet and Steinmetz, 1974) determining that it would be 

either between K1 and PSI1, or between K1 and PHI1. In both publications they used 

the same dataset, i.e. almost 3 continuous years between 1964 and 1967 obtained 

with the North-American AG 138 installed at the Seismological Observatory in 

Strasbourg. The major difference in the results was then due to the different 

methodology used in the data analysis; in 1974 they performed a tidal analysis using 

an improved least-squares method proposed by T. Chojnicki (Chojnicki, 1972), which 

is based on Venedikov’s method of tidal analysis  Venedikov 1961, 1966b). 

These results were then much improved by using a longer series recorded between 

1973 and 1975 with a LaCoste-Romberg Earth-Tide gravimeter (LR-ET005), 

equipped with a feedback system installed at the J9 Gravimetric Observatory of 
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Strasbourg, definitively confirming that the FCN frequency lies between K1 and PSI1 

frequencies (Abours and Lecolazet, 1978, Lecolazet and Melchior, 1977).  

The instrumental precision of the LR-ET005 was not only better than that of the 

North American, but also the tidal analysis technique was improved with the help of 

computer processing conducted at the International Center for Earth Tides, where the 

Chojnicki's least-squares procedure was applied and complemented with a spectral 

analysis of the residuals.  

Since then, developments in both theory and observations have allowed substantial 

improvements in the estimation of the FCN resonance parameters, especially with the 

development of the superconducting gravimeters (SGs) in the 80s. 
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3.2. Gravimetric Observatory of Strasbourg J9 (1970s - today) 

At the beginning of the 70s, R. Lecolazet and co-workers decided to move the 

gravimetric observatory to a quietest place situated outside the city. The chosen place 

is located about 10 km from Strasbourg in a bunker named J9 (figure 3.5) built by the 

Germans after the 1870 war on the top of a sedimentary hill (48.622 N, 7.684 E, 180 

m).  

 

  
Fig. 3.5: Pictures of the outside and the inside corridor of the bunker J9, where the 
gravimetric observatory is located. 

The new gravimetric observatory is settled at J9 since 1970. Thereafter, time-variable 

gravity variations have been observed and recorded at J9 with various spring and 

superconducting gravimeters (figure 3.6). Besides, since 1997, absolute gravity 

measurements are also performed regularly. During this long period, the relative 

gravimeters (sensors and electronics) and the acquisition systems were drastically 

improved. These improvements allowed increasing the measurement accuracy by 

more than 10 times (Calvo et al. 2014b). 
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Fig. 3.6: Time-varying gravity measured at the Gravimetric Observatory J9, located 
near Strasbourg, from 1970 to 2013. The first 3 series were recorded by spring 
gravimeters: Askania model in brown, Geodynamics model in black and Lacoste and 
Romberg model in green. The last 2 series were obtained by superconducting 
gravimeters: TT70 model in red and C026 model in blue. 

3.2.1. Spring gravimeters 

The first 10 years of observations were carried out by different models of spring 

meters: the first one was an Askania gravimeter belonging to M. Bonatz, ASK206, 

which was recording for 77 days at the end of 1971 and beginning of 1972. After that, 

a Geodynamics gravimeter GEO721, was installed by P. Melchior and J.T. Kuo during 

82 days in 1973. Later a Lacoste&Romberg ET005 (figure 3.7) modified in order to 

record Earth tides by R. Lecolazet and J. Gostoli in 1970 with an electrostatic feedback 

system and a digital recording, was recording with a sampling rate of 1 hour (J. 

Gostoli, 1970). This later gravimeter was operational during two periods of 2100 and 

1120 days respectively from October 1973 until middle 1985. This series was used in 

several studies, including the observation of the FCN resonance as seen in section 6.3. 

As we have already explained in section 2.2.2, the spring meters are too sensitive to 

the changes of temperature, so to avoid such perturbations the L&R ET005 was 

installed in an isolated box thermostatically controlled. The box was located in a room 

itself thermally stable of the underground fort; the sealed box protected also the 

sensor against the direct influence of barometric pressure variations. This gravimeter 

was calibrated by a direct comparison with an Askania gravimeter GS15 in 1972 

(Abours, 1977). 
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Fig 3.7: Pictures of the isolated boxes where the spring gravimeters L&R ET005 (left 
picture) and the L&R ET11 (right picture) were installed at J9 Observatory.  

More recently, there have been also different spring gravimeters temporarily 

installed in J9, such as the Microg-LaCoste gPhone 054 owned by IGN-Spain (figure 

3.8) and which was recording for almost 1 year between 2008 and 2009 (Riccardi et 

al., 2011). A LaCoste & Romberg Graviton-EG1194 from Instituto de Geociencias 

(CSIC, UCM) of Spain was operating there for 3 months during 2011, aiming to check 

its instrumental response, both in amplitude and phase as well as its time stability 

(Arnoso et al., 2014). Currently a Lacoste-Romberg ET11, belonging to BFO was 

installed by W. Zürn and is recording since 2012 (figure 3.7- right). 

 

 

Fig 3.8: Spring gravimeter Microg-LaCoste gPhone 054 owned by IGN-Spain, installed 
at J9 Observatory between 2008 and 2009. 
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3.2.2. Superconducting gravimeters  

Since 1987 two different superconducting gravimeters have been recording in two 

consecutive periods at J9. The first superconducting gravimeter was a TT70 model 

from GWR Instruments installed in 1987. This meter was recording for almost 10 

years. Using the first 8 years of this series, Florsch et al. (1995) were able to observe 

for the first time 3 of the quart-diurnal tidal waves M4, N4, K4 (degree 4 and order 4) 

with extremely small amplitude. Later on, Boy et al. (2004) definitively confirmed 

these observations by comparing observed gravity changes with loading estimates 

using different models of non-linear tides over the North-Western European shelf. 

The loading contribution of non-linear oceanic tides has already been clearly 

observed using measurements from spring gravimeter (Baker, 1980). In 1990, 

Wenzel and Zürn identified tidal terms of 4th order in the 1 to 3 cycle/day frequency 

bands using the data from the Lacoste-Romberg ET19 installed in the Black Forest 

Observatory (Wenzel and Zürn, 1990) but thanks to the high precision of SG data, 

Florsch et al. (1995) could also identified quarter-diurnal tidal waves (degree and 

order 4) of lunisolar origin (figure. 3.9). 

 
 

Fig. 3.9: Gravity spectra recorded by the T005 SG at Strasbourg (France) and Cantley 
(Quebec) and comparison with that of the theoretically predicted tide calculated at 
Strasbourg, highlighting 3 of the quart-diurnal tides waves M4, N4, K4. Extracted from 
Florsch et al. 1995. 
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In 1996 this SG was replaced by a more compact model, the C026, which is still 

recording. These data are continuously collected within the global GGP (Global 

Geodynamics Project) network (Crossley et al., 1999). As explained in section 2.2.2, 

SGs are using magnetic levitation against gravity on the contrary to the mechanical 

meters which use a spring. The SG long term stability is hence much better than in the 

case of spring meters mainly because of the unavoidable creep of the spring whatever 

its constitutive material (Torge 1989). The high sensitivity of the SGs is achieved by 

an efficient adjustment of the vertical magnetic gradient, so compared to the spring 

instruments, the superconducting gravimeters are characterized both by a higher 

accuracy and a significantly lower instrumental drift.  

  

Fig. 3.10: Superconducting gravimeters installed at the J9 Observatory. Left one: TT70 
model (T005). Right one: compact SG model (C026).  

As we will see later on in section 4.3, the model C026 was also improved with respect 

to the previous T005 version in terms of noise levels (Rosat et al., 2002) and drift 

rates (Amalvict et al., 2001) both because of the instrument itself and also the data 

acquisition system upgrade. The high quality of this gravimeter records has allowed 

to carry out extensive researches on different topics in global geodynamics such as 

the study of global Earth deformation (tides, loading, etc.), non-linear ocean tides 

(Boy et al. 2004), hydrology (Longuevergne et al., 2009, Rosat et al., 2009a) and 

metrological aspects such as calibration (Amalvict et al., 2002), long-term drift 

determination (Amalvict et al., 2001; Boy et al., 2000), noise level estimates (Rosat et 

al., 2004; Rosat and Hinderer, 2011) and comparisons with other temporarily 
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instrumentation like the gPhone previously mentioned (Riccardi et al. 2011) and the 

L&R Graviton-EG (Arnoso et al., 2014; Rosat et al., 2014).  

 

Considering only the J9 Observatory, we have almost 40 years of time-varying gravity 

record, more than 26 years of which have been registered with superconducting 

gravimeters, leading to the longest series ever recorded by SGs. 

Later on, in chapter 5 (Contribution of long series to tides studies) we will show the 

importance of long records.  

3.2.3. Absolute gravimeters  

Since 1997, there is also a portable absolute gravimeter FG5 # 206 manufactured by 

Micro-g Solutions which is regularly measuring at the J9 Observatory in parallel with 

the SG, but also at different sites in France and abroad. The main purposes of these AG 

measurements performed at J9 are the drift control and the calibration of the 

superconducting gravimeter (C026). 

To determinate the instrumental drift of SGs, the long-term behavior is constrained 

by regular absolute gravity measurements, which are performed in parallel. For the 

T005, the absolute measurements were carried out by J. Mäkinen with the absolute 

gravimeter JILAg-5 belonging to FGI (Finnish Geodetic Institute). We only dispose of 

6 measurements for all the T005 period. For the C026, there have been numerous 

absolute measurements since its installation with instruments of the new generation 

of ballistic gravimeters, mainly the FG5#206. There was also one measurement 

realized in parallel with both instruments (JILAg-5 and FG5#206) in 1996 for 

comparison.  

 

Fig. 3.11: Picture of both absolute gravimeter models, JILAg-5 and FG5#206 during 
the co-located measurement made in 1996 at J9 Observatory.  
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The SG gravity residuals obtained after removing the local tides, polar motion and 

atmospheric pressure effects are plotted in figure 3.12 with the corresponding 

parallel absolute gravity measurements.  
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Fig. 3.12: Superposition of SG gravity residuals (continuous line) with AG 
measurements (dots with error bars) (left) between SG (T005) and AG (JILAg-5) for 
the period 1987–1996, (right) between SG (C026) and AG (FG5#206) data for the 
period 1996–2014. Please note that the instrumental drift was removed from these 
superpositions. 

We have also used the AG measurements to determine the SG amplitude scale factor. 

Several scale factor experiments of different durations (from several hours to 9 days) 

were regularly performed since 1996. These results allow us to discuss the time 

stability of the calibration of the SG (Hinderer et al., 1991a; Amalvict et al., 1999, 

2001, 2002; Calvo et al., 2014b). Due to the importance of the time stability of the 

scale factor of the SGs, a detailed study using these experiments is carried out in 

section 4.5. 

Furthermore, these absolute measurements have been combined with GPS data or 

hydrological data in different studies to investigate the long term evolution of gravity 

that was observed at J9 (Amalvict et al., 2004; Rosat et al., 2009). 

In addition to all the gravimetric instrumentation, there are other auxiliary 

instrumentation installed at the observatory, such as a weather station, GPS 

permanent antenna, and different hydrological sensors (piezometers, soil moisture 

sensors). 
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4.1. Introduction 

As we will see in section 5, long gravity records are of great interest when performing 

tidal analyses. Indeed, long series enable to separate contributions of near-frequency 

waves (the frequency resolution is the inverse of the data length) and also to detect 

low frequency signals (e.g. long period tides and polar motion) (the lowest detectable 

frequency is also the inverse of the data length). In addition to the length of the series, 

the quality of the data and the temporal stability of the noise are also very important.  

In this section we use some of the longest gravity records available in Europe to study 

the time stability of the response (instrument + Earth) to tidal forcing. We expect this 

response to be solely dependent on the stability of the instrument and merely to 

geophysical phenomenon. The stability at each station is investigated using the 

temporal variations of the tidal parameters (amplitude factor and phase difference) 

for the main diurnal and semidiurnal tidal waves (O1, P1, K1, M2, S2 and K2) as well as 

for the M2/O1 delta factor ratio. This ratio, being independent of the instrumental 

calibration, is a very good indicator of the stability of the instrument. Once the time 

variability of these temporal series has been estimated, we have to consider the 

possible origins of time varying tidal parameters (instrumental noise, numerical 

effect, analysis effect, pre-processing effect, geophysical effects, etc…). 

Most of the results described in this chapter have been published in Calvo et al. 

2014a. 

To carry out these studies, we used 3 data sets recorded with different models of 

spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange 

(Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) as well as several 

superconducting gravimeters (SGs) data sets, with at least 9 years of continuous 

records, at different European GGP (Global Geodynamics Project) sites (Bad 

Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg).  

The long term stability of the tidal observations is also dependent on the stability of 

the scale factor of the relative gravimeters. Unluckily, we only have a long series of 

calibration experiments for the SG C026 installed at the J9 Gravimetric Observatory of 

Strasbourg. Therefore we have checked the time stability of the scale factor for the SG 

C026 using numerous calibration experiments carried out by co-located absolute 

gravimeter (AG) measurements during the last 15 years. The reproducibility of the 

scale factor and the achievable precision are investigated by comparing the results of 

all these calibration campaigns.  
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4.1.1 Stations 

Temporal gravity variation measurements have been a long historical tradition in 

Europe with some sites recording for decades. Among the oldest gravity stations we 

can quote Walferdange (Luxembourg), the Black Forest Observatory (BFO, near 

Schiltach, Germany), Potsdam (in Germany) and J9 (10 km north of Strasbourg, 

France) where various kinds of gravimeters have been recording. Since the 

development of the Global Geodynamics Project in 1996 (Crossley et al. 1999), many 

Superconducting Gravimeter (SG) stations were installed in Europe. For the oldest 

ones, the gravity data sets have reached more than 9 years of continuous records for 

instance at Bad Homburg, Moxa and Wettzell in Germany, Brussels in Belgium, J9, 

Medicina in Italy, Membach in Belgium, and Vienna in Austria (Fig. 4.1). We have 

chosen all these stations to realize our stability study not only because of their length, 

but also because of their quality in terms of noise. 

 
Fig. 4.1: Map of the location of the permanent gravity stations in Europe used in this 
study (blue, SG gravimeter stations, brown, spring gravimeter stations). BFO: Black 
Forest Observatory, BE: Brussels, MB: Membach, BH: Bad-Homburg, MC: Medicina, 
MO: Moxa, VI: Vienna and WE: Wettzell. 

In view of the long duration of these continuous records, we can investigate the 

question of the stability in time of the instruments, particularly in terms of noise level 

and of response function (calibration factor).  
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4.1.2. Time stability 

When dealing with long gravity records, time stability is very important because 

temporal changes of the instrumental sensitivity may introduce a related systematic 

error in tidal analysis. Therefore it is essential to ensure that the sensitivity of the 

instrument is as stable as possible to avoid possible errors arising from these 

temporal changes. 

For each station the sensitivity of the instrument is investigated through the temporal 

variations of the tidal parameters (amplitude factor and phase difference) for the 

main tidal waves in the diurnal and semi-diurnal frequency bands (O1, P1, K1, M2, S2 

and K2), as well as for the M2/O1 ratio of gravimetric factors. To evaluate these 

temporal variations we have performed for each data series a tidal analysis using 

ETERNA 3.4 software (Wenzel, 1996b), applied to segments of one year data, shifted 

month by month (there is hence an overlap of 11 months between two consecutive 

analyses). Here we have used the HW95 catalogue which predicts gravity tides with 

an error of 0.1 nGal (~10-12g) in frequency (Hartmann and Wenzel 1995). A 

barometric admittance is also retrieved using a least-square fit to barometric records 

available at the station. As we fit a tidal model to the observed gravity records, both 

the solid and the oceanic tides are adjusted together. We refer to section 2.3 for a 

description of ETERNA. 

For all the tidal analyses presented in the next two sections, the ETERNA software is 

applied on 1 h data using 23 groups of waves between 0.000146 cpd and 4 cpd (cycle 

per day). These groups can be found in Annex C. 

Using all these tidal analyses we can easily compare the different evolutions of the 

amplitude factors and phase delays of the major semi-diurnal and diurnal tides 

obtained for each type of gravimeters. However, before performing the tidal analysis 

in our series, they have to be pre-processed. In section 2.3, we have already explained 

the pre-processing steps that we have performed on all the observed data series to 

correct them from the different kinds of disturbances that could be contained in the 

signal. We refer the reader to the section 2.3.1, where a detailed description of the 

gravity data pre-processing is given. In particular, in Annex A, we recall the fact that 

the pre-processing does not affect the time-stability of the retrieved gravimetric 

factors.  

To analyze the time stability of these series, we suppose that any time variability in 

the Earth’s response to tides  gravimetric Love numbers  cannot be induced by 

internal process inside the Earth but could be due to some variability in the surface 

loading (oceanic load, atmospheric load). In fact, the tidal parameters being the 

transfer function of the Earth to tidal forces should be constant in time (at least on 

our investigated time-spans). We will try to find out if the tidal parameters from 

different waves vary in time in the same way and why.   
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4.2 Time variation of tidal parameters in spring gravimeter series 

We first use the data series which have been recorded by different models of spring 

gravimeters (Fig. 4.2): 1.) The Askania GS15 222 gravimeter was installed during 

almost 24 consecutive years in the Gravimetric Observatory in Potsdam, obtaining 

what was at that time the longest gravimetric series in the world digitally recorded 

from a spring gravimeter. 2.) The LaCoste-Romberg Earth-Tide gravimeter ET-19 is 

installed since 1980 inside an abandoned mine that was transformed into a 

seismological observatory (Black Forest Observatory). 3.) The Askania GS15 233 

gravimeter was installed during 16 years in an old gypsum mine, north of Luxemburg 

city, in the Walferdange Underground Laboratory for Geodynamics. 

  
Fig. 4.2: Temporal gravity variations recorded with spring gravimeters at the 
Gravimetric Observatory Potsdam, Walferdange Observatory and Black Forest 
Observatory. The complete time series have been corrected for any disturbance, and 
we have also removed a linear (Walferdange and BFO) or exponential (Potsdam) 
instrument drift. 
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Once these three raw datasets have been pre-processed to obtain clean series, we 

have performed tidal analyses as mentioned above (using ETERNA 3.4 software, 

applied on 1 h yearly segments shifted month by month, using 23 groups of waves), 

obtaining temporal series for the amplitude factors and phase differences of the main 

tidal waves in the diurnal and semi-diurnal frequency bands. Those temporal series 

are represented in figures 4.3a and 4.3b. 
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Fig. 4.3a: Temporal variations of the tidal amplitude factors and phase differences (in 
degrees) for the 3 main diurnal waves (O1, K1 and P1), obtained from the tidal 
analysis using ETERNA 3.4 software on yearly segments shifted month by month of 3 
spring gravimeters at Potsdam, BFO and Walferdange. The resulting tidal parameters 
are associated to the central epoch of the analyzed interval. The gravimetric factors 
have not been corrected for any ocean tide loading.  
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Fig. 4.3b: Temporal variations of the tidal amplitude factors and phase differences (in 
degrees) for the 3 main semidiurnal waves (M2, S2 and K2), obtained from the tidal 
analysis using ETERNA 3.4 software on yearly segments shifted month by month of 3 
spring gravimeters at Potsdam, BFO and Walferdange. The resulting tidal parameters 
are associated to the central epoch of the analyzed interval. The gravimetric factors 
have not been corrected for any ocean tide loading.  
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We have removed certain intervals of the series, where data were affected by purely 

instrumental problems, as for instance when the instruments were updated. Some of 

the eliminated intervals were detected thanks to information provided by the 

gravimeter’s owners. When this information was not available, we easily detected 

them by looking for anomalies in the residual gravity signal that correspond to 

abnormal values in the tidal amplitudes and phases, as shown in the example for 

Walferdange in figure 4.4.  
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Fig. 4.4: Example of how anomalies found in the residual gravity signal (left plot) 
correspond to abnormal values in the tidal amplitudes. In that case, the tidal 
amplitude obtained from the tidal analysis made on yearly segments where the 
affected interval (December 1988-January 1989) is included, are influenced. 

The variations of amplitude factors for the three spring gravimeter stations (Fig. 4.3a 

and 4.3b) around the mean value, are of the order of 1% for the diurnal waves (O1, P1, 

K1) and slightly higher for the semidiurnal waves (M2, S2, K2) (Table 4.1). These 

variations are estimated using the statistics toolbox from Matlab 7.5., by computing 

for each of the main tides the distribution of the delta values (examples of the 

distribution are shown in figure 4.5). This leads to a mean value  δm) and to a 

standard deviation  σ  for each tide. We will use this standard deviation as a stability 

criterion and compute the ratio σ / δm for each tide.  
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Fig. 4.5: Example of distribution of the delta values for a diurnal wave (O1 at Potsdam 
station), upper plot, and distribution for the delta factor ratio M2/O1 at Walferdange 
station, lower plot.  

As the tidal amplitude factor distribution is close to a Gaussian, 95% of the tidal factor 

variations are within the ± 2σ quoted intervals. In table 4.1 we indicate the time 

stability for each of the four main tides, assuming ± 2σ confidence interval.  

Table 4.1: Time stability  ± 2σ confidence interval  computed for the main tidal 
harmonic components based on their amplitude factors and the respective 
gravimetric factor ratios M2/O1 for the 3 spring gravimeter stations BFO, Potsdam 
and Walferdange. Periods with instrumental problems were not taken into account in 
the computation. 

Spring grav. Stations O1 P1 K1 M2 S2 K2 M2/O1 

Black Forest 
Observatory 

0.85 % 1.50 % 0.80 % 0.71 % 1.93 % 1.67 % 0.56 % 

Potsdam 0.52 % 1.26 % 0.44 % 0.39 % 0.94 % 1.93 % 0.33 % 

Walferdange 1.49 % 1.19 % 1.39 % 1.25 % 1.96 % 1.99 % 0.51 % 
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As mentioned before, the variations in amplitude and phase are larger mainly within 

the intervals where instrument problems or changes in the instrument insulation 

occurred. So, such periods were dismissed when computing these variations, in order 

to check the time stability during quieter time intervals.  

We have also computed for each instrument the temporal variations of the ratio 

δM2/δO1. From the distribution of values around the mean value, we found temporal 

variations of the order of 0.3% for Potsdam and almost 0.5% for BFO and 

Walferdange stations (figure 4.6). 

