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Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots
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We investigate the nonlinear regime of charge and energy transport through Coulomb-blockaded quantum
dots. We discuss crossed effects that arise when electrons move in response to thermal gradients (Seebeck effect)
or energy flows in reaction to voltage differences (Peltier effect). We find that the differential thermoelectric
conductance shows a characteristic Coulomb butterfly structure due to charging effects. Importantly, we show
that experimentally observed thermovoltage zeros are caused by the activation of Coulomb resonances at large
thermal shifts. Furthermore, the power dissipation asymmetry between the two attached electrodes can be
manipulated with the applied voltage, which has implications for the efficient design of nanoscale coolers.
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Introduction. In 1993 Staring et al. [1] reported an in-
triguing behavior of the thermovoltage Vth generated across
a thermally driven Coulomb-blockaded quantum dot. Their
observations first indicated an increase of Vth with the
temperature bias, in agreement with the Seebeck effect.
Strikingly enough, for larger heating Vth decreased, then
vanished for a nonzero thermal difference and finally changed
its sign. Very recently, Svensson et al. [2] investigated the
nonlinear thermovoltage properties of nanowires and made a
similar observation. The effect was attributed to a temperature-
induced level renormalization because the piled-up charge
depends on the applied thermal gradient [3]. However, the
potential response was treated as a fitting parameter and
single-electron tunneling processes were not properly taken
into account.

The subject is interesting for several reasons. First,
Coulomb-blockade effects are ubiquitous and govern the
transport properties of a large variety of systems: quantum
dots [4], molecular bridges [5], carbon nanotubes [6], opti-
cal lattices [7], etc. On the other hand, nanostructures are
ideal candidates to test novel thermoelectric effects boosting
heat-to-work conversion performances [8,9]. Importantly,
nonlinearities and rectification mechanisms that lead to the
phenomena reported in Refs. [1,2] can be more easily tested
in small conductors with strongly energy-dependent densities
of states [3,10–22]. We emphasize that there is a close relation
between the thermopower of a junction and its heat dissipation
properties, as demonstrated in Refs. [23–25] for the linear
regime of transport. Therefore, ascertaining the conditions
under which thermovoltages acquire a significant nonlinear
contribution has broader implications for power generation
and cooling applications [26].

We begin our discussion by noticing that vanishing ther-
movoltages imply the existence of zero thermocurrent states.
Unlike voltage-driven currents, which have a definite sign
for a bias voltage V > 0 and never cross the V axis for
normal conductors (an exception is the Hall resistance of
an illuminated two-dimensional electron gas [27]), electric
transport subjected a thermal gradient θ displays regions
of positive or negative thermocurrents depending on the
thermopower sign (positive for electronlike carriers, negative
for holelike ones [28]). Nevertheless, this is not sufficient for
the thermocurrent to cross the θ axis since the thermopower
is constant in linear response. Therefore, a strongly negative

differential thermoconductance L = dI/dθ is needed to drive
the current I from positive to negative values. This results in an
interesting effect—further contact heating may switch off the
thermocurrent flowing across the dot. Notably, this is a purely
nonlinear thermoelectric effect and has no counterpart with ei-
ther the voltage-driven case or the linear thermoelectric regime.

Theoretical model. Our results are based on the Anderson
model with constant charging energy U ,

H = Hleads + Hdot + Htun , (1)

where Hleads = ∑
αkσ εαkC

†
αkσCαkσ is the Hamiltonian of

left (α = L) and right (α = R) reservoirs coupled to the
dot. These are described as an electronic band of states
with continuous wave number k and spin index σ = {↑,↓}.
Hdot = ∑

σ εdd
†
σ dσ + Ud

†
↑d↑d

†
↓d↓ is the dot Hamiltonian with

quasilocalized level εd (we consider a single level for def-
initeness). Htun = ∑

αkσ (VαkC
†
αkσ dσ + H.c.) is the coupling

term that hybridizes dot and leads’ states with tunneling
amplitudes Vαk .