M2 and O1 are chosen because they are waves of the largest amplitude in their 

respective frequency bands. This ratio, being independent of the gravimeter’s 

calibration, is a very good indicator of the stability of the instrument. Thanks to its 

stability, we can detect if there is any inconsistency at some point between these two 

waves, independent from variations (if any) on instrument calibration. 
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Fig. 4.6: Temporal variations of the gravimetric factor ratio δM2/δO1, derived from 
the results of the tidal analysis using ETERNA 3.4 software on yearly segments shifted 
month by month for the 3 spring gravimeters at Potsdam, BFO and Walferdange. 
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Some periodic fluctuations seem to appear in the individual gravimetric factors, and 

also in their respective δM2/δO1 ratios, best visible in the longest and less noisy 

Potsdam series (see figure 4.9 for comparison of the noise) at diurnal and semi-

diurnal frequencies. The origin of such fluctuations, if geophysical, could be due for 

example to some time-variations in the oceanic or atmospheric loading, which have 

never been really observed or computed.  

Before interpreting any time variability in the delta factors as being geophysical, it is 

important to check if there is any correlation with the remaining noise (including 

instrumental and environmental noise). We compare then, the time evolution of two 

of the main waves (O1 and M2) with respect to the time evolution of the noise level in 

their respective frequency band (diurnal and semidiurnal) in figure 4.7. The 

corresponding noise levels were calculated with ETERNA 3.4. ETERNA computes the 

average noise levels from the mean FFT of the estimated residuals, in several 

frequency bands.  
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Fig. 4.7: Time evolution of diurnal gravimetric factor (O1) compared with time 
evolution of the noise level in the 1 cpd frequency band (upper plots), and of 
semidiurnal gravimetric factors (M2) compared with noise level in the 2 cpd 
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frequency band (lower plots), for the spring gravimeters recording at BFO (left), 
Walferdange (middle) and Potsdam (right) stations.  

In some of the cases, the correlation between the periodic fluctuations observed in 

the time variability of the delta factors and the time evolution of the noise in the tidal 

frequency bands (1 and 2 cpd respectively) is weak. However, if we compare the 

noise with the absolute differences of the delta factors  e.g. |δO1– mean δO1|), these 

correlations are higher for all the waves in the three stations (Fig 4.8).   
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Fig. 4.8: Example of correlation between the noise level in the 1 cpd frequency band 
and the variation of the tidal amplitude factor for O1  |δO1 –mean δO1|  at 
Walferdange Observatory (correlation coefficient = 0.73). 

Also, for all three spring gravimeters, the greatest variations in tidal parameters 

(either positive or negative) are indeed related to the noisiest periods (see figure 

4.7). 

We also check if similar variations in tidal factors appear in SG data, since, as already 

shown in section 2.2, SGs are instruments with a better precision than spring 

gravimeters. In the next section we will emphasize the better performances of SGs 

with respect to spring gravimeters.  

As the ambient noise is one of the possible sources than can affect the tidal parameter 

stability, we have also calculated the time evolution of the noise amplitude for the 

three spring gravimeters and also for the SG C026 at J9, using the same time-windows 
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as for the stability of the gravimetric factors (figure 4.9) to compare them. It is 

obvious that the amplitude of SG noise is not only much smaller than the noise 

amplitude from the spring gravimeters, but it is also much more stable.  

We will push forward this comparison at J9 between spring gravimeters and SGs in 

the next part. 
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Fig. 4.9: Time evolution of the amplitude of the noise levels in various frequency 
bands ( 1, 2 and 3 cpd) obtained from the tidal analysis calculated using ETERNA 3.4 
software on yearly segments shifted month by month of 3 spring gravimeters at 
Potsdam, BFO and Walferdange, and of the superconducting gravimeter C026 at J9 
site.  
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4.3 Comparison of spring and superconducting gravimeters at J9 

As previously mentioned in section 2.2.2, the first superconducting gravimeter was 

installed in the early 80s. Since then, numerous instruments have been installed 

worldwide providing us with long gravity records of excellent quality (higher 

sensitivity with a smaller and more stable instrument drift than spring gravimeters) 

that allow us to carry out investigations in a wide range of geophysical phenomena 

(Richter et al., 1995, Hinderer et al., 2007).  

We compare now the average noise levels in the main tidal bands computed using 

ETERNA 3.4 software (ETERNA computes the average noise levels from the mean FFT 

of the estimated residuals in a given frequency band) of the 3 spring gravimeters 

which data has just been discussed in the previous section 4.2, with the average noise 

level of the SG C026 of Strasbourg (Fig. 4.10) to demonstrate the improvement from a 

mechanical spring gravimeter to a modern cryogenic instrument. The noise levels 

have been roughly decreased by a factor 5 in amplitude.  

 
Fig. 4.10: Comparison of the amplitude of noise levels for the 3 spring gravimeters 
(Askania GS15 222 at Potsdam, LaCoste-Romberg ET-19 at BFO, Askania GS15 233 at 
Walferdange) and the superconducting gravimeter C026 at J9 station. The average 
noise levels were calculated with ETERNA for every instrument in the tidal frequency 
bands 1, 2 and 3 cpd, normalized by the record length. 

However, it is not possible to separate the environmental noise from the instrument 

noise using a single instrument at a single site (environmental noise, as opposed to 

instrumental noise, is due to unmodeled geophysical phenomena at the observing 

site, as well as local noise created by some other instrumentation installed beside like 

air conditioning, human noise generated around the site, nearby traffic, oceanic 

micro-seismic noise, etc…). So to better compare the noise levels of the spring 
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gravimeters with respect to the noise levels of the SGs we use the two series of spring 

gravimeters (Askania and LaCoste-Romberg models) and the two series of SGs (T005 

and C026), which have been recording at the same place (J9 Observatory), although 

during different epochs. Thus, we can compare their respective instrument noise 

assuming no difference due to site noise (some differences would occur because of 

the varying oceanic noise, although this part was filtered out as we are using low-pass 

filtered 1h-decimated data), to highlight the improvement in instrument noise (the 

last includes sensor, electronics and acquisition system). The resulting average noise 

levels are plotted in figure 4.11 for the 1, 2 and 3 cpd frequency bands. 

 
Fig. 4.11: Comparison of the amplitude of noise levels for 2 spring gravimeters 
(Askania 206 and L&R ET005) and 2 superconducting gravimeters (SG T005 and SG 
C026), all of them installed at observing site J9. The amplitudes have been normalized 
by the record length. 

Major improvements in terms of noise level of the SGs over the spring gravimeters 

have already been shown in Riccardi et al. 2011 and Rosat el al. 2014. It has also been 

shown that L&R Earth Tide gravimeters (Fig. 4.12 for the ET-005 and ET-11 at J9, or 

ET-19 at BFO in Zürn et al. 1991) perform better than the Portable Earth Tide (PET) 

spring gravimeters at periods shorter than 3 h. They are comparable, however, to 

good isolated ET (like ET-005 or ET-19) at tidal frequencies. The later can even 

compete with SGs (Zürn et al. 1991a). Concerning the L&R ET-11, which is still 

recording at J9, its higher noise level at sub-seismic frequencies is due the fact that 

the sensor is not air-tight any more (Rosat et al. 2014). 

Banka (1997) developed a standard procedure to estimate the noise level at an 

observing site. This procedure was generalized to compute the noise levels of SG sites 

belonging to the GGP by Rosat et al. (2004), and in 2011 an updated comparison of 

the SG seismic noise was published showing that the noise at the GGP sites was quite 

stable in time (Rosat and Hinderer 2011). In Fig. 4.12, the procedure summarized in 
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Rosat et al. (2004) has been used for each data series. This procedure is based on the 

computation of the residual power spectral densities (PSDs) over a quiet time period 

in the seismic (periods smaller than 1h) and in the sub-seismic (between 1h and 6h) 

frequency bands. Using the raw calibrated gravity records from each gravimeter, the 

residual data is computed by removing a local tidal model and the local atmospheric 

pressure effect (by a nominal admittance of -3 (nm/s²)/hPa). The quietest periods of 

15 continuous days are considered and a linear drift is removed before applying a 

high-pass filtering with a cut-off period of 8 h. The PSD is then estimated using a 

smoothed periodogram.  

From the mean of the Fourier transforms of the 15 quietest days, we estimate the PSD 

using the periodogram definition: 

     
|    | 

 
 

where   is the time duration and      is the Fourier transform of the signal.  

The PSDs are then normalized according to Parseval’s theorem, meaning that the 

integrated PSD from zero to Nyquist frequency corresponds to the variance of the 

time series. Then we apply a smoothing of the periodogram using a Parzen window of 

101 points. The smoothing does not affect the PSD level and makes the periodogram 

consistent (Rosat and Hinderer, 2011). Following Banka (1997), from the mean PSD 

in the period range 340–600 s, we can compute the seismic noise magnitude (SNM) 

defined by: 

SNM        meanPSD     
 /     2.  

where the mean PSD is defined in      /   
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Fig. 4.12: Power Spectral Densities on the quietest period of 15 days of L&R ET005, 
L&R ET-11, SG T005, SG C026, Scintrex CG5 and gPhone-054. The NLNM (New Low 
Noise Model) of Peterson (1993) is plotted for reference (after Rosat et al. 2014). 

As for the tidal analysis, we can check that the variability in the barometric 

admittance decreases in time when moving from the spring meter L&R ET005 to the 

SG T005 and SG C026. This is most likely due to lower noise in the gravity and 

pressure data (fig. 4.13). 
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Fig. 4.13: Temporal changes of the yearly atmospheric gravity-pressure admittance, 
derived from the results of the tidal analysis using ETERNA 3.4 software on yearly 
segments shifted month by month for the L&R ET005, SG T005 and SG C026 
recording at J9. 

To have more insight on the question of the stability in time of the SG data, we will 

first focus on the 2 SG series recorded at the Gravimetric Observatory of J9. As said in 

section 3, at this station two different superconducting gravimeters have been 

recording consecutively since 1987 until nowadays. The first SG was a TT70-T005 

model from GWR Instruments installed in July 1987. This gravimeter was recording 

for almost 10 years. In 1996 this gravimeter was replaced by a more compact type, 

the C026, which is still recording. As both instruments have been installed not only in 

the same observatory, but also on the same pillar, we can merge them into one single 

series of almost 26 years of data. Both series have been pre-processed and corrected 

independently (using for each one its own calibration factor and phase delay) before 

merging them. The gap (several days) between the removal of the old gravimeter and 

the installation of the new one was filled using a local tidal model obtained from tidal 

analyses at J9.  

The phase lag for the C026 was determined experimentally in 1999 (Van Camp et al. 

2000), while that of T005 was determined from the phase differences of the eight 

major diurnal and semidiurnal waves between tidal analyses of the C026 and T005. 

For the C026 a linear instrumental drift was removed while for the T005 an 

exponential drift model was fitted.  
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As for the spring gravimeter series of the previous section, we check the time stability 

of the tidal parameters by performing for each data series a tidal analysis using 

ETERNA 3.4 software over periods of one year, shifted month by month. The obtained 

time-varying gravimetric factors and phase differences are plotted in Fig. 4.14.  

Fig. 4.14: Temporal variations of the gravimetric factors and phases differences 
(degrees) for the main diurnal and semidiurnal waves (O1, P1, K1, M2, S2, K2), 
obtained from the tidal analyses using ETERNA 3.4 on yearly segments shifted month 
by month of the merged series of 2 superconducting gravimeters recording at J9 
station. The resulting tidal parameters are associated to the central epoch of the 
analyzed interval. The gravimetric factors and phase differences were not corrected 
for any ocean tide loading.  
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Similar study has been carried out with the delta factor ratio δM2/δO1 and the 

respective temporal variation is shown in figure 4.15.  
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Fig. 4.15: Temporal variations of the delta factor ratio δM2/δO1, computed from the 
tidal analyses using ETERNA 3.4 software on yearly segments shifted month by 
month of the merged series of 2 superconducting gravimeters (SG T005 & SG C026) 
at J9 site. 

At a first glance, we can notice the large improvement in the stability of the SG series 

with respect to the results from the different spring gravimeters that we have 

presented in section 2.2. The SG compact model C026 has also improved with respect 

to the previous version of SG, T005, not only in terms of stability, but also in terms of 

noise levels (Rosat et al. 2004, Rosat and Hinderer, 2011), and drift rates (Amalvict et 

al.,2001) due to both instrument and data acquisition system upgrades. Despite the 

high temporal stability that is achieved, we can still observe some temporal variations 

with an annual periodicity, particularly visible on the variations of the ratio δM2/δO1 

after 1996 (series of SG C026) in Fig. 4.15.  

These variations must be carefully interpreted because it is difficult to distinguish 

whether they are due to geophysical processes or to instrumental noise and/or 

numerical effects. For example, large fluctuations in noise levels and in delta factors 

for the C026 occur around early 2007, when the tilt-compensation system failed and 

in 2010 when the electronics was changed. Apart from these known troubles, some 

correlation appears between the variations of the noise level (fig. 4.16) and the 

variations of the delta factors. For the rest of the series the variations are extremely 
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small, reaching stability around 0.1% for the diurnal band, 0.16% for the semidiurnal 

band and 0.5 % for the ratio δM2/δO1 (see Table 4.3). 

We check that, as for spring gravimeters, the greatest variations in tidal parameters 

for the SG C026 are also related to the noisiest periods. For this purpose, we compare 

the time variations of the delta factor for the main diurnal and semidiurnal waves (O1, 

P1, K1, M2, S2 and K2), to the time evolution of the noise level in their respective 

frequency bands (1 cpd and 2 cpd). Results are plotted in figure 4.16. 
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Fig. 4.16: Time evolution of diurnal delta factors (O1, P1, and K1) compared with time 
evolution of the noise level in the 1 cpd frequency band (left plots), and of 
semidiurnal delta factors (S2, M2 and K2) compared with noise level in the 2 cpd 
frequency band (right plots) for the superconducting gravimeter C026 recording at 
J9.  

The comparison of the time variations of the delta factors for the main diurnal and 

semidiurnal waves with the time evolution of the noise level computed in their 

respective frequency bands, shows that when the noise is increasing, the 

corresponding delta factor is varying much more (towards either larger or smaller 

values than the mean value) than during quieter periods. Also, if we compare the 

noise with the absolute differences of the delta factors  e.g. |δO1– mean δO1|) similar 

as we have done previously with the spring gravimeters (Fig 4.8), we obtained 

correlation coefficients between 0.59 and 0.79. 

We have shown the improvements from a spring gravimeter to an SG and found some 

time variability in the gravimetric tidal response of the Earth. These variations seem 

to be mostly related to noise variability. In order to check if these time-variations of 

gravimetric factors are local, we consider now other SG sites in Europe to verify if we 

can find similar trends in the variability of the delta factors.  
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4.4 Superconducting gravimeters in Europe 

Before interpreting the time variations of the delta factors at J9 station as being 

geophysical, similar variations should be observed at other European sites. Hence we 

analyzed also the time-variations of the gravimetric factors for the main diurnal and 

semi-diurnal tidal waves using the SG data from several European GGP stations: Bad-

Homburg (10 years), Brussels (18 years), Medicina (14 years), Membach (16 years), 

Moxa (11 years), Vienna (9 years) and Wettzell (13 years). These European sites 

were chosen because of the length of their records and because they are far from the 

oceans. The scale factors and phase lags of their respective instruments are 

summarized in Table 4.2. 

The analysis procedure is the same as the one used before for the spring gravimeter 

data and for the SG data at J9 station. The results are presented in Fig. 4.17 for the 

diurnal and in Fig 4.18 for the semidiurnal main waves. The time fluctuations of the 

ratio δM2/δO1 are presented in Fig. 4.19 for the 8 European stations. 

Table 4.2: List of superconducting gravimeter stations and their respective period of 
observation used in this study. The corresponding scale factors and phase lags for 
each instrument are also given. 

Superconducting gravimeter 
Stations 

Period Scale Factor 
(µGal/V) 

Phase Lag (s) 

Bad Homburg 2001-2011 -73.95 45.0 / 10.09 

Brussels 1982-2000 -58.15 30.0 

J9 (T005) 1987-1996 -76.02 36.0 
J9 (C026) 1996-2013 -79.20 17.18 / 9.7 

Medicina 1998-2012 -74.82 43.0 / 11.1 

Membach 1995-2012 -78.42 9.9 
Moxa 2000-2011 -60.65 12.0 

Vienna 1997-2007 -77.82 9.36 
Wettzell 1998-2011 -81.58 45.0 / 14.17 
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Fig. 4.17: Temporal variations of the tidal amplitude factors for the main diurnal 
waves (O1, P1, K1), obtained from the tidal analysis using ETERNA 3.4 software on 
yearly segments shifted month by month for 8 European SGs, with no ocean loading 
correction applied. The resulting tidal parameters are associated to the central epoch 
of the analyzed interval.  
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Fig. 4.18: Temporal variations of the tidal amplitude factors for the main semidiurnal 
waves (M2,S2, K2), obtained from the tidal analysis using ETERNA 3.4 software on 
yearly segments shifted month by month of 8 European SGs, with no ocean loading 
correction applied. The resulting tidal parameters are associated to the central epoch 
of the analyzed interval.  
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Fig. 4.19: Temporal variations of the delta factor ratio δM2/δO1, calculated from the 
results of the tidal analysis using ETERNA 3.4 software on yearly segments shifted 
month by month of 8 superconducting gravimeter stations in Europe. 

There is no clear correlation between the time variations of the delta factors at the 

different SG sites, even if some common fluctuations are visible at several sites. So it 

is hard to interpret the time variations of the delta factors at these stations as being 

caused by global or regional geophysical effects. Examples of these weak correlations 

for a diurnal (O1) and semidiurnal (M2) waves between different SGs are shown in 

figure 4.20. 
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Fig. 4.20: Example of weak correlation between time variations of delta gravimetric 
factors at different SG sites. For O1, between Bad Homburg and Medicina, during their 
10 years common period, left plot (correlations coefficients=-0.39). For M2, between 
Membach and J9 (C026), during their 14 years in common, on the right plot 
(correlations coefficients= -0.11). 
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In Table 4.3 we compare the stability of the observed temporal evolution of the tidal 

delta factors at Strasbourg with results from other European SG stations, proving that 

all stations have almost the same rate of variation. These stabilities are calculated in 

the same way as for the spring gravimeter series of the previous section 4.2. We 

compute for each of the main tides the distribution of the delta values, leading to a 

mean value  δm  and to a standard deviation  σ  for each tide, using the statistics 

toolbox from Matlab 7.5. We use then this standard deviation as a stability criterion 

and compute the ratio σ / δm for each one. As the tidal amplitude factor distribution is 

close to a Gaussian, 95% of the tidal factor variations are within the ± 2σ quoted 

intervals. In table 4.3 are indicated the time stability for each of the six main tides, as 

well as for the M2/O1 delta factor ratio, assuming a ± 2σ confidence interval.  

These variations, ranging from 0.03% to 0.18% in the diurnal band and from 0.05% 

to 0.29% in the semidiurnal band, show the strong stability reached by SGs in general, 

much better than the stability obtained with series from spring gravimeters. For 

instance, the stability for the most stable spring gravimeter (Potsdam) is nearly four 

times lower than the worst stability of the results obtained with SGs. It is well known 

that noise in the diurnal and semidiurnal bands has an important thermal and 

atmospheric contribution (Crossley et al., 2013). Despite the fact that the spring 

gravimeters were installed as stable and thermally isolated as possible, the changes in 

pressure and temperature have still a much larger effect than on SGs. 

Managers of some of the SG stations (Wettzell and Medicina) gave us very useful 

auxiliary information to safely interpret some of these variations as being purely 

instrumental (for instance changes in the electronics). 

Table 4.3: Time stability  ± 2σ confidence interval  of the main tidal parameters and 
the delta factor ratio for the 8 SG European stations with at least 9 years of 
continuous data. Periods with instrumental problems were not taken into account in 
the computation. 

SG Stations O1 P1 K1 M2 S2 K2 M2/O1 

Bad Homburg 0.10% 0.25% 0.14% 0.13% 0.19% 0.23% 0.03% 
Brussels 0.12% 0.28% 0.13% 0.14% 0.24% 0.46% 0.07% 

J9 (T005) 0.15% 0.31% 0.11% 0.16% 0.51% 0.63% 0.11% 
J9 (C026) 0.09% 0.11% 0.09% 0.08% 0.12% 0.29% 0.06% 

Medicina 0.10% 0.28% 0.11% 0.06% 0.13% 0.26% 0.05% 
Membach 0.06% 0.16% 0.06% 0.07% 0.11% 0.29% 0.05% 

Moxa 0.03% 0.07% 0.02% 0.04% 0.05% 0.19% 0.03% 

Vienna 0.04% 0.05% 0.02% 0.02% 0.04% 0.12% 0.03% 
Wettzell 0.09% 0.12% 0.11% 0.09% 0.13% 0.16% 0.05% 

 

In Table 4.4, we list the respective average noise level calculated for 1, 2 and 3 cpd, 

with ETERNA 3.4 software, for the 8 SG stations. 
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Table 4.4: Amplitude of the average noise levels calculated with ETERNA for every 
instrument in the tidal frequency bands 1, 2 and 3 cpd. 

SG Stations 1cpd (nm/s2) 2cpd (nm/s2) 3cpd (nm/s2) 

Bad Homburg 0.01765 0.00929 0.00445 

Brussels 0.03366 0.01544 0.00834 
J9 (T005) 0.05993 0.03388 0.01719 

J9 (C026) 0.01107 0.00750 0.00348 
Medicina 0.02247 0.00962 0.00462 

Membach 0.01357 0.01357 0.00284 

Moxa 0.01516 0.00899 0.00386 
Vienna 0.01534 0.00619 0.00356 

Wettzell 0.02553 0.01347 0.00378 

 
The temporal variations of the main tidal parameters were previously investigated 

(Meurers 2004, Harnisch and Harnisch, 2006) using SG records. Meurers (2004) 

focused on small amplitude variations in the time domain by analyzing gravity data 

sets of 1995 hour long, shifted by steps of 332 hours over the entire records, using 

different GGP stations. He found that most of the stations showed a distinct seasonal 

variation in the tidal amplitude factors, especially for M2, concluding that the 

observed amplitude factor variations are caused less by numerical deficits of the 

analysis procedures than by physically meaningful loading processes. 