The electronic current is given by the time evolution
of the expected occupation in one of the reservoirs, Iα =
−ed〈nα〉/dt , with nα = ∑

kσ C
†
αkσCαkσ . Since the total den-

sity commutes with the Hamiltonian of Eq. (1), current
conservation demands that IL + IR = 0 in the steady state.
Hence, we can define the current flowing through the system
as I ≡ IL = −IR . Within the Keldysh formalism [29], I

is expressed as I = (e/π�)Re
∑

kσ

∫ ∞
−∞ dE VαkG

<
σ,αkσ (E),

where G<
σ,αkσ (E) = (1/�)

∫
dE G<

σ,αkσ (t,t ′)eiE(t−t ′)/� is the
Fourier transform of the lesser Green’s function G<

σ,αkσ (t,t ′) =
i
�
〈C†

αkσ (t ′)dσ (t)〉. Following Ref. [30], the current readily
becomes

I = − e

π�

∫
dE

∑
σ

�L�R

�
Im Gr

σ,σ (E)[fL(E) − fR(E)] .

(2)

Gr is the dot retarded Green’s function in the presence of both
coupling to the continuum states and electron-electron interac-
tions. �α(E) = 2πρα(E)|Vα(E)|2 denotes the level broadening
due to coupling to the leads (total linewidth � = �L + �R),
with ρα = ∑

k δ(E − εαk) the α lead density of states. We con-
sider the wide band limit and take �α as constant. Moreover,
we assume that both the density of states and the tunneling
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probabilities are spin independent (nonmagnetic contacts).
Finally, in Eq. (2) fα(E) = 1/[1 + exp (E − μα)/(kBTα)] is
the Fermi-Dirac function for lead α with electrochemical
potential μα = EF + eVα and temperature shift Tα = T + θα

(EF is the common Fermi energy and T is the background
temperature).

The spectral function given by (−1/π )Im Gr in Eq. (2)
can be determined from the equation-of-motion technique fol-
lowed by a decoupling procedure [31]. We restrict ourselves to
the Coulomb-blockade regime (kBT ,� 	 U ) and neglect co-
tunneling and Kondo correlations. This approach yields an ex-
cellent characterization of the transport properties of strongly
interacting quantum dots for temperatures larger than the
Kondo temperature, T > TK . The retarded Green function can
be assessed by neglecting the correlators 〈〈d†

σ̄ Cαkσ̄ dσ ,d†
σ 〉〉 
 0

and 〈〈C†
αkσ̄ dσ̄ dσ ,d†

σ 〉〉 
 0 (virtual charge excitations in the dot)
and 〈〈Cαkσ C

†
βqσ̄ dσ̄ ,d†

σ 〉〉 
 0 and 〈〈Cαkσ d
†
σ̄ Cβqσ̄ ,d†

σ 〉〉 
 0 (spin
excitations in the leads). These approximations are valid in
the Coulomb-blockade regime, for which the charging energy
is the largest energy scale in the problem (�α,kBT < U ).
Thus, Gr

σ,σ (E) = (1 − 〈nσ̄ 〉)/(E − εd + i�/2) + 〈nσ̄ 〉/(E −
εd − U + i�/2) depends on the dot occupation for reversed
spin σ̄ , 〈nσ 〉 = 1

2πi

∫
dEG<

σ,σ (E). Hence, Gr must be calcu-
lated in a self-consistent fashion. Using the Keldysh equation
G< = i[�LfL(E) + �RfR(E)]|Gr |2, we close the system of
equations. Gr has two poles at E = εd and E = εd + U broad-
ened by � and weighted by (1 − 〈nσ̄ 〉) and 〈nσ̄ 〉, respectively.
This two-peak solution neglects cotunneling effects and Kondo
correlations but suffices to treat the Coulomb-blockade regime
for not very low temperatures. Importantly, the generalized
transmission (�L�R/�)Im Gr

σ,σ (E,{Vα},{θα}) depends, quite
generally, on both voltage and temperature shifts, as the
occupation does, which is a fundamental difference with
noninteracting models [32].