In our investigation, we have not found any clear annual modulation in the M2 tidal 

amplitude factors for the European SGs studied. However, an annual modulation of K2 

appears indeed in some of the European SGs (Vienna and Membach stations), 

although with amplitudes (less than 3. 10-4) smaller than the variations obtained by 

Meurers (2004) and never during the entire series (see an enlargement of delta K2 for 

Vienna station in Fig. 4.21). At other SG sites such seasonal variability is not seen. 

Therefore, it is difficult to interpret such modulation as being geophysical (Membach 

is close to the ocean while Vienna is far; maybe some atmospheric or hydrological 

effects, although in that case they should also appear at nearby sites, which is not the 

case). Note that we rely on successive analyses performed with one year of data, 

while Meurers (2004) performed its analysis on periods of 2.5 months. Any annual 

modulation in the tides hence cannot be separated by analyses of 2.5 month duration, 

on the contrary to our case. 
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Fig. 4.21: Temporal variation of the K2 amplitude factor in Vienna from 1998 to 2002, 
obtained from the tidal analysis using ETERNA 3.4 software on yearly segments 
shifted month by month, exhibiting a small annual modulation. 

More generally, the interpretation of these temporal variations in the tidal 

parameters is hard to carry on; it is difficult to distinguish whether they could reflect 

a geophysical meaningful process or if they are only due to instrumental instability 

and/or numerical effects. Atmospheric loading is one of the candidates for influencing 

the amplitude factors, as well as long term amplitude changes in ocean tides and 

hence in ocean tide loading (see Müller et al., 2011; Meurers 2012; Tai & Tanaka 

2014). 

It is known that tidal amplitude factors and phase delays may vary according to the 

location (see Melchior & de Becker 1983) because of ocean tidal loading (e.g. Baker & 

Bos 2    , Earth’s ellipticity  Wang 1997 , large scale mantle heterogeneities 

(Métivier and Conrad, 2008). However, possible changes in time of the Earth’s tidal 

response are almost never mentioned except in some seismotectonic studies where 

there is a change in the ambient stress field (Westerhaus 1997).  

The fact that any temporal variation in the tidal amplitude factor is highly improbable 

from a physical point of view and that the ratio δM2/δO1 is much smaller, it leads us 

to consider changes of instrumental origin, namely the scale factor converting 

observed feedback voltages to gravity, which may vary in time. For all the SG stations 

used in this study (for J9 two scale factors were used, one for each SG according to the 
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period of observations) we have assumed that the instrumental scale factor was 

constant during the total period. 

In section 4.5 we will check the time stability of the instrument scale factor for the SG 

C026 installed at J9 Observatory, for which we possess a large number of parallel 

absolute gravity measurements spanning a large time interval (1997-2012). 
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4.5. Time stability of SG instrumental scale factor at J9 

The long-term tidal stability is directly dependent on the stability of the scale factor of 

the relative gravimeters. This stability is even more critical for the spring gravimeters 

than for the SGs. 

For each of the spring gravimeters used in this study the scale factors were obtained 

by different methods. The Askania gravimeter of Potsdam was calibrated in 1975 on 

the Czechoslovak Gravimetric Calibration Base and in 1992 by intercomparison with 

two LaCoste-Romberg G-meters, 156 and 249, belonging to the Geodetic Institute of 

Karlsruhe University. The L&R ET-19 installed at BFO was calibrated in 1988 using 

the same gravimeters L&R-G156 and L&R-G249. These instruments were repeatedly 

calibrated on the Hannover vertical calibration line. The Askania gravimeter in 

Walferdange was calibrated by adjustment with a Scintrex CG3M -265. We could 

check that these values did not fit well throughout the entire records, especially after 

some technical improvements of the instruments. Therefore, we decided to re-

estimate the scale factors by comparing with theoretical tides as suggested by 

Goodkind (1996). 

For SGs, the scale factor is much more stable in time than for the spring-type 

gravimeters. However, even for such a precise instrument the stability should be 

checked. It depends on specific properties of the gravity sensor and it is variable 

among different instruments so it must be determined experimentally for each one 

(GWR Instruments 1985). This factor is typically of the order of 10-6 ms-2V-1; this 

means that a signal as small as 10-12m s-2 could be recorded with a nominal resolution 

of 1 μV. It is usually derived from a direct comparison with repeated absolute gravity 

(AG) measurements, which is the most widely used method (e.g. Francis, 1997, 2002; 

Tamura et al., 2001; Imanishi et al., 2002, Fukuda et al., 2005), although it can be done 

in several other ways, as for example by moving the instruments using an 

acceleration platform (Richter et al. 1995), by moving an external mass (Achilli et al. 

1995, Falk et al. 2001) around the sensor or even using spring gravimeters (Riccardi 

et al., 2012; Meurers, 2012). It has been demonstrated repeatedly (e.g. Goodkind et al. 

1991; Hinderer et al. 1994) that SG calibrations are very stable over time. It is known 

that the instrument can keep its calibration to better than one part in ten thousand 

(10-4) over periods as long as several years (Merriam, 1993). 

To have more insight on this effect, we have focused on the long (1996-2013) series 

recorded by the SG C026 installed at the J9 Gravimetric Observatory of Strasbourg, 

checking the stability of its instrumental sensitivity with the help of numerous 

calibration experiments of different durations (from 2 to 10 consecutive days) 

carried out by co-located AG measurements since 1997. I have been directly involved 

in the experiments conducted from June 2008. 
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Fig. 4.22: Pictures of both, the superconducting gravimeter SG C026 (left) installed at 
the J9 Gravimetric Observatory of Strasbourg, and the absolute gravimeter FG5#206 
(right), used in most of the calibration experiments carried out at J9 Observatory 
since 1996. 

The usual procedure to estimate the scale factor is by linear least-squares adjustment 

of the SG gravity data (usually in volts) with an absolute gravimeter used as 

reference. The method relies on the basic assumption that both sensors experience 

exactly the same gravity variations.  

We have already mentioned in section 2.2 how is the raw data recorded by each kind 

of gravimeter. These raw SG and AG records must be corrected for any earthquake 

occurring at the time of calibration and cleaned for spikes, gaps and offsets if any. No 

other correction is applied (data from AG is treated with g v.8 software, developed by 

Micro-g Solutions). Then, we fit the two raw data sets using a least squares approach 

according to the linear relation: 

         

where;  

   represents the AG data and is expressed in µGal,  

   represents the SG feedback output and is expressed in volt, 

    represents the scale factor and is expressed in µGal/volt, 

    is the offset and is expressed in µGal. 
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Assuming that the measurement error of   follows a normal distribution, we find the 

values of   and   that minimize the weighted sum of the squared residuals:  

                 
 

   

 

where   is the number of data values and    is the weight. We minimize    with 

respect to the unknown parameters leading to the well-known normal equations. 

We calculate the scale factors considering two different kinds of AG raw 

measurements (an example of each raw AG data, drop values and set values, is shown 

in Fig. 4.23): 
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Fig. 4.23: Example of raw drop data (blue dots) and raw set data (red dots) from one 
of the AG measurements used in one of the SG calibration experiments carried out by 
direct comparison at J9 observing site (June, 2009). 

* First we used the individual drop gravity values of the AG measurement (as we have 

explained in section 2.2, each drop corresponds to an individual free fall experiment, 

where the value of g is determined by a least squares fit of the trajectory data using 

approximately 700 pairs of time and distance traveled by the mass, using the 

equation 2.24) and we superimpose the SG output by comparing each drop of the AG 

to the closest sample of the SG and then apply the linear least squares method. In this 

case we have a large number of points for the adjustment but with large error bars on 
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the AG drop values. Usually, there is one drop every 10 s, during sessions which last 

from 3 to 8 days. 

* Second we use the set gravity values of the AG,  each ‘set value’ represents the 

gravity averaged over the set interval (typically up to 60 min)). From the 1 or 2 

second sampled SG records (depending of the available data acquisition system) we 

pick up the SG values for all the time interval corresponding to each set, and we 

estimate the average values for each of these set periods (same averaging length for 

SG and AG) before applying the linear least squares method. In this case, we have less 

data for the adjustment but with smaller error bars on the AG set values as previously 

on the drop values. 

Once we have estimated for each experiment the scale factors using each of the two 

kinds of AG data (drop/set values), we investigate their temporal evolution from 

1997 to 2012. The values of the scale factors estimated using either the drop or the 

sets are close, with a better standard deviation when using individual drops method, 

although with a slightly better time stability in case of the sets (Table 4.4). 

Other experiments have been conducted to estimate the temporal evolution of these 

scale factors at several stations. Meurers (2004, 2012) found that for the GWR C025 

installed in Vienna the scale factor was temporarily stable with a maximum variation 

less than 0.01%. Also Kroner et al. (2005) obtained a variation in the range of 0.01% 

for the dual-sphere SG sensor in Jena. For Strasbourg variations of about 0.3 % were 

found (Amalvict et al. 2001; Rosat et al. 2009) using the AG set values and their error 

bars. Our results agree with these previous two studies (Fig. 4.24). The mean scale 

factors with their uncertainty and their stability are given in Table 4.5. The first 

column is the weighted mean value and uncertainty computed from all the individual 

scale factors including their error bars. The second column is the relative uncertainty 

and, as before for the tidal factors, we use the distribution of the scale factors to 

compute the time stability at 2σ. 

 



119 
 

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

-820

-815

-810

-805

-800

-795

-790

-785

-780

-775

0

100

200

300

400

500

600

700

800
n

u
m

 s
e
t

S
c
a
le

 f
a

c
to

r 
(n

m
s

2
/V

o
lt

)

Date

 
Fig. 4.24: Time stability of the scale factors of the SG C026 at J9 station, from 1997 to 
2012. The numbers of sets used for the intercomparison with the AG measurements 
are represented by the column bars. These calibration factors have been calculated 
using the individual drop values. Mean weighted value is indicated by a red line and 
the dotted lines represent the ±2σ confidence interval. 

For the SG C026, we usually employ a constant scale factor of -792 nm/s²/V, 

corresponding to the mean value plotted in figure 4.24. 

Table 4.5: Scale factor determinations (mean weighted value, absolute and relative 
uncertainty and time stability  ± 2σ confidence interval  according to the AG set by 
set or AG drop by drop processing of SG/AG data at J9 station. 

Methodology Scale factor 
(nm/s2/V) 

uncertainty Stability  2σ  

Set by set -790.76 ± 2.34 0.29 % 1.48 % 

Drop by drop -791.96 ± 0.91 0.11% 1.55 % 
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Notice that we have weighted the AG measurements using the set errors from AG 

measurements in the fit of the scale factor, even if the resulting uncertainty is larger 

than without weights (Table 4.6). The calibration accuracy is in fact limited by the AG 

drop to drop scatter. 

Table 4.6: Scale factor determinations (mean weighted value) with (left) and without 
(right) the errors from AG measurements in each individual calibration experiment at 
J9 station. 

Methodology Scale factor 
(nm/s2/V) 

with AG errors 

Scale factor 
(nm/s2/V) 

without AG errors 
Set by set -790.76 ± 2.34 -789.98 ± 0.74 

Drop by drop -791.96 ± 0.91 -792.27 ± 0.23 
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Fig. 4.25: Temporal variations of the tidal amplitude factors for the main diurnal and 
semidiurnal waves (O1, P1, K1, M2, S2 and K2) compared to the temporal variations 
of the scale factor at J9 station. 

To check any possible correlation between the time variations of the scale and delta 

factors, we have superposed them in Fig. 4.25. There is no clear correlation between 

any of them (as show the examples in figure 4.26 where the correlation coefficients 

are -0.25 and 0.09 respectively). 
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Fig. 4.26: Example of weak correlation between the temporal variations of the tidal 
amplitude factors and the temporal variation of the scale factors at J9 station, for a 
diurnal wave (O1, left plot, (correlation coefficient = -0.25)) and for a semidiurnal 
wave (M2, right plot (correlation coefficient = 0.09)). 



123 
 

Therefore, the observed time variations of delta factors may be mainly due to noise 

variations, as suggested in section 4.3. It turns out that the internal SG C026 stability 

(~ 0.10%) we derived by averaging the values obtained for the diurnal and 

semidiurnal tidal bands is much better than the one that can be achieved by SG 

calibration repetitions using AG data (~ 1.4%). 

Since a clear part of the time changes of the delta factors is due to variable noise 

content, we can infer that the intrinsic instrumental stability of the SGs is very high, at 

least better than 0.15% in general or even 0.05% for some SGs (as in Moxa or Vienna 

stations).  
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4.6. Summary of chapter 4 

We used very long gravity records available in Europe: 3 data sets recorded by spring 

gravimeters at BFO, Potsdam and Walferdange, and 8 long SG data sets recorded at 

different European GGP sites with at least 9 years of continuous data to investigate 

the sensitivity of each instrument, using the temporal variations of the delta factors 

for the main tidal waves (O1, P1, K1, M2, S2 and K2  as well as the δM2/δO1 ratio. These 

tidal analyses have been performed on the gravity records rearranged in temporal 

subsets (yearly data sets, shifted month by month) to check the time stability of the 

tidal responses. For each instrument, the temporal evolutions of the tidal parameters 

were investigated in detail and compared among them. We also retrieved the 

evolution of the ratio δM2/δO1, which is independent of the calibration. One of the 

main limitations in the use of spring gravimeters is their large irregular instrumental 

drift (see figure 4.27).  
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Fig. 4.27: Comparison of the instrumental drift of a spring gravimeter, the L&R ET005 
(upper plot) and a superconducting gravimeter, SG T005 (lower plot) both of them 
installed at J9 Observatory.  
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Compared to the spring gravimeters, the superconducting gravimeters provide 

unprecedented long term stability (for instance, the stability for the most stable 

spring gravimeter (Potsdam) is nearly four times lower than the worst stability of the 

results obtained with SGs). The observed temporal evolution of the tidal delta factors 

in Strasbourg is found to be very similar to other European SG stations with stability 

between 0.03% and 0.3%, and some time fluctuations with a seasonal oscillation at a 

few sites. 

In case that these temporal variations reflect a geophysical process, they should 

reflect it similarly at most European sites, which is not the case in our results. It is 

possible that variations in ocean loading could generate small variations in the delta 

factors at some European stations (for which ocean loading is similar). It may be 

more or less hidden by ambient noise, instrumental problems, hydrological effects, 

etc. 

As the variations of the ratio δM2/δO1 are much smaller than the variations for each 

individual gravimetric factor, it led us to consider that some part of the tidal factor 

fluctuations could be due to changes of instrumental origin (e.g. calibration). 

Therefore, we investigated the long-term stability of the scale factors of the 

gravimeters. In particular, we checked the stability of the scale factor for the SG C026 

installed at J9 for the period 1997-2012 where numerous AG/SG calibration 

experiments were available. It turns out that the internal SG C026 stability (~ 0.1%) 

as derived from the tidal analyses is more than 10 times better than the one that can 

be achieved by SG/AG calibration repetitions (~ 1.4%), no matter which AG/SG 

fitting method have been used to calculate the values of the scale factors. We do not 

find any clear correlation between variations of tidal factors and variations of scale 

factors. Consequently, it is highly possible that the observed time variations of delta 

factors are due mostly to the noise variations as shown by the correlation found 

between delta factor deviations and noise level changes. 
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Some of the results presented in this chapter (sections 5.2 and 5.3) have been 

published in Calvo et al. (2014a).  

5.1. Introduction 

Long term gravity records are of great interest when performing tidal analyses. 

Indeed, long series enable to separate contributions of near-frequency waves (the 

frequency resolution is the inverse of the data length) to detect very weak amplitude 

signals and also to detect low frequency signals (e.g. long period tides and the 

gravimetric effect of the pole tide) (the lowest frequency in the spectrum is also the 

inverse of the data length). In addition to the length of the series, the quality of the 

data and the temporal stability of the noise are also very important. As we have seen 

in previous chapter the long superconducting gravimeter records are preferred to the 

long spring gravimeter records, even when they are slightly shorter, mainly because 

of their long-term stability, lower noise level and very small linear instrumental drift. 

Previously in chapter 3 we have already referred to the long tradition of recording 

solid Earth tides at Strasbourg, and we have also mentioned the gravimeters of 

different types that have been recorded at J9 Observatory. Considering only the 

longest series, we have therefore almost 40 years of consecutive gravimetric records 

(from 1973 when the L&R ET005 was first installed, to nowadays) at J9. Among these 

data, over 27 years have been registered by two models (T005 and C026) of 

superconducting gravimeters consecutively installed there, leading after merging to 

the longest available series ever recorded by SGs at the same site. 

As both SGs have been installed not only in the same observatory but also on the 

same pillar, and that there were only few days between the removal of the old 

gravimeter and the installation of the new one (11 days compared to 27 years, almost 

negligible), we can merge the SG T005 and SG C026 series into one series filling up 

the gaps between instruments using a local tidal model obtained from tidal analyses 

at the station. Before merging them, both series have been pre-processed and 

corrected independently (using for each one its own calibration factor and phase 

shift).  
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Fig. 5.1: Temporal gravity recorded by superconducting gravimeters at the 
Gravimetric Observatory J9, from 1987 to 2014. 

We expect to benefit from this unprecedented length both in achieving high spectral 

resolution in the tidal bands and also in obtaining higher precision in the tidal 

determination. Thus, we will attempt to retrieve small amplitude waves in the major 

tidal groups (e.g. tides generated by the third-degree potential), to separate waves 

close in frequency and to detect very low frequency signals that have never been 

observed in gravity data of shorter duration. 
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5.2 Analysis of small-amplitude tidal constituents 

Firstly we are going to investigate some of the very weak amplitude tidal signals 

contained in the gravity data that can be observed using long gravity records. Thus, 

we compare the spectral analysis from two of the observed gravity series that we 

have already studied in section 4.2 and 4.3; the spring gravimeter series recorded at 

Black Forest Observatory (L&R ET19) and the SG series recorded at J9 with two SGs 

(T005&C026). 

We use 8400 days (~23 years) of data for each station, corresponding to the common 

interval between both stations (1988-2012). Even if the length is the same for both 

series, the lower noise level of the SG series with respect to the spring gravimeter 

allows us to detect some low-amplitude tidal waves. An example is given in the 

diurnal tidal band with the tidal wave 2NO1 (amplitude 1.98 nm/s2), and in the semi-

diurnal tidal band with the waves BET2 (amplitude 1.2 nm/s2) and LAM2 (amplitude 

3.5 nm/s2). These tidal waves are clearly hidden in the instrumental noise of the 

spring gravimeter (figure 5.2). Our noise analyses in previous section and the 

knowledge that BFO is a low-noise site over a wide frequency range (Zürn et al., 

1991a; Widmer et al, 1992) enable us to state that the observed noise is mostly 

instrumental.   
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Fig. 5.2: Amplitude spectra of J9 gravity series (SG) and BFO series (L&R) from the 
same time span (8400 days) in the diurnal (up) and in the semi-diurnal (down) tidal 
bands.  
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Now that the advantage of using SG series instead of spring series has been clearly 

demonstrated, we will focus for the rest of this chapter on the 2 SG series recorded at 

J9. If we compare the spectral analysis from the 9 year series of the SG T005 to the 

merged 27-year series recorded by T005 and C026 at J9, we observe that the total 

length of the series allows us to detect some new low-amplitude tidal waves that 

were hidden in the shorter series such as the diurnal k1x- (amplitude 8.5 nm/s2), and 

the semi diurnal 3KM2 (amplitude 0.51 nm/s2) tidal waves (figure 5.3). 

 

 
 

 
 

Fig. 5.3: Amplitude spectra of J9 gravity series, 9 year of T005 in brown, and 27 years 
of T005&C026 in blue, in the diurnal (up) and in the semidiurnal (down) tidal bands.  
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However, the signal-to-noise ratio (SNR) is not only improved by increasing the 

length of the data set, but it is also strongly influenced by the quality of data.  

In our case the C026 series is 9 years shorter than the total series (T005+C026), 

although being less noisy than the total series (due to noise contributed by the T005) 

we are able to detect in the spectral analysis of C026 series some low-amplitude tidal 

waves that are hidden by the instrument noise in the total (T005+C026) series as for 

example SO1 (frequency = 1.0704 cpd) and 2NO1 (frequency = 0.93015 cpd) (cf. 

figure 5.4). 

 
 

 
 
Fig. 5.4: Spectral analyses in the diurnal frequency band of the 18 years series of the 
SG C026 in red, and of the merged 27 year series recorded both by T005 and C026 in 
black, at Strasbourg J9 Observatory. 
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We have determined that we still have to wait 5 more years until the SNR of the full 

series is larger than the SNR of the C026 alone. This comes from the fact that the SNR 

of an undamped harmonic signal is given by: 

SNR  A 
N

2   
 

where:  

A is the amplitude of a periodic signal,  

N the number of samples  

σ the white noise amplitude (root mean square). 

In our case,       2      

Then, to achieve a                  being  

      
  

          
            

 

           
 

We need the length of the C026 series to be       2  years. That is, 5 more years 

that we have currently available. 

In Annex E some other examples of detection of weak amplitude tidal signal are 

shown. 

Another example of small tidal wave detection is given in figure 5.5, which exhibits 

the delta factors of the diurnal tidal waves (3MK1, M1 and 3MO1) caused by the 

potential of degree 3 around the FCN (Free Core Nutation) resonance frequency. It is 

interesting to note that the resonance only alters the amplitude of the degree 2 tides 

as expected from the theory (e.g. Hinderer & Legros 1989). Small amplitude tides of 

degree 2 that can be separated thanks to the length of the data nicely superimpose 

onto the resonance curve (least squares fitted) in a way similar to the more classical 

waves like O1, K1, PSI1 and PHI1 (Florsch & Hinderer 2000; Rosat et al. 2009b). 
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Fig. 5.5: Amplitude factors in the diurnal frequency band using the complete (9760 
days, 26.7 years) SG record (T005 + C026) in Strasbourg J9 Observatory. Degree-2 
tidal factors are shown in blue dots and degree-3 tidal factors (3MK1, M1, 3MO1) in 
red dots. 

Some of the main tidal waves generated by the tidal potential of third degree in the 

diurnal, semi diurnal and ter diurnal bands have already been determined. The ter 

diurnal M3 was determined very early (Melchior and Venedikov, 1968), despite of its 

small amplitude. Using the 17 year long observation at Potsdam (Askania 222), 

Dittfeld (1991) succeeded for the first time in separating the diurnal (M1) and two 

semidiurnal (3MK2 and 3MO2) waves from their neighboring second degree terms. 

Melchior et al (1996) used 12 year series of observations with the SG T003 at 

Brussels to separate M1, 3MK2 and 3MO2 with a precision better than 0.5%. More 

recently, Ducarme (2011) was able to determinate M1, 3MK2, 3MO2 and M3 with a 

precision of 0.1%, using long series from 17 SGs.  

If we consider the development of the tidal potential expressed as a function of the 

coordinates of the observation point on the surface of the Earth and the celestial body 

as a combination of geocentric and celestial coordinates (equation 2.7), we can see 
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that the tidal potential of degree 3 is generating tidal waves in the Long Period 

(m=0), Diurnal (m=1), semi diurnal (m=2) and ter diurnal (m=3) frequencies. 

Expressing the potential as a function of the astronomical arguments, it can be 

developed in a sum of harmonic constituents (equation 2.8). In table 5.1 we show a 

selection of the third degree tides from Doodson’s full development. 

Table 5.1: Principal constituents deriving from    in the diurnal and semidiurnal 
frequency bands. 

Symbol Doodson 
Argument  

Astronomical 
Argument 

Angular 
speed (º/h) 

Amplitud
e (nm/s2) 

Origin  
(L, lunar; S, solar) 

     135·555   2  13.394020 2.01 L decl. 
     145·655       13.947677 1.03 Ellipt. M1 

   155·555   14.492052 6.28 1st order elliptic tide 
from  1  

     175·555   2  15.590085 2.29 L decl. 
     235·655 2  2    27.890713 1.78 Ellipt.    2 
     245·555 2    28.435088 6.47 L decl. 
     265·555 2    29.533121 5.97 L decl. 
     275·455 2  2    30.077495 0.33 Ellipt.    2 
     285·555 2     30.631154 0.55 L declinational wave 
    345·655        42.931782 1.44 Ellipt.    
   355·555    43.476156 5.23 Principal terdiurnal 

lunar tide. 
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5.3 Analysis of near frequency tidal components  

Another benefit provided by the long term data series is that they allow us to 

separate contributions of near frequencies (e.g. the annual and the Chandlerian 

components of the Earth’s polar motion . The minimum frequency resolution 

required to separate two neighboring waves is inversely proportional to the length of 

the data set. Now we have nearly 10.000 days of data recorded continuously at J9 by 

SGs, leading to a frequency resolution of 10-4 cpd.  

As shown in figure 5.5 for the diurnal band, performing a tidal analysis on the total 

length series enables to separate several groups of tidal waves that were not 

separable before with shorter data series. There are also several new tidal waves that 

can be separated in the semi-diurnal, ter-diurnal and quart-diurnal frequency bands, 

as shown respectively in figures 5.6, 5.7 and 5.8. 
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Fig. 5.6: Amplitude factors in the semi diurnal frequency band using the complete 
(9760 days, 26.7 years) SG record (T005 + C026) in Strasbourg J9 Observatory. 
Degree-2 tidal factors are shown in blue dots and degree-3 tidal factors (3MJ2, 3MKx, 
3MK2, 3MO2, 3KM2) in red dots. 
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Fig. 5.7: Amplitude factors in the ter diurnal frequency band using the complete (9760 
days, 26.7 years) SG record (T005 + C026) in Strasbourg J9 Observatory. 
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Fig. 5.8: Amplitude factors in the quart diurnal frequency band using the complete 
(9760 days, 26.7 years) SG record (T005 + C026) in Strasbourg J9 Observatory.  
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A complete list of the different groups of tidal waves that we have separated by 

performing a tidal analysis on the complete data series using ETERNA 3.4, is shown in 

Tables 5.2, 5.3, 5.4 and 5.5, respectively for the diurnal, semi-diurnal, ter-diurnal and 

quart-diurnal groups. 

Unfortunately, the phase values for 2J1, LK1x , NU1x , TET1, 3KM2, and 2K2d waves are not 

properly estimated. 
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Table 5.2: Tidal amplitudes, gravimetric factors () and phases (, with respect to 
local tidal potential and lags negative) with their respective uncertainties obtained 
for the diurnal groups using ETERNA 3.4 software on the complete SG data series at 
J9 Observatory. The tidal potential used is Hartmann and Wenzel (1995). 

Frequency 
(cpd) 

Wave Observed 
amplitude 
(nm/s2) 


 stdv (deg) stdv 

0.8234 1158 1.0260 1.1679 0.0098 -0.1053 0.4812 

0.856497 SGQ1 2.6408 1.1604 0.0041 -0.9205 0.2027 

0.856806 2Q1x 1.7013 1.1549 0.0059 -0.0879 0.2948 

0.859691 2Q1 9.0330 1.1564 0.0012 -0.6764 0.0602 
0.861663 SGMx 2.0446 1.1507 0.0053 -0.7929 0.2634 

0.892332 SGM1 10.8381 1.1506 0.0010 -0.5208 0.0496 

0.892951 3MK1 2.4655 1.0848 0.0036 1.5651 0.1900 

0.893098 Q1x 12.7893 1.1489 0.0008 -0.4252 0.0410 

0.89613 Q1 67.7533 1.1478 0.0002 -0.2811 0.0077 
0.906316 RO1 12.8713 1.1488 0.0008 -0.2071 0.0393 

0.92939 O1x 66.9471 1.1511 0.0002 -0.0199 0.0077 

0.929846 O1 354.3307 1.1493 0.0000 0.0785 0.0014 

0.93045 2NO1 2.2684 1.1421 0.0044 1.2396 0.2197 

0.940488 TAU1 4.6281 1.1517 0.0021 0.0855 0.1051 
0.963857 NTAU 2.6113 1.1486 0.0037 0.2364 0.1864 

0.965681 LK1x 1.8429 1.1425 0.0055 -0.0753 0.2750 

0.965828 LK1 10.0408 1.1520 0.0010 0.2291 0.0504 

0.966285 M1 7.6918 1.0818 0.0012 0.8654 0.0653 

0.966447 NO1 27.9417 1.1530 0.0004 0.1859 0.0181 

0.966757 NO1x 5.6226 1.1561 0.0018 0.2508 0.0902 

0.974189 CHI1 5.3310 1.1496 0.0018 0.1942 0.0916 

0.995144 PI1 9.6243 1.1478 0.0011 0.1386 0.0525 

0.997116 P1x 1.7953 1.1135 0.0055 3.2266 0.2828 

0.998029 P1 164.9565 1.1501 0.0001 0.2103 0.0031 

1.002445 S1 3.9923 1.1774 0.0037 2.0137 0.1830 

1.002592 K1x- 9.6301 1.1220 0.0010 1.2057 0.0527 

1.002739 K1 492.9588 1.1374 0.0000 0.2556 0.0010 

1.003652 K1x+ 67.0119 1.1393 0.0002 0.5420 0.0076 

1.005624 PSI1 4.3061 1.2693 0.0026 0.3289 0.1162 
1.01369 PHI1 7.2447 1.1738 0.0015 0.2687 0.0707 

1.034468 TET1 5.3707 1.1585 0.0019 0.0850 0.0926 

1.039031 J1 28.0974 1.1590 0.0004 0.1377 0.0183 

1.039193 J1x 5.5709 1.1594 0.0019 0.3450 0.0919 

1.039649 3MO1 2.7974 1.0779 0.0031 0.7709 0.1654 
1.071084 SO1 4.6393 1.1539 0.0022 0.1454 0.1089 

1.075779 2J1 2.2975 1.1561 0.0044 -0.0739 0.2176 

1.075941 OO1 15.3445 1.1571 0.0007 0.0928 0.0343 

1.080945 OO1x 9.8319 1.1571 0.0011 0.1280 0.0519 

1.112233 NU1 2.9440 1.1593 0.0035 0.4437 0.1736 
1.216398 NU1x 1.8727 1.1517 0.0053 0.2149 0.2630 

 



140 
 

Table 5.3: Tidal amplitudes, gravimetric factors () and phases (, with respect to 
local tidal potential and lags negative) with their respective uncertainties obtained 
for the semi-diurnal groups using ETERNA 3.4 tidal analysis software on the total SG 
series at J9 Observatory.  

Frequency 
(cpd) 

Wave Observed 
amplitude 
(nm/s2) 


 stdv (deg) stdv 

1.8234 3N2 1.0591 1.1310 0.0059 2.3595 0.2977 

1.856954 EPS2 2.7671 1.1401 0.0025 2.3772 0.1278 

1.859382 3MJ2 1.7644 1.0707 0.0037 0.2700 0.1979 

1.862429 2N2 9.5911 1.1524 0.0007 3.1155 0.0370 
1.89507 MU2 11.5958 1.1544 0.0006 2.8257 0.0303 

1.895526 3MKx 1.1014 1.0796 0.0059 0.3904 0.3149 

1.895689 3MK2 6.4015 1.0661 0.0010 0.2236 0.0549 

1.895836 N2x 2.7686 1.1791 0.0026 3.3458 0.1258 

1.896749 N2 73.8431 1.1741 0.0001 2.7579 0.0047 
1.906463 NU2 14.0534 1.1763 0.0005 2.7759 0.0246 

1.927418 GAM2 1.1607 1.1771 0.0060 3.0630 0.2904 

1.930155 ALF2 1.3788 1.2214 0.0053 0.8927 0.2477 

1.932128 M2x 14.4286 1.1772 0.0005 2.2672 0.0238 

1.933188 M2 389.9426 1.1871 0.0000 2.1274 0.0009 
1.935322 BET2 1.1851 1.1917 0.0059 1.5735 0.2811 

1.942754 DEL2 0.4809 1.2488 0.0124 3.8036 0.5708 

1.963709 LAM2 2.8647 1.1827 0.0025 1.4722 0.1190 

1.968566 L2 11.0564 1.1907 0.0006 1.5157 0.0309 

1.968876 3MO2 5.8996 1.0652 0.0011 -0.2635 0.0579 

1.96917 3MOx 1.1517 1.1039 0.0058 0.8611 0.3008 

1.976927 KNO2 2.7606 1.1893 0.0023 1.4079 0.1096 

1.998288 T2 10.6265 1.1895 0.0007 0.6081 0.0323 

2.000767 S2 181.7413 1.1893 0.0000 0.6219 0.0020 

2.003033 R2 1.4877 1.1662 0.0038 0.7217 0.1863 

2.005167 3MQ2 0.3371 1.1175 0.0200 -1.8150 1.0251 

2.005477 K2 49.4807 1.1916 0.0001 0.8782 0.0070 

2.01369 K2x 14.7552 1.1923 0.0005 1.0320 0.0231 

2.037206 ZET2 0.5235 1.1787 0.0123 0.2766 0.5955 

2.041768 ETA2 2.7604 1.1884 0.0026 0.3930 0.1274 
2.041931 ETAx 1.2119 1.1981 0.0061 0.3363 0.2891 

2.042387 3KM2 0.5438 1.0656 0.0101 0.2882 0.5416 

2.07366 2S2 0.4621 1.1997 0.0146 -0.7022 0.6977 

2.182844 2K2 0.7241 1.1913 0.0071 0.1291 0.3412 
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Table 5.4: Tidal amplitudes, gravimetric factors () and phases (, with respect to 
local tidal potential and lags negative) with their respective uncertainties obtained 
for the ter-diurnal groups using ETERNA 3.4 tidal analysis software on the total SG 
series at J9 Observatory. 

 

Frequency 
(cpd) 

Wave Observed 
amplitude 
(nm/s2) 

(nm/s2) stdv (deg) stdv 

2.86212 MN3 1.2446 1.0637 0.0023 0.3108 0.1240 
2.89826 M3x 0.2558 1.0706 0.0113 -0.8831 0.6070 

2.89841 M3 4.5471 1.0649 0.0006 0.3024 0.0344 

2.93470 ML3 0.2556 1.0572 0.0094 -1.0707 0.5069 

2.97161 MK3 0.5906 1.0617 0.0042 0.5355 0.2261 

 
 
Table 5.5: Tidal amplitudes, gravimetric factors () and phases (, with respect to 
local tidal potential and lags negative) with their respective uncertainties obtained 
for the quart-diurnal groups using ETERNA 3.4 tidal analysis software on the total SG 
series at J9 Observatory. 

Frequency 
(cpd) 

Wave Observed 
amplitude 
(nm/s2) 

 (nm/s2) stdv  (deg) stdv 

3.82826 N4 1.7222 1.4718 0.1057 -104.9288 4.1157 

3.86455 M4 0.0910 0.3808 0.0397 172.5050 5.9709 

3.93775 K4 5.9660 1.3972 0.2052 25.4002 8.4141 
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5.4 Observation and search for very low frequency signals  

In addition to exhibiting small amplitude signals and near frequency groups, another 

advantage of the length of J9 SG record is to enable us to study also long-period 

signals. In this part we will focus on the low frequency terms, such as the long period 

tides (18.6 year, 9.3 year, annual to ter-monthly) and the Chandler Wobble (CW, 

period of 435 days). 

The theoretical aspect of these long period signals have already been explained in the 

section 2.1.8. 

We have already pointed out in section 2.2 that the SGs have a very small 

instrumental drift compared to spring gravimeters. This is the main reason why 

studies about long period tides are particularly suited to SG data. However, the 

presence of long term drift leads to spectral noise which increases with decreasing 

frequency (colored noise). This means that the detection of signals is more and more 

difficult when the frequency of the signal decreases, even if the data set is long 

enough to allow the spectral detection. 
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Fig. 5.9: Amplitude factors in the long period tidal frequency band using the complete 
(9760 days, 26.7 years) SG record (T005 + C026) in Strasbourg J9 Observatory. 
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Studies of long period (LP) tides (usually Mf and Mm) using SGs can be found 

elsewhere. In a recent paper, Boy et al. (2006c) analyzed long series from 18 GGP 

stations to estimate the ocean tide loading for the monthly (Mm) and fortnightly (Mf) 

tides. Also, Ducarme et al. (2004) determined different LP tidal waves using data 

from different GGP superconducting gravimeter data. The determination of the tidal 

parameters for all these tidal waves is very useful to retrieve some information on the 

Earth’s rheology at such frequencies  e.g. Wahr and Bergen, 1986), as any deviation 

from pure elasticity will increase with decreasing frequencies (Crossley et al., 2013). 

The observation of these tides is believed to give us a good constraint for 

investigating the anelastic response of the Earth (Sato et al., 1997a).  Compared to 

diurnal tidal periods where the Earth’s rheology is predominantly elastic, on very 

long timescales the behavior of the mantle becomes viscoelastic.  

In figure 5.10, we compare the spectral analyses for the observed and theoretical 

signals in Strasbourg using the Hartmann and Wenzel (1995) tidal potential 

development. The length of the data series allows us to separate some of the long 

period signals that were not visible with shorter series. An example is given by the 

separation of the annual term Sa and the Chandler component (CW), which requires 

at least 6.5 years of data. The spectral agreement between the CW signature and the 

prediction of the gravity change due to the polar motion (not shown here) is the basis 

of more detailed studies on the amplitude factor of the pole tide that can be found 

elsewhere (e.g. Ducarme et al. 2006). 
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Fig. 5.10: Spectral amplitude of the merged 27 year series (T005 & C026) at 
Strasbourg J9 Observatory showing the Chandler Wobble (CW) and the long-period 
tides: the ter-monthly (Mtm), fortnightly (Mf), monthly (Mm), semi-annual (Ssa), 
annual (Sa), 9.3-year and 18.6-year components. 

Unfortunately, despite the 27-year length of our data series we are still not able to 

retrieve the tidal waves of 9.3 and 18.6 year periods, which are of special interest for 

investigating the rheological behavior of the solid Earth at such periods. Our spectral 

peaks are obviously biased by the large noise still present in the SG data in the low 

frequency band. In a few more years, the SNR of the complete data series should be 

improved and we may expect to eventually detect the 18.6-yr tide. Finally, the long 

term gravity time series retrieved from SG observations are crucially depending on 

the amount of corrected offsets, for the determination of the polar motion and the 

seasonal components. That is why we must pay a close attention to this point, when 

correcting the raw gravity data, as already explained in section 2.3.1 (pre-

processing). 

However, it is evident that the ability of SGs to reliably measure effects at the 0.1 µGal 

level has opened up many interesting scientific possibilities.  
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The search of 18.6 and 9.3 year period signals 

We have already indicated that the much lower instrumental drift of SGs versus 

mechanical spring meters has enabled more precise studies of long period tides (Mf, 

Mm, SSa, Sa) (Sato et al. 1997a; Hinderer et al. 1998; Mukai et al. 2001; Ducarme et al. 

2004; Boy et al. 2006). However, at even longer periods, there are lunar nodal tidal 

waves at 9.3 and 18.61 year period which are extremely difficult to identify in gravity. 

The lunar nodal tide amplitude represents only about 5% of the amplitude of the 

daily diurnal tide from the Moon. 

The Earth’s nutation is a predictable cycle of the Earth’s spin in space, which has 

inertial space periods equal to the orbital periods of the Sun and Moon. The four 

dominant periods are cycles of 18.61 years, 9.3 years, 182.6 days and 13.66 days. 

Unfortunately, the large tidal variations at annual and semiannual periods are 

obscured in Earth rotation observations by meteorological effects, while those having 

periods of 9.  and 18.6 years are obscured by the decadal variations in the Earth’s 

rotation (Gross, 2007). We will try to search any evidence of the presence of the 18.6 

and 9.3 year lunar nodal tides in our long gravity records. 

*Observations 

5.4.1. Search of the 18.6 year period signal 

The largest nutation term (18.6 y period) is of lunar origin. It arises from the 

precession of the lunar orbit around the ecliptic and will be extremely difficult to 

identify in gravity (Doodson & Warburg, 1941). We use first the long gravity record 

form J9 Observatory (only the 27 year record with SGs from 1987 to 2014). 

In figure 5.10, we have already shown that despite the 27-year length of our series 

recorded at J9, we were not able to retrieve the tidal waves of 9.3 and 18.6 year 

periods from the spectral analysis. We will try to check now if there is any clear 

evidence of this signal in the residuals of our data series. 

We have computed the theoretical 18.6 year wave for J9 station using PREDICT 

(Wenzell, 1996b), which is a FORTRAN code contained in ETERNA package, used for 

the computation at a specific station of Earth tide signals with constant time interval. 

As with ANALYZE code, we can choose between seven different tidal potential 

catalogs. We used here again Hartmann and Wenzel (1995) tidal potential. As shown 

by figure 5.11, superposing this theoretical signal with the gravity residual series, we 

cannot find any kind of correlation between both signals (correlation coefficient = -

0.34), mostly because the residuals are too noisy, even for the second part inferred 

from C026 (after the vertical blue line). 
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Fig. 5.11: Superposition of the 27 year gravity residuals (in black) at J9 Observatory: 
T005 (before vertical blue line) + C026 (after vertical blue line), and the theoretical 
18.6y wave at the same location (red) (correlation coefficient = -0.34). 

We have made similar comparisons with all the European SGs series previously 

treated in section 4. The only station in which the residuals seem to have a better 

correlation with the theoretical 18.6y wave is Membach (figure 5.12). But even at this 

station, where the amplitude of the residuals is almost half of the amplitude from the 

residuals from C026 at J9 and is also less noisy, the correlation is still not clear 

enough (correlation coefficient = 0.47). 
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Fig. 5.12: Superposition of the 16 year gravity residuals (in black) at Membach 
Observatory (GWR C021) and the theoretical 18.6y wave at the same location (red) 
(correlation coefficient = 0.47). 

It will be really interesting to check if actually this correlation continues when more 

years are available for this station, because currently the total series do not cover the 

whole period of the principal nutation term. 

The tidal potential amplitude is latitude dependent; the long-period tides have their 

maximum values at the poles. So, since tidal observations at high latitudes are 

advantageous for determining the LP tides, long-term observations with a 

LaCoste&Romberg ET gravimeter have been set up at the Antarctic Amundsen-Scott 

station (90º S), see e.g. Rydelek and Knopoff (1982). However, because of the large 

drift inherent to spring gravimeters the very long period tides are unreachable. 

Due to this latitude dependence, we have also checked using the series from 

Metsahovi station, in Finland, which was not previously used in this study, but whose 

latitude is higher than that of the other stations analyzed in this study (60.22º N). 

Unfortunately, the result was deceiving as shown by figure 5.13 (correlation 

coefficient = 0.02).  
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Fig. 5.13: Superposition of the 13 year gravity residuals (in black) at Metsahovi 
Observatory (GWR T020) and the theoretical 18.6y wave at the same location (red) 
(correlation coefficient = 0.02). 
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5.4.2. Search of the 9.3 year period signal 

The 9.3 year wave has also been computed theoretically for the J9 station using 

PREDICT software. The amplitude of this signal is almost 300 times smaller than the 

amplitude of 18.6y. Thus, due to the noise in the data series at J9 site, it is completely 

impossible to visualize it in the residuals, as shown by figure 5.14. 

Maybe some stacking procedure could help improve the SNR of the 9.3-year 

component. This could be part of future perspectives. 
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Fig. 5.14: Theoretical amplitudes of the 9.3y (upper plot) and 18.6y (lower plot) 
waves at J9 Observatory. 
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5.5. Summary of Chapter 5 

The purpose of this chapter was to show some of the benefits that can be obtained 

from very long gravity records, to detect very weak amplitude signals and low 

frequency signals. 

We mainly use the 27 years gravity data registered at J9 Observatory by two different 

SGs (T005&C026), which is the longest available series ever recorded by SG at the 

same site. In fact, at that Observatory, there are available almost 40 years of 

continuous data (if we consider also the gravity data registered by a spring 

gravimeter . But we’ve checked that the SG records are preferred to the long spring 

gravimeter records, even when they are shorter. This is because of the long-term 

stability and very small linear instrumental drift of the SGs, as seen previously in 

chapter 4. And in addition, because the signal-to-noise ratio is not only improved by 

increasing the length of the data set, but it is also strongly influenced by the quality of 

the data. 

We perform a tidal analysis using ETERNA 3.4 over the SG series, being able to 

separate several tidal waves in the diurnal, semi-diurnal, ter-diunal and quart-diurnal 

frequency bands, some of them with very low amplitude, with a high precision. 