We find the spin-dependent occupations

〈nσ 〉 = A(1 − 〈nσ̄ 〉) + B〈nσ̄ 〉 , (3)

〈nσ̄ 〉 = A(1 − 〈nσ 〉) + B〈nσ 〉 , (4)

where A and B are specified below. The Hamiltonian in Eq. (1)
is invariant under spin rotations since no Zeeman splitting is
present in the system. Hence, the mean occupation in the dot
〈n〉 = 〈nσ 〉 + 〈nσ̄ 〉 is simply given by

〈n〉 = 2A

1 + A − B
, (5)

with A = (1/2π )
∫

dE [�LfL(E) + �RfR(E)]/[(E − εd )2 +
�2

4 ] and B = (1/2π )
∫

dE [�LfL(E) + �RfR(E)]/[(E −
εd − U )2 + �2

4 ]. At equilibrium, 〈nσ 〉 = 〈n〉/2 ranges between
0 and 1 depending on the value of εd , which can be tuned with
an external gate potential. As is well known, the dot occupation
significantly changes when εd crosses the spectral function
peaks located at E = EF and E = EF + U (degeneracy
points). In between, the charge is approximately quantized.
We now investigate departures of this behavior when the dot
is driven out of equilibrium due to either voltage or thermal
gradients.

Voltage-driven case. We consider a voltage bias V sym-
metrically applied to the leads and set EF = 0 as the reference
energy point, μL = −μR = eV/2. Inserting Eq. (5) and the
Gr expression in Eq. (2), we calculate the I -V characteristic
curves for different values of the dot level, see Fig. 1(a).
When the single-particle peaks are at resonance with the
Fermi energy (εd = 0 or εd = U ), the system behaves as an
ohmic junction for voltages around V = 0. With increasing
V the current reaches a plateau and then increases again
when the leads’ electrochemical potential realigns with the
dot level, which causes an enhancement of the occupation
as shown in the inset of Fig. 1(a). This result [33] agrees
with phenomenological models of Coulomb blockade [34].
Clearly, the differential conductance G = dI/dV traces show
a Coulomb diamond structure as in Fig. 1(b).

The occupation is voltage independent in the particle-hole
symmetry point (εd = −U/2), in which case the conductance
is minimal around V = 0. Only for that case the transformation
d → d† leaves Eq. (1) invariant and the electron density in
the dot follows a Fermi distribution. Away from εd = −U/2
the dot distribution is not Fermi-like since A and B become
doubly stepped functions. Therefore, the occupation [e.g., for
εd = −3U/4 in the inset Fig. 1(a)] exhibits a nonmonotonic
dependence with V and the conductance shows four peaks as
seen in Fig. 1(b).

Temperature-driven case. We present in the bottom panel
of Fig. 1 the effect of a temperature shift �T > 0 applied
to one of the electrodes: θL = �T and θR = 0 for posi-
tive temperature differences θ = TL − TR > 0, and θL = 0
and θR = �T yielding θ < 0. Noticeably, the thermocurrent
curves I (θ ) in Fig. 1(c) lack the Coulomb staircases seen in
Fig. 1(a). For εd = −U/2 the thermocurrent is identically zero
since the dot spectral function of Eq. (2) is symmetric around
EF . At resonance, I grows as the lead gets hotter because
more thermally excited electrons are able to tunnel through
the nanostructure. A similar response is obtained for level
positions between 0 and U at small θ . Further increasing of
θ , however, gives rise to dramatic changes. For εd = −3U/4
the thermocurrent reaches a maximum and then decreases,
crossing the θ axis. In other words, a strong heating of one of
the contacts reverses the electronic flow, driving the electrons
from the cold to the hot side. This striking behavior is opposite
for gate potentials closer to the Fermi energy, see Fig. 1(c)
for εd = −0.15U . This is a purely nonlinear property of
thermoelectric transport that is reflected in the nonmonotonic
occupation, see the inset of Fig. 1(c). Remarkably, the value θ

where the sign reversal occurs is tunable by varying εd . This
phenomenon only appears for energies between the peaks of
the transmission function (εd = 0 and εd = −U ).

The differential thermoelectric conductance L = dI/dθ is
shown in Fig. 1(d). The Coulomb diamonds of Fig. 1(b) are
transformed into a butterfly structure with strong changes
of sign across the points εd = 0 and εd = U for fixed θ , in
agreement with the experiment [2]. The effect is more intense
for moderate values of the temperature shift θ � 10T , a scale
dominated by the charging energy. As expected, we obtain
L = 0 for εd = −U/2 independently of θ . Above (below) this
symmetry point, L is positive (negative) in the small θ regime,
which is a manifestation of the Seebeck effect for electronlike
(holelike) carrier transport.
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FIG. 1. (Color online) (a) Current-voltage characteristics of a dc-biased single-level Coulomb-blockaded quantum dot (see the sketch) for
the indicated gate voltages (level positions). Inset: dot occupation as a function of the voltage bias. (b) Differential conductance versus level
position and bias voltage. (c) Thermocurrent of a single-level Coulomb-blockaded quantum dot as a function of the temperature difference shown
in the sketch. (d) Differential thermoelectric conductance versus level position and bias voltage. Solid (dashed) lines indicate positive (negative)
values. Parameters: charging energy U = 10 and background temperature kBT = 0.1. All energies are expressed in terms of �L = �R = �/2.