We also show the spectral analysis from both SGs series separately and for the 

merged series, obtaining in all cases a high spectral resolution in the tidal bands. Due 

to the higher noise in the T005 data relative to the C026, we still have to wait 5 more 

years, until the SNR of the merged series (T005+C026) will be larger than the SNR of 

the C026 series. So in just 5 years we will be able to get even more advantage of this 

merger. In these spectral analyses we can detect several low amplitude tidal waves 

that were hidden in the shorter series. Clear examples of small amplitude tides in the 

semi-diurnal and diurnal frequency bands are pointed out. 

To conclude, the long-period part of the gravity spectrum is discussed. Unfortunately, 

despite the length of our series, we are not able to retrieve the tidal waves of 18.6 

year period. In addition, we try with the data from the 8 SGs European stations 

previously studied in Chapter 4, obtaining also negative results. Furthermore, as the 

long-period tides have their maximum amplitudes values at the poles (due to the 

latitude dependence of the tidal potential) we try with the data from Metsahovi 

station (60.22ºN), but even at that location, the results were not satisfactory.  

In the case of the tidal wave of 9.3 year period is even more complicated; its 

amplitude is almost 300 times smaller than the amplitude of the 18.6y. 
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6.1 Introduction 

We have already mentioned in the previous chapters some effects of tidal forces on a 

solid Earth, but there are actually other effects that are related to the mechanics of a 

spherical shell enclosing a fluid. 

If a slight rotational motion is applied to such a shell, it will produce another slight 

inertial rotational movement of the fluid, relative to the shell. If the shell is ellipsoidal, 

there will be then a coupled rotation between the fluid part and the solid shell. 

In the case of the Earth, we can consider that the shell is the mantle and the fluid is 

the core. The small rotational movement of the mantle is produced by Earth’s tides, 

hence inducing a rotational movement of the fluid part if there is a coupling between 

the core and the mantle. The core-mantle system like all coupled systems will have a 

number of eigenmodes which are denoted Rotational Normal Modes.  

 

 

Fig. 6.1: Diagram of the different rotating layers in which the Earth can be divided 
(the anelastic mantle, the liquid outer core and the solid inner core).  
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The existence of more than one rotational normal mode for the Earth is due to the 

presence of the fluid core and the consequent possibility of differential rotations 

between different regions (Dehant 2007). These three regions (each one having an 

instantaneous rotation vector), interact with each other because of pressures on the 

boundaries, gravitational, electromagnetic and viscous couplings. 

The principal rotational modes, which are presently known, are the following 

(Mathews et al. 1991a, b): 

• The Chandler Wobble (CW), which was discovered in 1891 by the astronomer Seth 

Carlo Chandler. It is a small deviation of the Earth’s axis of rotation relative to the 

solid Earth (e.g. Mueller 1969) related to the ellipticity of the Earth. For a rigid Earth, 

this mode corresponds to the Euler Wobble (Euler, 1758) and it exists also for an 

Earth without a fluid core. 

• The Free Core Nutation (FCN), which is a retrograde  opposite to the Earth’s 

rotation) mode, related to the existence of a flattened fluid core inside the Earth. This 

normal mode involves a relative rotation between the core and mantle. If observed in 

the terrestrial reference frame its frequency is nearly diurnal, so this mode is also 

called the Nearly Diurnal Free Wobble (NDFW). The existence of this nearly diurnal 

free wobble mode was discovered by Hough (1895).  

• The Free Inner Core Nutation (FICN), which is a mode related to the existence of a 

flattened inner core inside the fluid core. Similarly to the FCN, the FICN has a nearly 

diurnal prograde period in a terrestrial reference frame. The theoretical existence of 

this mode was undoubtedly demonstrated in 1991 by Mathews et al. (1991a), but its 

existence was already proposed by Toomre (1974) and is present in the results of 

Jeffreys and Vicente (1957). This mode has not yet been clearly observed.  

• The Inner Core Wobble (ICW), which is the longest free mode of rotation also related 

to the existence of a flattened inner core inside the fluid core. It consists of a prograde 

precession of the tilted figure of the inner core with respect to a fixed mantle. This 

long-period oscillation of the inner core was first studied by Busse (1970) who 

proposed a period around 7 years. This mode has never been observed.  
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Fig. 6.2: Diagram of the whole-Earth axis of rotation, the axis of rotation of the inner 
core, the angular velocity of the mantle and the differential rotation of the outer and 
inner core with respect to the mantle.  

 

The FCN and the CW were computed using the angular momentum conservation 

equations in a reference frame tied to the Earth, for an elliptical uniformly rotating 

Earth model with an elastic mantle and a liquid core (Sasao et al. 1980, Hinderer et al. 

1982). The other two modes (ICW and FICN) were investigated later, once a solid 

inner core was added to the model (Kakuta et al. 1975, Mathews et al. 1991b, Herring 

et al., 1991).  

To obtain the approximate frequencies of these rotational modes, we start with the 

classical Liouville equations (1858) (that is, Euler’s equations modified to allow for 

deformation and internal flow) in a form given by Dehant et al. (1993) (eq. 6.1).  

The Liouville equations are applied to three rotating bodies (the mantle, the liquid 

outer core and the solid inner core). If the Earth is submitted to a tidal volumic 

potential (involving an external torque    ), we have, in the lack of topographic torque 

at the core-mantle boundary (CMB) and at the inner core boundary (ICB): 

 
  
 

  
      

  
              

      

  
                 

      

  
                    

  

(6.1) 
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Where      is the angular velocity of the mantle,       and       the differential rotation of 

the fluid core and of the inner core, respectively, with respect to the mantle (figure 

6.2).  

     and      are the frictional torques which may appear at the CMB and ICB and     is 

the sum of the gravitational torque and the pressure torque acting on the inner core. 

The angular momentum for the global Earth, the fluid outer core and the inner core 

respectively (    ,       and      ) can be expressed as the product of its angular rotation 

and its mass redistribution, which is described by the inertia tensor for the entire 

Earth, for the core and for the inner core respectively. So, to obtain the equatorial part 

of the angular momentum equations for the global Earth, the liquid outer core and for 

inner core, we note: 

  ,  ,   ,    ,   ,     and    ,   ,     as the mean moments of inertia of the Earth, of 

the outer core and of the inner core respectively 

        ,   ,   ω  ,     
     

 ,   
 ,   

   and          
 ,   

 ,   
   being   the sidereal 

rotation (in a linear approximation, we have:     ,  
    and    

   ). 

We also noted  ,    and    the dynamic flattening of the Earth, fluid core and inner 

core respectively ( ,   ,    1)  

If we introduce now the complex notations for these components, such as: 

        ,      
     

 ,      
     

  

          ,       
      

 ,       
      

  

        ,      
     

 ,      
     

 ,      
     

  

 

In that case, the equatorial parts of the angular momentum equation can be written 

as: 

 
                                               

             1                T 

                                          

  

 

We should point that the instantaneous figure axis of the inner core is tilted with 

respect to the principal axis of inertia by two instantaneous rotations.  

We refer to Dehant et al. (1993) for the solution of this equatorial system to obtain 

the approximate frequencies of the rotational modes: 

 

(6.2) 
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Where 

 ,    are the principal equatorial moments of inertia of the whole Earth and mantle 

(         

   is the dynamical ellipticity of the core,    of the inner core and  of the Earth 

 ,   and   are elastic parameters related to the deformations of the boundaries, to 

mass redistribution, or to the tilt of the inner core 

   is the outer core density 

   is the inner core density 

   is the ratio of the centrifugal acceleration and the gravity at the Earth’s surface 

    
 2  represents the effect of deformation of the core 

 

There is an additional rotational mode which depends on the rotation of the whole 

Earth, which eigenperiod is not dependent of the shape, and which yields no 

information on the inner structure or the shape of the body: 

• The Tilt-Over Mode (TOM). This mode exists for every rotating body, and is basically 

a rigid rotation of the body about an axis that does not match any of the axes of the 

relative reference system. Its period corresponds to the spin period of the body. 

The period of all these five modes are summarized in figure 6.3. The periods of the 

FCN and FICN are nearly diurnal; the period of the TOM is diurnal; the period of the 

CW is about 430 sidereal days. As for the ICW, its period has not yet been observed 

either directly or indirectly (through the resonance effects). It has been computed of 

the order of a few years (e.g. 7.5 yrs for PREM by Rochester and Crossley 2009, later 

confirmed by Rogister 2010). 

 

(6.3) 
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Fig. 6.3: Diagram of the periods (in a terrestrial reference frame) for the principal 
rotational modes (FCN, TOM, FICN, CW and ICW). 

In this chapter we focus only on two of these rotational modes; the Free Core 

Nutation and the Free Inner Core Nutation, which are nearly diurnal wobbles in a 

rotating reference frame. 

These free oscillations are associated with free nutations in space in addition to the 

nutations forced by the Sun, the Moon and the planets (we call precession and 

nutation the motions of the Earth’s rotation axis in the space reference frame . 
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Free Core Nutation 

This rotational normal mode of the Earth involves a relative rotation between the 

core and mantle; it is caused by the misalignment of the rotational axis of the Earth's 

mantle and of the rotational axis of the fluid core (figure 6.4). 

If we consider a rotating elliptical Earth model, this mode will cause both, 

displacement and deformation of the Earth simultaneously. However, the 

displacement component related to the nutation is much larger (about 300 times) 

than the deformation component related to the body tides. That is why this normal 

mode is usually called Free Core Nutation (Wahr, 1981a) (and it is also called Nearly 

Diurnal Free Wobble, when looking at its effect on Earth). 

 

 

Fig. 6.4: Diagram of the misalignment of the rotational axis of the Earth’s mantle and 
the rotational axis of the fluid core.  

From the first theoretically discovery in 1895 until observational evidence was 

obtained, it took a long way. Despite the fact that this mode has been studied for a 

long time, the accuracy of the estimates of the most relevant parameters has 

improved rather slowly. 

The physical origin of this mode is due to the pressure coupling between the liquid 

core and the solid mantle which acts as a restoring force (Florsch and Hinderer 

2000). Its eigenperiod directly depends on the core–mantle boundary (CMB) 

ellipticity, as well as on the Earth’s elasticity  Toomre, 197 ; Sasao et al., 198 ; Sasao 

and Wahr, 1981). Hence, its observation can be considered as a useful tool to study 

the Earth’s deep interior dynamics and structure.  

The attenuation of the mode (defined by a quality factor  ) is a direct consequence of 

damping and coupling mechanisms at the CMB, so it is also important to compute it. 
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Based on a given Earth’s model, the eigenperiod of the FCN can be theoretically 

predicted. In a terrestrial reference frame, this normal mode has an eigenperiod T    

close to one sidereal day (sd). In the celestial reference frame, this mode corresponds 

to a retrograde motion  in the opposite way of the Earth’s rotation  with a period 

close to 435 sd. The luni-solar tidal forcing at such frequencies leads to an 

amplification of the Earth’s nutational and deformational responses to the tidal 

forcing (Hinderer et al., 1993a). 

The difference obtained between the theoretical period of this mode (~460 sd) and 

the observed period (~430 sd), has been attributed to violation of the hydrostatic 

equilibrium at the core-mantle boundary: Herring et al. (1986) proposed a small 

increase of about 500 m in the difference between the core equatorial and polar ratio 

in order to explain the observed FCN period (see also Gwinn, Herring & Shapiro 1986; 

Dehant 1990). 

Because of the presence of dissipation processes in the Earth, such as the viscosity of 

the mantle, the tidal friction in the bottom of oceans, the electro-magnetic and viscous 

coupling between the core and the mantle, the FCN is a damped oscillation. As a 

result, the attenuation of the mode amplitude is a direct consequence of damping and 

coupling mechanisms at the CMB. So it should be taken into account when the FCN is 

investigated by introducing a complex frequency.  

Theoretical models of the rheological behavior of the mantle result in a Q-value not 

less than 78000 (Wahr, 1987). However, there are large discrepancies in the quality 

factor values obtained with different kinds of data or even with similar data but from 

different areas. In general,   values estimated from body tide observations (eg. 

Neuberg et al. 1987; Sato et al. 1994; Hinderer, 1997) are much smaller than those 

estimated from nutation data (e.g. Herring et al., 1986; Gwin et al. 1986; Defraigne et 

al. 1994, 1995b). Rosat et al. (2009b) have demonstrated that the inadequation 

between ground gravity estimates and space nutation estimates of Q comes from the 

large uncertainties obtained on the estimate of the small amplitude PSI1 tidal wave. 

Recently, Rosat and Lambert (2009) have reached an agreement between the 

nutation observation and the gravimetric estimates of the   value of the FCN. Also, it 

has been pointed out the important impact of inaccurate ocean loading corrections in 

the gravity observation, on the determination of the damping of the eigenmode 

(Neuberg et al., 1990; Florsch and Hinderer 1998, 2000). 

There have been several studies trying to identify if there is a time variation of the 

frequency of the FCN resonance, either in VLBI nutation or in SG gravity data (e.g. 

Roosbeek et al. 1999; Hinderer et al. 2000; Lambert and Dehant, 2007; Vondràk and 

Ron, 2009; Cui et al., 2014). Most of these authors concluded that the apparent time-

variation is not real but rather due to the time-variable excitation of the free mode. 

However, the analysis of VLBI observations performed by some other authors 

(Malkin 2004; Shirai et al. 2005; Malkin and Terentev 2007) showed that not only the 

FCN amplitude and phase vary in time but also its period. Vondràk and Ron (2009) 
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clearly distinguish the problem of the FCN mode which is forced mainly by 

atmosphere and oceans through angular momentum exchanges from the observed 

resonance of the FCN. Indeed, the latter depends only on physical properties of the 

Earth (ellipticity at the CMB, Love numbers, etc.) and coupling mechanisms acting at 

the CMB. So a varying resonant period would mean that such mechanisms are 

changing in time (Cui et al. 2014). Such variability has never been computed or 

demonstrated yet.  
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6.2. Theoretical approach to FCN 

The consequences of the FCN can be observed both in the motion of the celestial 

intermediate pole in the celestial reference frame, and also in the resonance behavior 

of the frequency-dependent Earth tidal response (in its diurnal band). Its period has 

been deduced from the resonance effects found in nutation observations as well as in 

tidal observations.  

We are going to focus on its signature on the diurnal Earth tides. So we should 

consider it in the rotating frame. 

Theoretical investigations have evolved from the initial computations for hydrostatic 

seismologically constrained Earth models (e.g. Jeffreys & Vicente 1957; Sasao et al. 

1980; Wahr 1981a; Wu & Wahr 1997; Dehant et al. 1999), to the most current MHB 

model (named after Mathews, Herring and Buffet), obtained from the VLBI 

observations of non-rigid nutation (Mathews et al. 2002). 

There are different models for the FCN resonance. We consider the use of a reference 

gravimetric factor in the resonance model. In that case, the basic equation which 

holds for describing the resonance model in tidal gravity can be written as equation 

6.4 (Hinderer et al., 1991b), where the FCN resonance parameters (strength 

amplitude, eigenperiod and quality factor) are combined in a resonance equation 

involving some Earth’s interior properties. In the diurnal band, we can express the 

complex gravimetric factor     (observed data) of a wave with frequency   , as the sum 

of the part independent from frequency (the normal amplitude factor which would 

not be affected by the resonance,    ) and a part which is frequency-dependent with 

the tidal frequency   and the FCN resonant frequency        (Neuberg et al., 1987; 

Hinderer et al., 1991b): 

          
  

       
 

Where             
         

  is the amplitude factor independent of the frequency (not 

influenced by the resonance), 

      can be obtained by        1     
 

 
   

        
      

   is the complex eigenfrequency of the FCN, 

            refers to the resonance strength corresponding to the response 

of the whole Earth to the FCN (the resonance strength relating to the geometric shape 

of the Earth and the rheological properties of the mantle).  

(6.4) 
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It is real for an elastic Earth model. However, for an anelastic model, both the 

resonance strength and the FCN eigenfrequency should be complex with a very small 

imaginary part. 

   can be written as:       
 

  
     

 

 
        

  

 
   

Where   

   and     are the classical Love numbers (effect of deformation + perturbation of 

potential  which characterize the Earth’s response to the tidal forcing,  

   and    are the diurnal internal pressure Love numbers which characterize the 

elastic response (effect of deformation + mass redistribution) of the 

Earth to the inner pressure acting at the CMB 

   is the secular Love number expressing the deformation of the CMB induced by a 

volumic potential evaluated at the CMB,  

A and A  are the equatorial moments of inertia of the entire Earth and the solid 

mantle respectively,  

    is the dynamical ellipticity of the Earth,  

q    is the ratio of the centrifugal force to gravity at the equator,  

    is the sidereal frequency of the Earth’s rotation.  

 

Therefore, the eigenperiod of the FCN and the quality factor can be expressed in 

sidereal days in the rotating frame by (Defraigne et al., 1994): 

     
2 

   
  

  
   
 

2   
  

In order to retrieve the FCN parameters (  and     ) from observations, we have to 

solve the non-linear equation (6.4). Hereafter, we will introduce two methods 

classically used to deal with this inverse problem.  

  

(6.5) 
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6.2.1. Linearized least-squares approach 

The frequency of the wave O1 is far away from the resonant one, so this wave is less 

influenced by the FCN resonance (~ in the order of 10-4). Moreover, with a large 

amplitude and high signal to noise ratio, this wave can be observed very accurately. 

Therefore, it can be considered as quasi-static, and we can use it as a reference in the 

retrieval of the FCN parameters.  

In that case, the fitting equations can be deduced by modeling the observed complex 

diurnal tidal gravity parameter (more than three waves should be considered) to 

theoretical ones and removing the signals of wave O1, obtaining: 

   ,      O ,    
       

      
      

  
 

      

  O       
      

  
 

 

where   stands for the station number (in the case that data from several stations are 

analyzed). This will eliminate systematic errors such as a general bias in the tidal 

factors. 

This equation is still non-linear, so to solve these equations when    tidal waves are 

included, the error function    should be minimized after linearization using the 

Marquardt’s optimization algorithm (Marquardt 1963): 

       ,        ,       1,     
      

      
      

  
 

      

   1      
      

  
   

 

 , 

 

 

with    ,    1    ,     being the weight function, where    ,    is the standard 

deviation of the amplitude factor of a tidal wave with frequency   at the  th station.  

This method has been widely used in FCN retrieval studies like in Neuberg et al., 

(1987); Richter and Zürn (1986); Zürn and Rydelek (1991) and Defraigne et al. 

(1994, 1995a). 

  

(6.6) 

(6.7) 
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6.2.2. Bayesian approach 

The Bayesian approach (Florsch and Hinderer 2000; Sato et al. 2004) is an 

improvement of the previous technique, allowing a precise determination of the 

quality factor   (expressing the damping due to all physical processes involved in the 

resonance). The Bayesian inversion is the method which best propagates the data 

information to the parameters. This inversion is explained more in detailed in Annex 

F. 

This is the approach that we will use later with our data in section 6.4, since such a 

probabilistic view allows the most complete and reliable information (Tarantola and 

Valette, 1982) on the FCN resonance. Besides, using the Bayesian approach, the 

resonance equation does not need to be linearized.  

Florsch and Hinderer (2000) used the basic equation that describes the resonance of 

the FCN in the tidal gravity (equation 6.4) and performed the inversion by treating 

      as an unknown parameter, showing that a correlation exists between the real 

parts   
  and    

 , and between   
  and   , and that a strong correlation also exists 

between    and  .  

The equation relative to the resonance model become: 
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The observed gravimetric factors are then inverted to retrieve the FCN resonance 

parameters; the real and imaginary parts of the resonance strength,    and    , the 

resonance eigenfrequency     ,  and            

The sensitivity study of the FCN parameters to the diurnal tidal waves demonstrates 

that the quality factor   is strongly dependent on the accuracy of the imaginary part 

estimates of the gravimetric factors close to the resonance. 

Positivity of the quality factor 

Florsch and Hinderer (2000) also introduced the positivity of the quality factor    of 

the FCN, which was previously underestimated or even found negative in past gravity 

(6.8) 
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studies using the standard least squares technique. They suggested that when 

estimating such a parameter, one should include that a priori information. 

 

  
  
2  

 1   

So that inverting            instead of   insures the positivity of  . 

Rosat et al. (2009b) showed that by inverting          instead of  , the result using 

the least-squares method optimized using the Levenberg–Marquardt algorithm are in 

good agreement with the Bayesian probabilistic results. 

 
* Oceanic loading correction 

One of the major problems for the retrieval of the FCN parameters from surface 

observations is the accuracy of oceanic corrections applied to the analyzed data. It is 

known that, because of the Earth’s elasticity, the surface gravity observations are 

influenced by ocean tide loading (OTL). The ocean loading effect can contribute to 

10% of the total signal (Francis and Melchior, 1996). Hinderer et al. (1993a) 

indicated that errors in oceanic correction would lead to significant variations of the 

retrieved Q value of the FCN. Ducarme et al. (2007) also showed that the uncertainty 

in oceanic models will lead to some discrepancies in the determination of the FCN 

parameters. As a consequence, it is important to remove the OTL signals from tidal 

gravity parameters for a better determination of the FCN parameters.  

In this study, we only use gravimetric stations located in Europe, where the ocean 

load effects on gravity-tides are known to be very small for diurnal tides (0.5 per cent 

of body tides). Nevertheless, it is of great importance for the FCN determination to 

compute corrected amplitude factors and phase differences by subtracting the OTL 

effect (Ducarme et al. 2009 state that the only way to improve the estimation of the 

FCN using tidal gravity observations is to improve the ocean tide models). In our case, 

we have used the FES2004 ocean model (Lyard et al., 2006) to correct our data, based 

on the computation by Boy et al. (2002).  

As the oceanic tides have the same forcing sources and similar spectral characteristics 

as the body tides, we are not able to separate them in a harmonic analysis. So, we 

should calculate the oceanic influence through the loading theory and the suitable 

oceanic co-tidal models. As the tidal models are given only for some tidal waves, we 

need to interpolate the OTL corrections to all diurnal waves used in the inversion for 

the FCN parameters. We have used a regression method proposed by Xu et al. (2002) 

defined by: 

 

(6.9) 
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     cos                          

     sin                          
  

Where     ,      and      are respectively the height of equilibrium tides, the 

amplitude and the phase of gravity signal caused by oceanic tides at the frequency  .  

     is a parameter describing the effects of the FCN resonance on the oceanic tidal 

wave at the frequency  . 

  ,   ,    and    are the unknown regression coefficients. 

Some other techniques as the analytical solution (Florsch et al., 1994) or the 

stochastic inversion (Cummins and Wahr, 1993; Defraigne et al., 1994) have been 

used to retrieve the FCN parameters using gravity data. 

  

(6.10) 
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6.3. Historical quest for the FCN resonance in gravity data 

The possibility that the Earth, or more accurately, the Earth’s mantle, exhibits a free 

nutation with a period of about one day, in a rotating reference frame, was discovered 

theoretically, independently and almost simultaneously, by Hough (1895) and by 

Sloudsky (1896). This mode of nutation can exist only for an Earth with a rigid mantle 

and a liquid compressed core (Pariiskii, 1963). It took nearly 15 years until Poincaré 

(1910) revisited this phenomenon, considering a schematic model of a rigid mantle 

and a liquid core. In 1949, H. Jeffreys published his study about the dynamical effects 

of a liquid core. He showed that a resonance effect should occur on the tidal waves 

which periods are sufficiently close to that of the movement in the liquid core, i.e. 

close to the sidereal day. 

In 1957, Jeffreys and Vicente considered a more realistic model, consisting of a 

compressible and non-uniform mantle and two simplified models of the structure of 

the Earth’s core. They discussed about the diurnal nutation for each model  the first 

with a homogeneous core, and the second with a density distribution inside the core), 

obtaining disparate values for the period of the diurnal nutation. They also gave for 

the first time the numerical values of the gravimetric factors, showing in particular 

that the amplitude of the Earth’s response at O1 frequency should be larger than at K1 

frequency, resulting in:  

            

In 1961, Molodensky considered the general unified theory of nutation and diurnal 

tides for an inhomogeneous Earth with a liquid core, obtaining results quite similar to 

those of Jeffreys and Vicente (1957). 

According to their theoretical calculations (Molodensky 1961, Jeffreys & Vicente 

1957), the three main diurnal waves that it was possible to observe with enough 

precision from the available records (K1, O1 and O1), should have the amplitudes 

given in figure 6.5. 

(6.11) 
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Fig. 6.5: Table 38 extracted from Melchior (1966) comparing the values obtained for 
the models: JV1 (Jeffreys and Vicente 1957), JV1 (Jeffreys and Vicente 1957b), MO1 
and MO2 (Molodensky 1961). Differences in the two models of Molodensky (1961) 
derive from the conditions applied at the Core-Mantle Boundary. 

These last 2 publications (Jeffreys and Vicente, 1957b; Molodensky 1961) stimulated 

the gravity community to search for an evidence of the existence of the FCN in their 

gravity records. Unfortunately, the precision of the observations at that time was still 

insufficient. Several groups hence began to concentrate their efforts on improving the 

quality of the observations. Among these groups, we can cite the one from Strasbourg, 

which made several technical improvements on their spring gravimeters, as already 

mentioned in section 2.3. 

We can consider that the discovery of the FCN effect in gravity data is divided into 

two different stages as already mentioned in paragraph 3.2.2: 

- In a first step, the attempts to observationally prove the existence of the FCN 

focused on the comparison of the observed amplitude of the largest diurnal tidal 

constituents (O1, P1 and K1) with theoretical amplitudes. At that time, little was 

known and done to correct the observed amplitudes for the atmospheric and oceanic 

effects. Unfortunately, the first results published by Lecolazet (1957) and Melchior 

(1957) using the 5-month data recorded in Strasbourg with the North American AG 

138 gravimeter were in disagreement with the theoretical models. 

Thanks to the great improvements obtained in both instrumentation and techniques 

of analysis, two years later Lecolazet published the first clear observation of 

            in agreement with Jeffreys’ theory, using a new series recorded at the 

same Strasbourg observatory, from 1957 to 1958 (Lecolazet, 1959). We illustrate 

these 2 determinations, incorrect and correct, of       and      , by the figure 6.6, 

which is a picture of Table II extracted from Lecolazet (1959). 
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One year later, using the complete series of 860 days of the NA 138 gravimeter 

(registered between August 1957 and December 1960) he obtained even better 

results (Lecolazet 1960). 

 

Fig. 6.6: Table II extracted from Lecolazet (1959) showing the first incorrect (left two 
columns) and then correct (right two columns) determination of       and 
      (is called H/H1 in this table) respectively obtained by the analyses performed 
in 1957 and in 1959 using a North American spring meter installed at Strasbourg 
Observatory. 

After these first published results, correct values were found at other stations all 

around the world. We can cite for example, Pariiskii (1963) who confirmed 

Lecolazet’s results using an Askania GS 11 gravimeter, or Popov (1963). Melchior 

(1966) compiled these results even though some of them did not achieve the 

expected results. 

As higher quality data were available, the next generation of gravimetric observations 

dealt not only with these largest waves (O1, P1 and K1), but also with the 

measurement of minor diurnal tidal constituents, as for example    and     which are 

much closer to the predicted resonance than K1 and hence better constrain the 

frequency of the FCN.  

- In a second step, once the existence of this resonance was proved, the search for the 

value of the FCN frequency begun. After some failures when Lecolazet and Steinmetz 

(1973) were not able to locate correctly the frequency, they published the first results 

of the discovery of the resonance of the core (Lecolazet and Steinmetz, 1974). They 

determined that the FCN frequency should be either between K1 and PSI1, or between 

K1 and PHI1. 

The wrong estimation of PSI1 amplitude obtained by Lecolazet and Steinmetz in 1973 

and the better one obtained in 1974 are illustrated in Figure 6.7. 
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Fig. 6.7: Diurnal tides amplitude factors obtained by Lecolazet and Steinmetz in 1973 
(up) and in 1974 (down) illustrating the improvement in PSI1 amplitude 
determination between these two studies. 

In both publications they used the same dataset, i.e. almost 3 continuous years 

between 1964 and 1967 obtained with the North-American AG 138 installed at the 

Seismological Observatory in Strasbourg. The major difference in the two studies was 

the methodology used in the data analysis; in 1974 they performed a tidal analysis 

method based on the T. Chojnicki’s least-squares technique (Chojnicki, 1972) which 

was a major improvement for tidal analysis. 
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These results were then much improved by using a longer series recorded between 

1973 and 1975 with a LaCoste-Romberg Earth-Tide gravimeter (LR-ET005), 

equipped with a feedback system installed at the J9 Gravimetric Observatory of 

Strasbourg, definitively confirming that the FCN frequency lies between K1 and PSI1 

frequencies (Lecolazet and Melchior, 1977; Abours and Lecolazet, 1978).  

The instrumental precision of the LR-ET005 was not only better than that of the 

North American, but also the tidal analysis technique was improved with the help of 

computer processing conducted at the International Center for Earth Tides, where the 

Chojnicki's least-squares procedure was applied and complemented with a spectral 

analysis of the residuals. Their analysis was also compared with the Venedikov’s 

method (Venedikov, 1966a), leading to similar results. At that time, the analysis 

technique improved with the introduction of the computer processing, which was a 

major breakthrough. 

At the same epoch, a theory for calculating the normal modes and the forced motion 

of a deformable, slightly ellipsoidal, rotating body, described by an isotropic elastic 

constitutive relation was developed by Smith (1974). Also, Lecolazet (1983) 

correlated observed amplitude variations of the FCN (also called NDFW) with 

variations of the length-of-day and speculated about a temporal variation of the 

NDFW eigenfrequency. 

Neuberg and Zürn (1986) suggested stacking data from different instruments at a 

single station. But it was already identified that in addition to the importance of 

having long gravity records, it was necessary to use observations at more than one 

station to reduce the effects of local systematic errors. Because the FCN is a global 

phenomenon, stacking data from gravimeters located in different areas, can reduce 

effectively the discrepancy of the retrieved FCN resonance parameters. These 

differences are mainly caused by atmospheric and oceanic loading effects and by 

some local environmental perturbations surrounding the stations. Neuberg et al. 

(1987) first proposed an inversion of stacked gravity tide measurements in central 

Europe. They used the Marquardt optimized linearized least squares. A few years 

later, Defraigne et al. (1994) added to the gravity stack the nutation observations.  

Another breakthrough occurred with a better understanding of the atmospheric and 

oceanic effects and with the emergence of the superconducting gravimeters during 

the 80s. With the arrival of this new generation of gravimeters, a new observational 

window on Earth’s deep interior was opened.  See section 2.2.2 for a description of 

the advantages and improvements brought by SGs), and the first precise 

determinations of the eigenfrequency and quality factor   of the mode were 

proposed (Warburton and Goodkind 1978; Goodkind 1983; Zürn et al., 1991b; 

Richter et al., 1995).  
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6.4. Observations of the FCN resonance using other geodetic 

techniques  

Most of the experimental studies for the determination of the FCN parameters are 

based on the analysis of tidal gravity data and Very Long Baseline Interferometry 

nutation data. However, some other geodetic observational techniques have also been 

used to try to determine these parameters (up to now the more reliable results, 

especially concerning the quality factor of the resonance, are derived from the VLBI 

observations).  

Borehole water-level data 

Zaske et al. (1999) performed a tidal analysis on a quasi-continuous 665 day dataset 

of well-level variations recorded at the European Hot-Dry-Rock test-site in Soultz-

sous-Forêts, France. Their results clearly showed the influence of the NDFW on the 

borehole water level data. However, they obtained a period       8  days which is 

in disagreement with other studies. 

Strainmeters / extensometers 

Although tidal signal-to-noise ratio for strain is usually lower than for gravity, the 

analysis of strain data is promising since the relative perturbations due to the FCN in 

strain tides are about 10 times larger than in gravity tides (Amoruso et al., 2012). 

Levine (1978) first used strain tide data (almost two years, using a 30 meter laser 

strainmeter located in a gold mine close to Boulder, Colorado) and found a significant 

structure in the response of the Earth to tidal excitations near 1 cycle/sidereal day, 

which corresponds to the predicted resonance behavior. Unfortunately, his results at  

    and    frequencies where the resonance has the largest effect, were not accurate. 

The corroboration for this frequency shift was provided by Sato (1991) in his study of 

strain tides in Japan. 

Later, Polzer et al. (1996) used strain tide data from the Schiltach observatory in 

southwestern Germany, together with high quality gravity data. They found a       

period of about 410 sidereal days, which is much lower than the gravimetric and VLBI 

obtained values. More recently, Mukai et al. (2004) estimated the FCN parameters 

using 7.1-year strain data observed with a laser extensometer in a deep tunnel, 

located at the Rokko-Takao station, Kobe, Japan. They obtained a       27.  days 

and     1.7  1   ( ~5880). They also pointed out the difficulty of using strain 

data to estimate the FCN parameters because tidal strain data are often contaminated 

by environmental noise such as meteorological variations. Ping et al. (2010) used 17-

year data recorded with three identical quartz tube extensometers, located at the 
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Esashi station, Japan, obtaining values between 410 and 421 days for the     , and 

between 6670 and 10500 for the quality factor. 

More recent results have been published by Amoruso et al. (2012), using eight years 

of discontinuous strain records from two crossed 90-m long laser extensometers, 

operating in the Gran Sasso underground observatory, Italy. They obtained 

      29 days and   values between 10000 and 50000. 

VLBI technique 

The FCN can be observed not only by its resonance effect on the diurnal tidal waves 

using gravimeter records, but also by its associated resonance effects on the forced 

nutations of the Earth’s figure axis. Such forced nutations are usually observed by 

Very Long Baseline Interferometry (VLBI) technique relying on the determination of 

the space reference frame. VLBI technique has been widely used to measure the 

resonance effect on nutation amplitudes and, as well, to observe and model the forced 

FCN oscillation (e.g. Lambert 2006, http://syrte.obspm.fr/~lambert/fcn/index.php). 

This direct FCN effect cannot be observed in surface gravity measurements because 

its amplitude is about 300 times smaller on Earth than its nutation amplitude in a 

space reference frame.  

Since 1984, series of VLBI measurements have been available with high precision and 

high resolution. The FCN was probably first detected using VLBI observations by 

Herring et al. (1986), Eubanks et al., (1986) and Gwinn et al. (1986).  

Up to now, the most reliable results for the values of the FCN parameters, especially 

concerning the quality factor, are derived from VLBI observations. The discrepancy 

between gravity and nutation is due to the large errors arising from the diurnal tidal 

wave determinations that are the closest to the FCN resonance. In particularly, the 

PSI1 wave has small amplitude at the Earth’s surface while its corresponding annual 

retrograde nutation is 300 times larger in space. Another reason is that the oceanic, 

atmospheric and hydrological effects are much lower on VLBI observations 

(differential global technique) (angular momentum exchange) than on surface 

gravity (direct Newtonian effect + mass redistribution + deformation). So, while the 

ocean loading effect is a main source of error on the gravity signal, the effect of the 

ocean tides on the Earth’s nutation is much weaker.  

Sato et al. (1994) pointed out that the error in the correction for the ocean tide effects 

could strongly affect the estimated FCN parameters when using SG data. 

Furthermore, Rosat and Lambert (2009) have shown that a joint inversion (using SG 

+ VLBI data) did not improve the results that they obtained using VLBI data alone. 

Nowadays, owing to the accumulation of VLBI data it has become possible to improve 

significantly these results. Modern theory of nutation predicts a steady FCN period of 
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431.2 sidereal days (Dehant and Defraigne, 1997), and the most recent estimations 

from VLBI observations have been found to be about 430–431 sidereal days or about 

429–430 solar days (Mathews et al., 2002; Koot et al., 2010). 

Please note that all along this chapter, we have employed a sign + for the FCN period, 

but we should remember that the movement is retrograde (so its period should be 

around -     days  with respect to the Earth’s rotation.  

* Response in nutation to the tidal forcing 

Following the modern theory of the Earth’s rotation  Mathews et al., 2  2  we can 

determine the period not directly from an analysis of the observations but indirectly, 

through the transfer function. This function expresses the ratio between rigid and 

non-rigid nutation amplitudes (   and  ) 

        
    

     
 

wherein, neglecting the Inner Core Wobble effects,  

        
   

  1
 1  

      

    
 

    
     

 
    
     

  

where   is the luni-solar nutation frequency in a rotating terrestrial reference frame 

and is given in cycle per sidereal day 

       

     are the theoretical amplitudes of the nutation for the real Earth, 

     are the rigid Earth nutation (REN) amplitudes (Souchay et al. 1999) and 

  = 0.0032845479 is the dynamical oblateness of the rigid Earth,  

The last three bracketed terms express the CW, FCN and FICN resonance, 

respectively, with their corresponding frequencies: 

   
 

  
      

    
 

  
       1           

 

  
         

(6.12) 

(6.13) 
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Where    and    are the equatorial inertia moments of the whole Earth and the 

mantle respectively. 

   
  

  
      

   is the complex resonant frequency of the FCN,   and    the flattenings of the Earth 

and the fluid outer core, respectively, and  ,    and    the equatorial moments of 

inertia of the whole Earth, of the mantle and of the fluid outer core, respectively.  

The complex parameter    represents the strength of the FCN resonance.  

The flattening    is relevant to the solid inner core and    to the fluid outer core.  

The compliance   is expressed as        , where   and    are the elastic and fluid 

Love number, respectively. It expresses the deformability at the surface under the 

tidal forcing of degree 2.  

The compliances      
 /2 and       /2, where    1.1  and       .  , 

respectively characterize the deformability of the CMB by a volumic potential and 

under an inertial pressure acting at the CMB (Dehant et al. 1993).  

 

The sensitivity analysis of      to parameters   ,   ,    and    shown by Rosat and 

Lambert (2009), reveals that the nutations are primarily sensitive to the FCN 

frequency   , then to its amplitude   , and less sensitive to the Chandler frequency    

and to the FICN frequency   . 

Please note that we have omitted the compliances associated with the electro-

magnetic coupling at the CMB and that should be added in the frequency expression 

of the FCN and FICN (cf. Mathews et al. 2002 for the complete expression of the 

eigenfrequencies). 
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Table 6.1: Summary of some of the most relevant estimations of the period T, and the 
quality factor Q, of the FCN, from theoretical models and experimental results using 
different types of data (SG stations: B=Brussels, Belgium; BH=Bad Homburg, 
Germany; CA=Cantley, Canada; CB=Canberra (Australia); ES=Esashi (Japan); 
J=three Japanese stations; MA=Matsushiro (Japan); MB=Membach (Belgium); 
ST Strasbourg, France. “OPA solution” refers to the nutation series obtained at the 
Observatoire de Paris VLBI analysis center.  

Author Data T (sid. day) Q 
Neuberg et al. (1987) Stacked gravity (B+BH) 431 ± 6 2800 ± 500 

Sasao et al. (1980) Theory elastic 465    
Wahr and Bergen (1986) Theory inelastic 474 78000 

Herring et al. (1986) VLBI 435 ±1 22000 – 100000 

Cummins and Wahr 
(1993) 

Stacked gravity IDA 428 ±12 33000 – 37000 

Sato et al. (1994) Stacked gravity (J) 437 ±15 3200 -    

Defraigne et al. (1994) Stacked gravity (B+BH+ST) 
VLBI 
Stacked gravity + VLBI 

424 ±14 
432 ±4 
433 ±3 

2300 – 8300 
  1     
  17    

Florsch et al. (1994) Gravity ST 431 ±1 1700 – 2500 

Merriam (1994) Gravity CA 430 ±4 5500 – 10000 
Hinderer et al. (1995) Stacked gravity (ST+CA) 429 ±8 7700 -    

Roosbeek et al. (1999) VLBI 431- 434 Not estimated 
Polzer (1997) Gravity 412.6 ±4.2   -10000 

Florsch and Hinderer 
(2000) 

Gravity ST (Bayes) 428   2     

Hinderer et al. (2000) Gravity + VLBI 431- 434 15000 – 30000 
Mathews et al. (2002) MHB2000 model 430.20 ± 0.28 20000 

Sato et al. (2004) Stacked gravity  
(ES+MA+CB+MB) 

429.70 ± 1.40 9350 – 10835 

Mukai et al. (2004) Strain 427.50 ± 11.1 5000 ± 12500 
Vondràk and Ron (2006) VLBI 430.32 ± 0.07 20600 ± 340 

Ducarme et al. (2007) Mean gravity 429.70 ± 2.40 Not estimated 
Lambert and Dehant 
(2007) 

VLBI 430 ± 0.40 17000 ± 3000 

Ducarme et al. (2009) Mean gravity in Europe 430 ± 2.00 15000 ± 8000 

Rosat et al. (2009) Stacked gravity of 7 
European SGs (Bayes) 

428 ± 3.00 7762  <  < 31989 
(90% C.I) 

Rosat and Lambert (2009) VLBI 
Gravity 

429.6 ± 0.6 
426.9 ± 1.2 

16683 ± 884 
16630 ± 3562 

Koot et al. (2010) VLBI (Bayes)(OPA solution) 429 ± 0.07  19716 ± 288 

Amoruso et al. (2012) Strain 429 ± 10 10000 - 50000 
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6.5 Numerical results 

The predicted values of the FCN parameters have evolved from the       7  

sidereal days and         in Wahr  1981 ’s early papers to the       29.9  

   . 8 sidereal days and   2     obtained by Mathews et al. (2002) by fitting 

their nutation model to VLBI data up to 1999. Ducarme et al. (2006) pointed out that 

the most recent models (Dehant et al. 1999; Mathews et al. 2002) do not recover the 

exact observed resonance shape. 

The FCN resonance in gravity data is commonly represented by a damped harmonic 

oscillator model. 

A good example was shown in figure 5.5, section 5.2, where the amplitude factors in 

the diurnal frequency band using the complete SG record (T005 + C026) in 

Strasbourg J9 Observatory are shown, and there is a clear evidence of the FCN 

resonance. 

Now, we are going to invert these data in order to estimate the FCN frequency, quality 

factor Q and the transfer function of the mantle (or the resonance strength). First, we 

are going to use individual gravimetric series recorded at J9, our study site; in a first 

analysis we have fitted the resonant admittances for each instrument separately and 

later we present a stacking of the data for the two SGs. 

The data to be inverted are the complex gravimetric factors calculated in section 5.3, 

corrected for the ocean tide loading effect according to the FES 2004 ocean model 

(Lyard et al. 2006). All these inversions will be done using the Bayesian approach 

proposed by Florsch and Hinderer (2000) and previously commented in section 6.2.2. 

To realize these inversions, we have used a FORTRAN code initially developed by N. 

Florsch and revised by S. Rosat in 2007 (this code is also used to subtract the OTL 

effect in our gravity observed data before estimating the inversion). 

This code firstly converts the observed gravimetric factors (amplitude, phase) and 

their errors resulting from our analysis realized with ETERNA 3.4, into real and 

imaginary parts of the complex gravimetric factor delta with their errors. By default, 

9 diurnal tidal waves are used (Q1, O1, M1, P1, K1, PSI1, PHI1, J1 and OO1) and the initial 

parameter values follow an a priori weakly constraining uniform law (Florsch and 

Hinderer, 2000). In this first step, the ocean loading correction can be also performed 

using the FES2004 ocean model. Once the real and imaginary parts are computed, the 

inversion of these parameters is performed through the equation 6.6 resulting in 2D-

joint probability density functions. Finally, the 1D-marginal laws are also computed 

for each parameter. Later on, we used a MATLAB code, developed also by S. Rosat to 

design and plot the probability density functions.  
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* Results for various gravimeters recording at J9  

Table 6.2: Summary of the estimations of period and quality factor of the FCN using 
data from different types of gravimeters recording at J9 Observatory. 

Series      (sid. days)   

NA 138 423.6 ± 14 23743  <  < 71677 (90% C.I) 

LR ET005 424.5 ± 10 30097  <  < 76659 (90% C.I) 

T005 429.8 ± 5 3954  <  < 27457 (90% C.I) 

C026 430.9 ± 5 5975  <  < 47271 (90% C.I) 

T005 + C026 430.3 ± 5 5862  <  < 47362 (90% C.I) 

 

In the case of the North American gravimeter, due to the large uncertainty on the 

amplitudes and phases of the diurnal tidal waves close to the resonance, we obtained 

a poor constraint on the FCN parameter values.  
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Spring gravimeters 

North American 138  

 

Fig. 6.8: Joint and marginal probability density functions for the FCN parameters 
   ,  ,   and    estimated from 34 months of the NA138 data using the Bayesian 

method. Vertical dotted lines indicate the 90% confidence intervals. 
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Lacoste&Romberg ET005 

 

 

Fig. 6.9: Joint and marginal probability density functions for the FCN parameters 
   ,  ,   and    estimated from 8 years of L&R ET005 data using the Bayesian method. 