Thermocurrent and thermovoltage. The strong nonlineari-
ties in the I -θ curves can be easily understood with a level
diagram as sketched in the left panel of Fig. 2. For εd =
−3U/4 the E = εd (E = εd + U ) pole lies below (above) EF

(dot-dashed line). If the left lead is heated, thermally excited
electrons contribute significantly to the current through the
E = εd + U channel and the thermocurrent becomes maximal
(point labeled as A in the right side of Fig. 2). As the
left contact becomes hotter, the distribution function looses
its step form unlike the cold contact. As a consequence,
holes (electrons traveling from the right reservoir below EF )
counterbalance the flux from the left side, giving rise to a
vanishing thermocurrent at point B. Further increase of θ

causes a dominant contribution of holes and I takes on negative
values (point C).

The thermovoltage or Seebeck voltage Vth is determined
from the open-circuit condition I (Vth,θ ) = 0, which we solve
numerically to obtain Vth = Vth(θ ). Except for εd = −U/2,

the thermovoltage is generally nonzero, see Fig. 3(a). For a
small thermal bias, Vth is a linear function of θ , yielding a
constant thermopower, where the (differential) thermopower
is defined as S(θ ) = dVth/dθ , see Fig. 3(b). For εd close to
EF + U (EF ), S is positive (negative) for θ → 0, which can
distinguish transport due to electrons or holes. With increasing
θ , the thermovoltage grows because larger biases are needed to
compensate the thermoelectric flow. Hence, there exists a nice
correlation between the Vth(θ ) and Ith(θ ) curves [cf. Figs. 1(c)
and 3(a)]. For any value εd ∈ (EF ,EF + U ) (except the special
point εd = −U/2) we always find a θ value such that Vth = 0.
The reason is clear from the above discussion. For the point
B marked in Fig. 2 it is unnecessary to apply a voltage bias
to counteract the thermal gradient because the thermocurrent
is already zero. This effect would also be observable in dot
systems with two levels but we remark that the experiments
of our interest [1,2] are done in the Coulomb-blockade
regime.
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FIG. 2. (Color online) Left: energy diagram corresponding to the
current states of the right panel. EF (εd ) is indicated with dashed
(dotted-dashed) lines. Right: thermocurrent as a function of the
temperature difference for εd = −3U/4 as taken from Fig. 1(c). Note
that the electron flow from the left (right) electrode at point A (C)
dominates but exactly cancels out for point B.

Asymmetric dissipation and rectification. The reciprocal
effect to the Seebeck conversion is the Peltier effect [35–37],
which describes a reversible heat that, unlike the Joule heating,
can be used to cool a system by electric means. Recent

FIG. 3. (Color online) (a) Thermovoltage as a function of the
temperature difference for the indicated values of the gate voltages
(level positions). (b) Differential thermopower S = dVth/dθ in units
of kB/e. Parameters: U = 10, kBT = 0.1 and energy is given in units
of �L = �R = �/2.

FIG. 4. (Color online) Heat current as a function of applied
voltage in the isothermal case θ = 0. Dot level positions are also
indicated. Inset: Detail of the dissipated power around zero voltage.
(b) Asymmetric dissipation versus voltage bias for the same gate
voltages. Parameters: U = 10, kBT = 0.1 and energy is given in
units of �L = �R = �/2.