Vertical dotted lines indicate the 90% confidence intervals. 

  

75

75
85

85
99

log
10

(Q)

T
 (

d
a
y
s
)

3 4 5 6 7
400

450
75

75
85

8599

log
10

(Q)

a
R

 (
*
1
0

-3
)

3 4 5 6 7
0.8

0.9

1

75 7585 8599

log
10

(Q)

a
I  
(*

1
0

-4
)

3 4 5 6 7
-1

0

1

7585

T (days)
a

R
 (

*
1
0

-3
)

400 410 420 430 440 450
0.8

0.9

1

7585

T (days)

a
I  
(*

1
0

-4
)

400 410 420 430 440 450
-1

0

1
7585

a
R

 (*10
-3

)

a
I  
(*

1
0

-4
)

0.8 0.85 0.9 0.95 1
-1

0

1

3 4 5 6 7
0

0.01

0.02

log
10

(Q)
400 420 440 460
0

0.01

0.02

T (days)

0.4 0.6 0.8 1
0

0.05

0.1

a
R

 (*10
-3

)

-6 -4 -2 0 2
0

0.2

0.4

a
I
 (*10

-4
)



181 
 

Superconducting gravimeters 

T005 

 

 

Fig. 6.10: Joint and marginal probability density functions for the FCN parameters 
   ,  ,   and    estimated from 9 years of SG T005 data using the Bayesian method. 

Vertical dotted lines indicate the 90% confidence intervals. 
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C026  

 

Fig. 6.11: Joint and marginal probability density functions for the FCN parameters 
   ,  ,   and    estimated from 18 years of SG C026 data using the Bayesian method. 

Vertical dotted lines indicate the 90% confidence intervals. 
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T005 + C026  

 

Fig. 6.12: Joint and marginal probability density functions for the FCN parameters 
   ,  ,   and    estimated from 27 years of the merged SG series (T005+C026) using 

the Bayesian method. Vertical dotted lines indicate the 90% confidence intervals. 
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The FCN period value obtained from the merged SG observations (T005 and C026) at 

J9 observatory is very close to the period obtained from the theoretical computation, 

429.5 sidereal days (Dehant et al., 1999) and is also very close to the one obtained 

when using VLBI data including the electro-magnetic coupling at the core-mantle 

boundary, 430.04 sd (Mathews et al., 2002). The best quality factor is obtained from 

the tidal analysis of SG C026 data alone (  2661  . 

 

* Results obtained with other European SGs 

In a second step, we are going to stack the data from several European SGs. Stacking 

long-period and high-precision tidal gravity data in different areas can reduce 

effectively the discrepancy of the retrieved resonance parameters caused by 

atmospheric and oceanic loading and the local environmental perturbations 

surrounding the stations. We have performed an independent inversion and a 

combined inversion of 7 of the GGP European SG data previously analyzed in section 

4.4 (Table 6.3). 

In a first analysis we fit the resonant admittances for each tidal station separately and 

later refer to these as the individual fits. In a second analysis we fit the same model 

function to the resonant admittances of all stations simultaneously. 

Table 6. 3: Summary of the estimated period and quality factor of the FCN, using data 
from 7 European Superconducting gravimeters, and for the stacking of these 7 SGs. 

Series      sid. days   

Bad Homburg 429.88 ±5.7 4201  <  < 44906 (90% C.I) 

J9 (T005 + C026) 430.91 ±5.1 5862  <  < 47362 (90% C.I) 

Medicina 430.03 ±5.7 1072  <  < 26819 (90% C.I) 

Membach 429.61 ±5.7 5156  <  < 47220 (90% C.I) 

Moxa 429.93 ±5.5 3507  <  < 42734 (90% C.I) 

Vienna 429.73 ±5.7 3671  <  < 42909 (90% C.I) 

Wettzell 430.38 ±5.7 2368  <  < 28911 (90% C.I) 

Stacking of 7 stations 430.32 ±5.2 3614  <  < 39742 (90% C.I) 
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Fig. 6.13: Joint and marginal probability density functions for the FCN parameters 
   ,  ,   and    estimated from stacking 7 European SG (Bad-Homburg, J9 

(Strasbourg), Moxa, Membach, Medicina, Strasbourg, Vienna and Wettzell) records 
using the Bayesian method. Vertical dotted lines indicate the 90% confidence 
intervals. 

Our values obtained from SG gravity data are very consistent with those inferred 

from VLBI nutation data. The period obtained for all SG stations is slightly lower than 

the period obtained in our reference site (J9 observatory, 430.91 sd). The higher 
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quality factors are obtained at Bad Homburg (24553) and Membach (26187) 

stations. 

In the near future, a more accurate determination of the resonance parameters and a 

more advanced study of the Earth’s FCN will depend on the simultaneous utilization 

of various additional high-precision observations (including strain data) recorded at 

globally distributed stations. 
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6.6 Attempt of detection of the FICN 

The origin of the existence of the Free Inner Core Nutation (FICN), also called the 

prograde FCN, is very similar to that of FCN, is caused by the rotation of a slightly 

tilted solid inner core with respect to the fluid core and the mantle. It has been 

computed theoretically by Mathews et al. (1991a, 1991b) and Herring et al. (1991) 

using a semi-analytical method, and by Legros et al. (1993) and Dehant et al. (1993) 

using a completely analytical method. The theoretical calculations predict a very 

weak surface amplitude of a few tens of micro-arcseconds (where 1 µas ~ 0.03 mm of 

equatorial shift at the Earth surface), a gravity perturbation of ~ 0.1 nGal and a 

smaller resonance effect on Earth tides than for the FCN.  

As we mentioned in section 2.1.9, this mode has never been observed using gravity 

data. Several attempts made using VLBI data failed. However, according to Mathews 

et al. (2002) the FICN period is between 930 and 1140 days, and Koot et al. (2010) 

estimated the FICN period between 875 and 975 days (1σ interval). The FICN 

parameters were obtained by fitting a resonance transfer function model like 

equation 6.13 to the VLBI nutation data including the FICN resonant term. This 

determination is mostly constrained by the 18.6-yr nutation term, the most sensitive 

to the FICN, but which amplitude is poorly defined since only 30 years of VLBI data 

were used. 

The parameters involved in the calculation of the FICN are the flattening of the inner 

core, the densities of the inner core and outer core, and the deformation of the Inner 

Core Boundary (ICB) due to the fluid dynamic pressure acting on it. The rheological 

behavior of the inner core seems to play a critical role in its rotation. Theoretically, 

the geodetic or gravimetric estimations of the period of the FICN simultaneously with 

its quality factor will permit to determine both, the viscosity of the inner core and the 

frictional constant at the ICB (Greff-Lefftz et al., 2000). 

Similar as the FCN, the FICN has a quasi-diurnal period in the terrestrial reference 

frame, and a prograde long period in the celestial reference frame. The frequency is 

very much dependent on the density jump at the inner core-outer core boundary, as 

well as on the inner-core flattening (Dehant et al. 1997). Therefore, as the density 

jump at the ICB is not well known, also the period is not well known; an increase in 

the amplitude of the radial magnetic field at the ICB involves an increase of the period 

of the FICN. Also, the quality factor associated with the FICN in the different 

theoretical models varies with several orders of magnitude. 

An illustration of the theoretically predicted resonances is shown in figure 6.14 

(adapted from Hinderer 1997). The right side shows the FCN resonance and the FICN 

resonance is shown in the left side. It is evident that the resonance effect of the FICN 

is significantly lower than the one for the FCN. 
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Fig. 6.14: Double theoretical resonance in the tidal gravimetric factor (adapted from 
Hinderer 1997) including the FICN resonance and the stronger FCN contribution. 

Similar as they did in the last century in a first step to try to observationally prove the 

existence of the FCN, we will use now the 27-year series recorded by the SGs T005 

and C026 at J9 to try to prove the existence of the FICN. 

We rely on some previous results to estimate in which frequency intervals we should 

focus our search. Rogister (2001) estimated that the FICN period should be around 

470 sidereal days while Koot et al. (2008) estimated it between 875 and 1100 

sidereal days. Considering all these values, we expand the range from 430 to 1400 

sidereal days (corresponding to a range between 0.99768 and 0.99928 cpsd) to focus 

the search of a possible resonance effect in diurnal tidal amplitudes. 

Using the spectral analysis of the merged 27-year series recorded by T005 and C026 

at J9, there are three waves (A, B and C) between S1 (0.99727 cpsd) and K1x- (0.99985 

cpsd) (K1x- is a lunar nodal wave of K1 with a 18.6 year sidereal period), that we could 

try to separate performing a more detailed tidal analysis for those frequencies, than 

the analysis performed in section 5 using ETERNA 3.4 (Fig 6.15). 
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Fig. 6.15: Amplitude spectra of the complete (9760 days, 26.7 years) SG record (T005 
+ C026) in Strasbourg J9 Observatory between S1 and K1x- waves.  

These three waves correspond to the wave 551 (A), wave 553(B) and wave 554 (C) 

in the potential catalogue of Tamura. A and B are derived from the potential of degree 

2, while C wave derives from the potential of degree 3. As expected from the theory, 

the resonance only alters the amplitude of the degree 2 tides (e.g. Hinderer & Legros 

1989). So we try to identify any resonance phenomenon in the amplitudes of the A 

and B waves.  

Despite the length of the series, the results obtained for ‘A’ and ‘C’ waves are not 

accurate enough to consider that there could be a real resonance effect. However 

despite its large error, the ‘B’ wave seems to exhibit a resonance near 0.99924 cpsd 

(1.00198 cpd) (Fig 6.16). 
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Fig. 6.16: Amplitude factors using the complete (9800 days, ~27 years) SG record 
(T005 + C026) in Strasbourg J9 Observatory, between P1 and PHI1 frequency bands. 
A possible resonance curve (least squares fitted) is superimposed with dotted line, 
with frequency ~ 0.99924 cpsd. For each wave is expressed the x value with respect 
to the frequency of K1 (1 cpsd) derived from           , where    1 cpsd. 

In addition to Strasbourg, we consider now other SG sites in Europe in order to 

investigate the possible resonance effect in the amplitude of the diurnal waves, 

caused in the proximity of this frequency (1.00198 cpd). We perform a precise tidal 

analysis for all those series using ETERNA 3.4. For some of these stations, such as Bad 

Homburg, Medicina and Moxa, a similar behavior is indeed found for nearby 

frequencies (figures 6.17, 6.18, and 6.19). 
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Fig. 6.17: Amplitude factors using the SG record in Bad Homburg Observatory, 
between P1 and PHI1 frequency bands. A possible resonance curve (least squares 
fitted) is superimposed with dotted line, with frequency ~ 0.99927 cpsd. For each 
wave is expressed the x value with respect to the frequency of K1 (1 cpsd) derived 
from           , where    1 cpsd. 

 
Fig. 6.18: Amplitude factors using the SG record in Medicina Observatory, between P1 
and PHI1 frequency bands. A possible resonance curve (least squares fitted) is 
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superimposed with dotted line, with frequency ~ 0.99931 cpsd. For each wave is 
expressed the x value with respect the frequency of K1 (1 cpsd) derived from  
         , where    1 cpsd. 

 

 

Fig. 6.19: Amplitude factors using the SG record in Moxa Observatory, between P1 and 
PHI1 frequency bands. A possible resonance curve (least squares fitted) is 
superimposed with dotted line, with frequency ~ 0.99925 cpsd. For each wave is 
expressed the x value with respect the frequency of K1 (1 cpsd) derived from  
         , where    1 cpsd. 

Even if all these results are promising, the theoretical prediction of the FICN period is 
not sufficiently accurate to unambiguously link those oscillations with the FICN 
resonance. Hence, it seems to be necessary to improve the theoretical estimates of the 
FICN period to make its search in the observational data more efficient. 

Besides the FICN resonance effect in diurnal gravimetric tides , another way to detect 

this mode is to analyse the most accurate nutation series obtained from the VLBI 

observations, especially when the determination of the 18.6 year term will become 

more accurate thanks to longer data sets.  
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6.7. Chapter’s summary 

The objective of this chapter was to determine the characteristics of the core 

resonance through the gravity data that we have used throughout the previous 

chapters.  

The diurnal tidal amplitudes are resonant at the FCN frequency, and hence we can use 

the measurements of tidal amplitudes to determine the FCN frequency. The frequency 

of this mode is particularly sensitive to the flattening of the core-mantle boundary, 

which is the largest compositional discontinuity within the Earth, at a depth of 2889 

km (Young and Lay 1987). So observing the FCN is thus very useful to infer the CMB 

flattening from its period and to obtain information about the dissipation effects at 

this interface from the determination of its damping. 

After reviewing the history of the first observations of the FCN resonance on gravity 

data (that casually was carried out using gravity data recorded at the Observatory of 

Strasbourg), special efforts are undertaken in order to estimate the FCN parameters 

(  and T   ) from our observations, using the Bayesian approach, proposed by 

Florsch and Hinderer (2000). 

We use firstly individual gravimetric series recorded at J9, from both spring and 

superconducting gravimeters. In a first analysis, we fit the resonant admittances for 

each instrument separately and for the stacking of the two SGs data. In a second step, 

we stack the data from  different European SGs data we have already used in chapter 

4 to study their stability, and in chapter 5 to try to detect the 18.6 year period signal. 

The values obtained (for all the SG stations) are very close to those estimated from 

the theoretical computations, and are also in very good agreement with those 

obtained through VLBI observations. 

We also review the observations of the FCN resonance using other techniques, as for 

example observations obtained using borehole water-level or strainmeter data and in 

more details, using the VLBI technique, which is the most accurate. 

Regarding the FICN, this mode has never been observed in gravity records, and the 

theoretical calculations predict a very weak resonance effect on Earth tides and 

nutations. Detecting this signal in the data will allow us to substantially improve our 

knowledge about the Earth’s interior and its dynamics. During last years several 

attempts to find the FICN component in VLBI nutation series have failed, only its 

resonance effect on the long-period nutations (mostly the 18.6 year term) could be 

used to try to constrain its parameters.  

We use here the 27-year series recorded by the superconducting gravimeters T005 

and C026 at J9 Observatory to try to prove the existence of the FICN, in a similar way 

as in a first step to try to prove the existence of the FCN on gravity data: 
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Relying on the frequency interval estimated in previous studies, we focus on the 

range from 430 to 1400 sidereal days for the FICN period. The spectral analysis of the 

merged 27-year series is analyzed to check if there are more waves detected in that 

period range than the waves already obtained in the complete tidal analysis done in 

chapter 5. Indeed there are several small amplitude tidal waves that can be separated 

now. 

Several tests, modifying the frequency limits of the wave groups, are done to try to 

separate these new waves in the diurnal tidal band in the ETERNA 3.30 analyses. We 

focus on the period range  S , K     and check if a resonance effect appears. One 

possible resonance is found near 1.00198 cpd (0.99924 cpsd) using the long 

Strasbourg series. Similar tidal analyses are performed using the European SG 

records which have been already used in chapters 4 and 5, and we obtain comparable 

results in some of these stations (Bad Homburg, Medicina and Moxa). If such 

observation corresponds to a resonance associated with the FICN, it would 

correspond to a period for the FICN around 1300 sidereal days that is larger than the 

latest theoretical predictions and slightly larger than the VLBI nutation estimates.  

Progress on the theoretical estimates of the FICN period on one side and the VLBI 

nutation observations on the other side will also help in the future the search for the 

resonance effect in the surface gravity data. 

Improvement in the observational determination of the FCN and FICN parameters is 

important in geodynamics, because they give us useful and unique information to 

constrain the parameters related to the physical process of coupling at the core-

mantle boundary (CMB) and at the inner core-fluid core boundary (ICB). 
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Conclusions 

In Strasbourg, the first gravimeter with the main purpose of recording Earth's tides 

was installed in 1954. Since then, 8 different models of gravimeters (relative spring 

gravimeter, relative superconducting gravimeter and absolute gravimeter) have been 

recording at different consecutive periods. In the meanwhile, the sensors, the 

acquisition systems and the computational methods have been drastically improved. 

We have used all these series recorded at Strasbourg observatory to verify these 

improvements, concluding that the measurements accuracy has been increased by 

more than 10 times with respect to the first models. The time stability and the noise 

level of all these series have been studied, mainly in terms of long term stability of the 

tidal parameters (amplitude and phase) and instrumental drift.  

Similar studies are carried on 8 superconducting relative gravimeters installed in 

central Europe, all of them belonging to the worldwide network of superconducting 

relative gravimeters (Global Geodynamics Project). 

We obtained temporal evolutions of the tidal delta factors in Strasbourg found to be 

very similar to other European SG stations with stability between 0.03% and 0.3%. 

Some time fluctuations with a seasonal oscillation appear at a few sites. In case that 

these temporal variations reflect a geophysical process, they should reflect it in a 

similar way at most European site, or at least at close stations, but it is not the case in 

our results. 

As the variations obtained for the ratio δM2/δO1 are much smaller than the variations 

for each individual gravimetric factor, it led us to consider that some part of the tidal 

factor fluctuations could be due to changes of instrumental origin (e.g. calibration 

factor). However, we used all the calibration experiments performed at J9 

observatory since 1996, when an absolute gravimeter was acquired, to check the 

temporal stability of the calibration factors (all these experiments are derived from a 

direct comparison of the SG data with repeated absolute gravity measurements).  

We conclude that the internal SG C026 stability (~ 0.1%), obtained from the study of 

the tidal parameters, is more than 10 times better than the one that can be achieved 

by SG /AG calibration repetitions (~ 1.4%). Consequently, it is highly possible that 

the observed time variations of delta factors are due mostly to the noise variations as 

shown by the correlation found between delta factor deviations and noise level 

changes.  
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Taking into account all these results, we show that thanks to its stability, the 

superconducting gravimeters can uniquely contribute to the study of the low 

frequency Earth's tides, and small amplitude waves. 

It is evident that the ability of SGs to reliably measure effects at the 0.1 µGal level has 

opened up many interesting scientific possibilities. Therefore, using the long 

superconducting series studied before, we obtain a high resolution spectral analysis 

in the tidal bands, which allows us to: 

- separate contributions of near frequencies that were never observed before  

- search for very weak signals (especially, waves derived from tidal potential of 

degree 3) 

- exhibit very low frequency terms 

Unfortunately, despite the 27-year length of our data series, we are still not able to 

retrieve the tidal waves of 9.3 and 18.6 year periods, which are of special interest for 

investigating the rheological behavior of the solid Earth at such periods. 

In the last part, we have reviewed the history of the first observations of the Free 

Core Nutation resonance on gravity data. We have estimated the values of the FCN 

parameters using data from all series at Strasbourg, and also from all SGs series in 

central Europe. Our results are in very good agreement with those estimated both 

from theoretical computations and from VLBI observations. 

We searched also for the rotational normal mode called Free Inner Core Nutation, 

which has never been observed using gravity data before. For this purpose we 

developed a methodology to constrain the possible frequency range, through the 

detailed tidal analysis of the diurnal frequency band (using the 27-year 

superconducting gravity series recorded at J9 observatory), to separate small 

amplitude waves that have never been studied before, and which could be close 

enough to the frequency period of the FICN to be affected in terms of amplitude 

resonance.  

We focused on the period range  S , K    , where a possible candidate is found close 

to the frequency of 1.00198 cpd (0.99924 cpsd). Applying the same detailed tidal 

analysis in the diurnal frequency band, we obtained comparable results in some of 

the European SGs stations (Bad Homburg, Medicina and Moxa). 

  



198 
 

Perspectives 

To use the different data series analyzed in this study (both data recorded by spring 

gravimeters and by superconducting gravimeters) it has been necessary to make a 

previous huge work of preprocessing.  Thanks to this preprocessing, we now have 

several sets of high-quality gravity residuals distributed in central Europe. All series 

can be further used in a wide range of studies conducted at the regional level, such as: 

- Correlation studies with the oceanic tide loading to check if there is any possible 

time variation in the loading. 

- Correlation studies with the hydrological information available for Central Europe. 

- Comparative studies surface gravity - GRACE gravity at the European regional scale 

- Studies of the effect of ocean noise on the gravity records, 

besides many other studies in a wide frequency range. 

A new Superconducting gravimeter model (iOSG) will be installed at J9 observatory 

in 2015 ensuring the continuity of the long series. The continuity of this long series of 

high quality data, will allow us to further identify different waves of small amplitude 

and separate neighboring waves with very close frequencies; new opportunities to 

better detect the 9.3 and 18.6 year long-period waves will appear, and similarly for all 

long period waves which will be detected more precisely. 

We will continue working on the possible detection of the FICN resonances in our 

data series. An inversion of the FICN, using a Bayesian approach similar to which has 

been applied for the FCN parameters, will be applied. Also, in a near future; a 

combination of longer series and improvement in the theoretical prediction of the 

FICN period will make the search of the frequency of this rotational mode more 

promising. 
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Annex A 

Influence of pre-processing on tidal analysis results 

Test performed to estimate the impact that the manual correction of the disturbances 

in the raw data (using Tsoft) could have on the stability of the tidal analysis 

performed with ETERNA 3.4: 

 We have generated a synthetic series for J9 station using DDW99 non hydrostatic 

Earth’s model  Dehant et al., 1999  and NAO99 ocean model  Matsumoto et al. 

2000).  

 This series has been degraded by adding Gaussian white noise (with a standard 

deviation of 10 nm/s2), random gaps (up to 2500h in total, corresponding to about 

3% of our time length), 4 offsets of different size (5, 10, 15 and 20 nm/s2) and 10% 

of spikes distributed all along the series.  

 We have corrected this degraded series manually with the help of TSOFT, in a 

similar way as we have done for all the observed series used in this study. 

 We have performed similar tidal analysis on all these synthetic signals on yearly 

segments shifted month by month.  

 We computed the variability of the main diurnal and semi-diurnal tides using the 

result of these analyses. 