experiments [24] suggest an asymmetric rectification of the
generated heat in a voltage-driven atomic-scale junction. These
results are interesting because whereas rectification effects
are well understood in the electric case [38–44] much less is
known about the way power is dissipated in a voltage-biased
mesoscopic conductor. The linear part of the rectified heat
follows from the linear-response Peltier coefficient. Therefore,
the dissipated power can be larger or smaller for a given bias
V as compared with its reversed value, depending on whether
the atomic resonance lies above or below EF . However,
nonlinear deviations were observed for larger V [24]. Here,
we demonstrate that the heat rectification can be tuned with V

for a fixed position of εd .
The heat current is derived from Jα =

d〈∑kσ εαkσ C
†
αkσCαkσ 〉/dt − μαIα/e,

Jα =
∑

σ

�L�R

π��

∫
dE (μα − E)Im Gr

σ,σ [fL(E) − fR(E)] ,

(6)

which satisfies the Joule law JL − JR = IV . We consider the
case where J ≡ JL is a function of voltage only (θ = 0).
Figure 4(a) shows the heat current as a function of V for
several values of εd . Only for εd = −U/2, J exhibits a
symmetric behavior, as expected. We observe that the curves
quickly depart from the linear regime [see the inset of
Fig. 4(b)]. Thus, Joule and higher-order effects start soon
to dominate. Interestingly, for εd = −3U/4 the heat current
shows a nontrivial zero for finite V . The resulting asymmetry
under V reversal is apparent for, e.g., εd = U . Our results
also show that the heat current is invariant under the joint
transformation V → −V and εd → −εd − U (see, e.g., the
εd = 0 and εd = −U cases).

In Fig. 4(b) we depict the rectification factor J (V ) −
J (−V ) for different dot level positions. At resonance (εd = 0),
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the rectification is always positive, i.e., the dissipation is larger
for V > 0 than for V < 0 and increases with voltage. Clearly,
for V > 0 heat can flow through either E = 0 or E = U peaks
while for V < 0 energy can be transported through the E = 0
resonance only. The situation is reversed for εd = −U . The
dissipation is now larger for negative voltages than for positive
polarities. More importantly, the rectification factor can change
its sign for a given value of εd , as indicated in Fig. 4(b) for εd =
−3U/4. Notice that this is a purely nonlinear effect. While in
the linear case the rectification can be changed with tuning
εd and this effect heavily depends on the transmission energy
dependence [24], here a voltage scan leads to a value where
the transformation V → −V leaves J invariant. Furthermore,
it is straightforward to show that the power difference between
the left and right electrodes for a given bias, JL(V ) − JR(V ),
equals J (V ) − J (−V ) if the dot spectral function is symmetric
under V reversal. Our system indeed shows this property for
symmetric couplings, �L = �R [see the inset of Fig. 1(a),
where the occupation is an even function of V ]. Therefore,
heat can be dissipated equally between the leads (JL = JR)
for V = 0 [see Fig. 4(b) for εd = −3U/4], despite the fact

that the transmission strongly depends on energy, unlike the
linear case [24]. This is again an effect that can be observed in
the nonlinear regime of transport only.

Conclusion. We have examined a counterintuitive phe-
nomenon seen in experiments—with increasingly thermal
gradient applied to a quantum dot the created thermovoltage
diminishes and even becomes zero for a nonzero temperature
bias. We have shown that the effect is due to the combined
influence of the two peaks arising from a Coulomb-blockade
level. Furthermore, we predict a reciprocal effect—the power
rectification becomes zero for a finite voltage, which can be
relevant for the design of nanodevices with controllable dissi-
pation. Further work should clarify the role of (higher-order)
cotunneling processes [45,46] and Kondo interactions [47–49].
The effects discussed here are robust and should not depend
on the theoretical method. In particular, we expect similar
conclusions using an orthodox model [34] or a master equation
framework [50].
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Cardoner, S. Fölling, and I. Bloch, Phys. Rev. Lett. 101, 090404
(2008).

[8] Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
[9] G. Benenti, G. Casati, T. Prosen, and K. Saito, arXiv:1311.4430.

[10] D. Boese and R. Fazio, Europhys. Lett. 56, 576 (2001).
[11] M. Krawiec and K. I. Wysokiński, Phys. Rev. B 75, 155330
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15, 105012 (2013).

[19] P. Dutt and K. Le Hur, Phys. Rev. B 88, 235133 (2013).
[20] R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014).
[21] N. A. Zimbovskaya, arXiv:1405.6968.
[22] J. Azema, P. Lombardo, and A.-M. Daré, arXiv:1407.5065.
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