 

Fig. A.1: Time variability of the delta factors for a synthetic tidal model 
(DDW99+NAO99) at J9 showing the numeric and ETERNA analysis effects. 
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Fig.  A.2: Time variability of the delta factors for the same synthetic tidal model at J9, 
degraded only with Gaussian white noise (10nm/s2). 

 
Fig. A.3: Time variability of the delta factors for the same synthetic tidal model at J9, 
degraded only with disturbances (gaps, spikes and offsets). 
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Fig. A.4: Time variability of the delta factors for a synthetic tidal model 
(DDW99+NAO99) at J9 showing the pre-processing effect.  
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Annex B 

Synthetic data 

* 1-year data 

Table B.1: Comparison of the results (amplitude factor ,phase differences and standard deviations) obtained in the diurnal band (up) semi 

diurnal band (middle) and ter diurnal band (down) for the same synthetic data series (1 year data) using VAV 06 (left columns), ETERNA 3.4 

with TAMURA’s catalogue  middle columns  and ETERNA  .  with HW catalogue  right columns  

Diurnal VAV 06 ETERNA (TAMURA) ETERNA (HW) 
  stdv  stdv  stdv  stdv  stdv  stdv 

Q1 1.1541 0.0004 -0.0210 0.0220 1.1535 0.0001   -0.0216   0.0032   1.1534 0.00002 0.0004 0.0010 
O1 1.1531 0.0001 -0.0020 0.0040 1.1532 0.0000   -0.0046   0.0006   1.1532 0.00000 0.0003 0.0002 
K1 1.1460 0.0024 0.0410 0.1230 1.1494 0.0004   0.0218   0.0193   1.1524 0.00012 -0.0366 0.0062 
J1 1.1476 0.0002 0.0050 0.0090 1.1476 0.0000   0.0003   0.0012   1.1477 0.00001 0.0003 0.0004 
OO1 1.1558 0.0009 -0.0130 0.0430 1.1552 0.0001   -0.0223   0.0071   1.1552 0.00005 0.0008 0.0023 

 

Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
2N2 1.1566 0.0003 -0.0180 0.0150 1.1564 0.0002   -0.0188   0.0072   1.1574 0.00003 0.0016 0.0014 
N2 1.1577 0.0001 -0.0100 0.0030 1.1575 0.0000   -0.0137   0.0014   1.1575 0.00001 0.0005 0.0003 
M2 1.1575 0.0000 0.0000 0.0010 1.1574 0.0000   -0.0072   0.0003   1.1575 0.00000 0.0004 0.0001 
L2 1.1561 0.0006 0.1310 0.0320 1.1589 0.0003   0.1155   0.0148   1.1575 0.00006 0.0018 0.0028 
S2 1.1575 0.0000 0.0040 0.0030 1.1575 0.0000   -0.0052   0.0006   1.1575 0.00000 0.0002 0.0001 
K2 1.1589 0.0001 0.0070 0.0060 1.1573 0.0001   -0.0044   0.0026   1.1575 0.00001 0.0000 0.0005 

 

Ter 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
M3 1.0697 0.0003 -0.0860 0.0180 1.0692 0.0001   -0.0848   0.0058   1.0694 0.00001 0.0004 0.0003 
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* 10-year data 

Table B.2: Comparison of the results (amplitude factor ,phase differences and standard deviations) obtained in the diurnal band (up) semi 

diurnal band (middle) and ter diurnal band (down) for the same synthetic data series (10 year data) using VAV 06 (left columns), ETERNA 3.4 

with TAMURA’s catalogue  middle columns  and ETERNA  .  with HW catalogue  right columns . 

Diurnal VAV 06 ETERNA (TAMURA) ETERNA (HW) 
SGQ1  stdv  stdv  stdv  stdv  stdv  stdv 
2Q1 1.1478 0.0018 -0.3210 0.0900 1.1477 0.0005 -0.3222 0.0262 1.1482 0.0002 -0.3301 0.0086 
SGM1 1.1475 0.0008 -0.3860 0.0380 1.1478 0.0002 -0.3443 0.0082 1.1481 0.0001 -0.3349 0.0027 
Q1 1.1470 0.0005 -0.3400 0.0270 1.1474 0.0001 -0.3350 0.0067 1.1481 0.0000 -0.3333 0.0022 
RO1 1.1478 0.0001 -0.3330 0.0040 1.1481 0.0000 -0.3416 0.0010 1.1480 0.0000 -0.3339 0.0003 
O1 1.1482 0.0003 -0.3430 0.0170 1.1481 0.0001 -0.3367 0.0054 1.1481 0.0000 -0.3336 0.0018 
TAU1 1.1488 0.0000 -0.0180 0.0010 1.1488 0.0000 -0.0190 0.0002 1.1488 0.0000 -0.0158 0.0001 
NO1 1.1485 0.0009 -0.0310 0.0460 1.1481 0.0003 -0.0381 0.0145 1.1488 0.0001 -0.0179 0.0047 
CHI1 1.1554 0.0002 -0.0410 0.0090 1.1548 0.0000 -0.0366 0.0022 1.1545 0.0000 -0.0269 0.0007 
PI1 1.1534 0.0008 0.0100 0.0370 1.1535 0.0003 0.0014 0.0125 1.1540 0.0001 0.0058 0.0041 
P1 1.1515 0.0005 0.1180 0.0250 1.1514 0.0001 0.1127 0.0072 1.1515 0.0001 0.0994 0.0023 
S1 1.1498 0.0000 0.1100 0.0020 1.1498 0.0000 0.1106 0.0004 1.1498 0.0000 0.1130 0.0001 
K1 1.1503 0.0021 -0.6110 0.1760 1.1505 0.0005 -0.5850 0.0259 1.1469 0.0002 -0.4650 0.0085 
PSI1 1.1371 0.0000 0.1770 0.0010 1.1371 0.0000 0.1734 0.0001 1.1370 0.0000 0.1772 0.0000 
PHI1 1.2622 0.0012 -0.5800 0.0540 1.2624 0.0004 -0.5888 0.0160 1.2635 0.0001 -0.5877 0.0052 
TET1 1.1679 0.0006 0.2880 0.0280 1.1676 0.0002 0.3159 0.0097 1.1676 0.0001 0.3242 0.0032 
J1 1.1595 0.0008 -0.0360 0.0390 1.1593 0.0003 -0.0051 0.0127 1.1595 0.0001 0.0059 0.0042 
SO1 1.1585 0.0002 0.0130 0.0100 1.1594 0.0001 0.0122 0.0025 1.1595 0.0000 0.0135 0.0008 
OO1 1.1555 0.0009 0.0980 0.0470 1.1556 0.0003 0.0905 0.0150 1.1556 0.0001 0.0980 0.0049 
NU1 1.1559 0.0003 0.1190 0.0150 1.1559 0.0001 0.0934 0.0037 1.1557 0.0000 0.0909 0.0012 

 
Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
EPS2 1.1548 0.0003 2.5250 0.0120 1.1546 0.0002 2.5161 0.0120 1.1553 0.0000 2.5662 0.0012 
2N2 1.1552 0.0001 2.5570 0.0040 1.1549 0.0001 2.5506 0.0038 1.1553 0.0000 2.5667 0.0004 
MU2 1.1550 0.0001 2.5570 0.0030 1.1549 0.0001 2.5535 0.0031 1.1553 0.0000 2.5664 0.0003 
N2 1.1746 0.0000 2.4250 0.0000 1.1746 0.0000 2.4190 0.0005 1.1745 0.0000 2.4294 0.0001 
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NU2 1.1742 0.0001 2.4250 0.0030 1.1742 0.0001 2.4187 0.0025 1.1745 0.0000 2.4292 0.0003 
M2 1.1871 0.0000 1.9660 0.0000 1.1871 0.0000 1.9616 0.0001 1.1871 0.0000 1.9684 0.0000 
LAM2 1.2126 0.0003 1.3250 0.0120 1.2121 0.0003 1.2986 0.0120 1.2118 0.0000 1.3137 0.0013 
L2 1.2130 0.0001 1.3420 0.0030 1.2122 0.0001 1.3272 0.0026 1.2118 0.0000 1.3114 0.0003 
T2 1.1893 0.0001 0.4610 0.0040 1.1894 0.0001 0.4551 0.0033 1.1891 0.0000 0.4534 0.0003 
S2 1.1892 0.0000 0.4510 0.0000 1.1892 0.0000 0.4459 0.0002 1.1892 0.0000 0.4524 0.0000 
K2 1.1915 0.0000 0.7360 0.0010 1.1915 0.0000 0.7282 0.0007 1.1915 0.0000 0.7271 0.0001 
ETA2 1.1935 0.0004 0.8400 0.0180 1.1920 0.0003 0.7971 0.0120 1.1915 0.0000 0.7263 0.0013 
2K2 1.1835 0.0007 0.6780 0.0320 1.1844 0.0006 0.6953 0.0305 1.1915 0.0001 0.7282 0.0032 

 
Ter 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
M3 1.0658 0.0000 -0.0010 0.0020 1.0659 0.0000 0.0002 0.0014 1.0661 0.0000 0.0136 0.0001 
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Observed data 

* 1 year data 

Table B.3: Comparison of the results (amplitude factor, phase differences and standard deviations) obtained in the diurnal band (up) semi 

diurnal band (middle) and ter diurnal band (down) for the same observed data series recorded at J9 (1 year data, 2000/01/01 – 

2000/12/31) using VAV 06 (left columns), ETERNA 3.4 with TAMURA catalogue (middle columns) and ETERNA 3.4 with HW catalogue 

(rigth columns) 

Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
SGQ1 1.1594 0.0112 0.3080 0.5550 1.1365 0.0151 2.4310 0.7635 1.1401 0.0150 2.4101 0.7541 
2Q1 1.1593 0.0033 -0.5990 0.1640 1.1649 0.0043 -0.4863 0.2092 1.1664 0.0042 -0.5058 0.2067 
SGM1 1.1593 0.0029 -0.5300 0.1420 1.1620 0.0037 -0.5286 0.1822 1.1630 0.0037 -0.5437 0.1800 
Q1 1.1494 0.0004 -0.2760 0.0220 1.1499 0.0006 -0.2910 0.0280 1.1498 0.0006 -0.2690 0.0277 
RO1 1.1515 0.0023 -0.3550 0.1160 1.1506 0.0029 -0.3447 0.1452 1.1505 0.0029 -0.3248 0.1435 
O1 1.1502 0.0001 0.0760 0.0040 1.1500 0.0001 0.0750 0.0053 1.1501 0.0001 0.0799 0.0053 
TAU1 1.1531 0.0056 -0.2660 0.2770 1.1499 0.0072 -0.7075 0.3609 1.1501 0.0072 -0.7520 0.3565 
NO1 1.1476 0.0014 0.2800 0.0680 1.1403 0.0034 -0.1274 0.1685 1.1433 0.0033 -0.1857 0.1665 
CHI1 1.1444 0.0051 0.3800 0.2570 1.1447 0.0073 0.4171 0.3646 1.1461 0.0072 0.4009 0.3598 
P1 1.1514 0.0002 0.2150 0.0090 1.1515 0.0002 0.2325 0.0106 1.1516 0.0002 0.2324 0.0105 
TET1 1.1518 0.0051 0.2740 0.2540 1.1690 0.0071 -0.0864 0.3497 1.1695 0.0071 -0.0426 0.3454 
J1 1.1610 0.0009 0.2080 0.0420 1.1613 0.0012 0.2010 0.0611 1.1613 0.0012 0.2241 0.0603 
SO1 1.1531 0.0061 -0.4570 0.3020 1.1540 0.0085 -0.6621 0.4207 1.1549 0.0084 -0.5602 0.4155 
OO1 1.1572 0.0019 0.1610 0.0950 1.1617 0.0037 0.2331 0.1825 1.1625 0.0037 0.1712 0.1802 
NU1 1.1537 0.0088 0.8140 0.4380 1.1427 0.0171 0.1451 0.8553 1.1430 0.0169 -0.1104 0.8451 

 
Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
EPS2 1.1372 0.0032 2.4890 0.1630 1.1417 0.0061 2.1603 0.3036 1.1411 0.0060 2.1531 0.3029 
2N2 1.1510 0.0010 2.7300 0.0480 1.1544 0.0012 2.7493 0.0608 1.1554 0.0012 2.7695 0.0607 
N2 1.1723 0.0001 2.6360 0.0070 1.1732 0.0002 2.5894 0.0115 1.1732 0.0002 2.6037 0.0115 
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M2 1.1883 0.0000 2.1430 0.0010 1.1883 0.0001 2.1391 0.0023 1.1883 0.0001 2.1467 0.0023 
L2 1.2000 0.0014 3.1630 0.0690 1.2218 0.0025 3.0039 0.1187 1.2203 0.0025 2.8910 0.1185 
S2 1.1900 0.0001 0.6340 0.0060 1.1902 0.0001 0.6383 0.0053 1.1902 0.0001 0.6432 0.0053 
K2 1.1929 0.0003 0.8740 0.0120 1.1928 0.0004 0.8733 0.0209 1.1930 0.0004 0.8775 0.0208 

 

Ter 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
M3 1.0641 0.0011 0.3210 0.0620 1.0642 0.0019 0.3313 0.1045 1.0645 0.0019 0.4171 0.1032 
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* 10 years data 

Table B.4: Comparison of the results (amplitude factor, phase differences and standard deviations) obtained in the diurnal band (up) semi 

diurnal band (middle) and ter diurnal band (down) for the same observed data series recorded at J9 (10 year data, 1997/01/01/ - 

2006/12/31) using VAV 06 (left columns), ETERNA 3.4 with TAMURA catalogue (middle columns) and ETERNA 3.4 with HW catalogue 

(rigth columns) 

 
Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
SGQ1 1.1634 0.0066 -0.7950 0.3240 1.1607 0.0047 -0.8251 0.2340 1.1612 0.0047 -0.8311 0.2325 
2Q1 1.1548 0.0026 -0.6450 0.1280 1.1545 0.0015 -0.6701 0.0733 1.1547 0.0015 -0.6610 0.0728 
SGM1 1.1521 0.0019 -0.5370 0.0950 1.1520 0.0012 -0.5098 0.0598 1.1527 0.0012 -0.5081 0.0595 
Q1 1.1476 0.0003 -0.3090 0.0150 1.1485 0.0002 -0.3062 0.0094 1.1485 0.0002 -0.2985 0.0093 
RO1 1.1511 0.0013 -0.2750 0.0620 1.1510 0.0010 -0.2631 0.0488 1.1510 0.0010 -0.2600 0.0485 
O1 1.1497 0.0001 0.0000 0.0030 1.1501 0.0000 0.0719 0.0017 1.1501 0.0000 0.0751 0.0017 
TAU1 1.1528 0.0035 -0.1330 0.1720 1.1548 0.0026 0.0489 0.1298 1.1554 0.0026 0.0681 0.1290 
NO1 1.1559 0.0007 0.1110 0.0320 1.1545 0.0004 0.1871 0.0194 1.1542 0.0004 0.1969 0.0193 
CHI1 1.1505 0.0028 0.0610 0.1370 1.1496 0.0023 0.1913 0.1133 1.1501 0.0023 0.1957 0.1126 
PI1 1.1522 0.0018 -0.0670 0.0910 1.1513 0.0013 -0.1163 0.0646 1.1514 0.0013 -0.1298 0.0642 
P1 1.1507 0.0001 0.1060 0.0070 1.1511 0.0001 0.2062 0.0038 1.1511 0.0001 0.2085 0.0038 
S1 1.1572 0.0079 -0.0130 0.6510 1.1735 0.0046 0.7481 0.2286 1.1698 0.0046 0.8676 0.2272 
K1 1.1369 0.0001 0.1650 0.0030 1.1382 0.0000 0.2546 0.0013 1.1382 0.0000 0.2584 0.0012 
PSI1 1.2638 0.0044 1.3200 0.2000 1.2634 0.0032 1.3346 0.1439 1.2645 0.0032 1.3351 0.1429 
PHI1 1.1703 0.0021 0.2460 0.1040 1.1717 0.0018 0.2545 0.0873 1.1717 0.0018 0.2630 0.0867 
TET1 1.1580 0.0029 0.1070 0.1450 1.1597 0.0023 0.1915 0.1145 1.1599 0.0023 0.2031 0.1138 
J1 1.1582 0.0007 0.0280 0.0360 1.1598 0.0005 0.1361 0.0222 1.1598 0.0005 0.1375 0.0221 
SO1 1.1559 0.0034 -0.1170 0.1700 1.1561 0.0027 0.0689 0.1353 1.1561 0.0027 0.0761 0.1344 
OO1 1.1577 0.0011 0.0000 0.0540 1.1580 0.0007 0.0973 0.0337 1.1578 0.0007 0.0948 0.0335 
NU1 1.1595 0.0049 0.4470 0.2400 1.1558 0.0036 0.5511 0.1761 1.1565 0.0035 0.5638 0.1750 
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Semi 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
EPS2 1.1383 0.0035 2.2750 0.1760 1.1367 0.0029 2.4239 0.1459 1.1375 0.0029 2.4755 0.1449 
2N2 1.1558 0.0010 2.8310 0.0510 1.1552 0.0009 3.0252 0.0452 1.1555 0.0009 3.0412 0.0449 
MU2 1.1560 0.0009 2.6650 0.0430 1.1558 0.0008 2.8084 0.0376 1.1561 0.0008 2.8213 0.0373 
N2 1.1754 0.0001 2.5810 0.0070 1.1750 0.0001 2.7169 0.0058 1.1749 0.0001 2.7274 0.0058 
NU2 1.1742 0.0007 2.6050 0.0360 1.1745 0.0006 2.7055 0.0304 1.1749 0.0006 2.7160 0.0302 
M2 1.1878 0.0000 1.9750 0.0020 1.1878 0.0000 2.1193 0.0011 1.1878 0.0000 2.1261 0.0011 
LAM2 1.1912 0.0036 1.4920 0.1740 1.1899 0.0031 1.6447 0.1467 1.1897 0.0030 1.6599 0.1457 
L2 1.1877 0.0008 0.9360 0.0400 1.1860 0.0007 1.0963 0.0320 1.1856 0.0007 1.0806 0.0318 
T2 1.1894 0.0011 -0.0120 0.0520 1.1899 0.0008 0.2893 0.0399 1.1897 0.0008 0.2877 0.0397 
S2 1.1897 0.0001 0.4690 0.0060 1.1899 0.0001 0.6153 0.0025 1.1899 0.0001 0.6218 0.0024 
K2 1.1915 0.0003 0.7240 0.0120 1.1921 0.0002 0.8780 0.0081 1.1921 0.0002 0.8769 0.0081 
ETA2 1.1992 0.0049 0.3130 0.2320 1.1918 0.0030 0.5561 0.1441 1.1914 0.0030 0.4859 0.1431 
2K2 1.1847 0.0087 0.1630 0.4210 1.1854 0.0076 0.1976 0.3654 1.1925 0.0076 0.2305 0.3629 

 
Ter 
diurnal 

VAV 06 ETERNA (TAMURA) ETERNA (HW) 

  stdv  stdv  stdv  stdv  stdv  stdv 
M3 1.0641 0.0006 0.0800 0.0310 1.0648 0.0006 0.2582 0.0339 1.0650 0.0006 0.2715 0.0334 
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Annex C 

Groups of waves used in ETERNA 3.4 analyses 

 

Wave From (cpd) To (cpd) 

SA 0.001460 0.003425 

SSA 0.004710 0.010951 

MM 0.025812 0.044652 

MF 0.060132 0.080797 

MTM 0.096423 0.249951 

Q1 0.501370 0.911390 

O1 0.911391 0.947991 

M1 0.947992 0.981854 

P1 0.981855 0.998631 

S1 0.998632 1.001369 

K1 1.001370 1.004107 

PSI1 1.004108 1.006845 

PHI1 1.006846 1.023622 

J1 1.023623 1.057485 

OO1 1.057486 1.470243 

2N2 1.470244 1.880264 

N2 1.880265 1.914128 

M2 1.914129 1.950419 

L2 1.950420 1.984282 

S2 1.984283 2.002736 

K2 2.002737 2.451943 

M3 2.451944 3.381478 

M4 3.381379 4.000000 
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Annex D 
Schema of J9 Observatory  
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Annex E 

More examples of detection of weak amplitudes tidal signals at J9 

 
 

Fig. E.1: Spectral analyses in the diurnal frequency band of the 18 years series of 
the SG C026 in red, and of the merged 27 year series recorded both by T005 and 
C026 in black, at Strasbourg J9 Observatory. 

 

 
Fig. E.2: Amplitude spectra of J9 gravity series, 9 year of T005 in brown, and 27 
years of T005&C026 in blue, in the diurnal frequency band.  
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Fig. E.3: Amplitude spectra of J9 gravity series, 9 year of T005 in brown, and 27 
years of T005&C026 in blue, in the semidiurnal frequency band.  
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Annex F 

Bayesian estimation of the free core nutation parameters (gravity data) 

The Bayesian approach that we have used in chapter 6 for estimate the free core 

nutation parameters was a probabilistic inversion method proposed by Florsch 

and Hinderer (2000). This method does not rely on the assumption that the model 

is linear in its parameters; it is thus particularly well-suited for the highly 

nonlinear nutation model (in the nutation model, the earth interior parameters 

enter in the model in a highly nonlinear way). 

The Bayesian inversion consists in propagating the information provided by the 

measurements through an assumed physical model (perfectly or probabilistically 

known) to the parameters and to include the   priori knowledge of the model 

parameters. The results are probability distributions on the parameters, which is 

more general than a single numerical value and an associated error on the 

parameter. The result is indeed the knowledge of the probability law for each 

parameter. 

The Bayesian probability distribution of the parameter vector   is given by: 

        ,    
 ,   ,      exp   

 

 
   

     
          

       
 

 

  
     

          

       
 

 

      

Where   is a normalization factor in order that the integral of this equation is 

unity. Re and Im denote the real and imaginary part respectively of the 

measurement value of the gravimetric factor δ, and  δ   the theoretical values. 

The general probability laws for the parameter vector   is obtained by the 

previous formula, so in order to obtain the law for one or two parameters, we 

should compute the marginal probability density functions (pdf) by integration of 

the probability function over selected parameters. For instance, the joint pdf 

integrated with respect to    
  is defined by: 

  ,   ,    ,  
 ,         ,    

 ,   ,        
  

Two further integrations of the pdf lead to the marginal probability law for each of 

the parameters. 
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