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Center for Computational Neuroscience, Technische Universität Berlin, Berlin, Germany, 3 Institut de Biologia Evolutiva, UPF-CSIC, Barcelona, Spain, 4 Departamento de

Ciencias de la Computacion e Inteligencia Artificial, Universidad de Granada, Granada, Spain

Abstract

Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active
states, generating slow 0:5{2 Hz oscillations which are widely known as transitions between Up and Down States. Despite
a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today
challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations
can emerge within the Up states. In particular, a non-trivial peak around 20 Hz appears in their associated power-spectra,
what produces an enhancement of the activity power for higher frequencies (in the 30{90 Hz band). Moreover, this rhythm
within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they
remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum) do not appear
in the Down states. Here we shed light on these findings by using different computational models for the dynamics of
cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and
simulations, is that the collective phenomenon of ‘‘stochastic amplification of fluctuations’’ – previously described in other
contexts such as Ecology and Epidemiology – explains in an elegant and parsimonious manner, beyond model-dependent
details, this extra-rhythm emerging only in the Up states but not in the Downs.
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Introduction

The cerebral cortex exhibits spontaneous activity even in the

absence of external stimuli. Deciphering its oscillations and their

correlates to behavior and function are major challenges in

Neuroscience [1,2]. Thus, for instance, high-frequency neural

activity in the b and c ranges (10{100 Hz) has been related to a

plethora of cognitive tasks including action, perception, memory,

or attention [1]. On the other hand, slow d waves (0:5 : 2 Hz) are

preponderant during the deepest stages of sleep, under anesthesia,

or during quiet wakefulness [3–5], and may play an important role

in neural plasticity and in the consolidation of new memories [6].

Finally, changes in the pattern of global activity are associated with

brain-state transitions such as sleep-wake or to pathologies such as

epilepsy [7]. Remarkably, very similar patterns of activity have

been observed in vitro as well; both, coherent oscillations in the

beta-gamma ranges and slow oscillations have been reported in

brain slices [8–11], what suggests that these spontaneous

oscillations are intrinsic to the dynamics of cortical networks.

These slow oscillations appear in the form of Up-and-Down states

in which a large fraction of neurons alternate coherently between

two different stable membrane-potential states: the quiescent Down

state –with a high degree of hyper-polarization and very low

activity– and the depolarized Up state –with high synaptic and

spiking activity– [12]. The coherent (though non-periodic) -

alternation between Up- and Down- states gives rise to Up-and-

Down transitions, resulting in low-frequency d waves [13]. The

function and role of such transitions at the global network level are

not fully understood (see [14] and references therein). The origin

of such a bistability in the cortex dynamics has been argued to rely

either on intrinsic neuronal features [9,15,16] or on network-level

properties [17–19]. Even if its nature is not universally agreed

upon, most of the existing computational models for cortical Up-

and-Down states feature network rather than cellular mechanisms

[13]. Here, we will focus on network models in which the cortex

bistability emerges as a collective network phenomenon.

Existing computational models for network bistability involved

some regulatory mechanism such as short time synaptic depression

[18,20,21] or the presence of inhibitory populations of neurons

[16,17,22]. Any of these ingredients (repressors) provides a negative

feedback mechanism able to control the overall level of activity

generated by self-excitation, allowing for the network to self-

regulate. Generically, network models including activator/re-

pressor dynamics may exhibit two different possible outputs, with
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low and high levels of activity, respectively. Although it is also

possible to switch in the absence of noise between these two levels

(eg. through a limit cycle), most of the previous models incorporate

noise-induced Up-Down transitions, and in this paper we follow

this strategy.

Given the apparent dichotomy between slow and high-

frequency oscillations and their distinct cognitive correlates and

function, the empirical finding that slow and fast rhythms may

coexist might sound surprising but it has been shown to occur by

different authors. Firstly, Steriade et al. found that high-frequency

oscillations occurred within the active intervals of slow oscillations

[23]. In similar experiments, Mukovski et al. [24], Fujisawa et al.

[25], and more recently Compte and coauthors [26] have shown

that high-frequency oscillations –in the 10–80 Hz range– develop

within the Up intervals of Up-and-Down states. In particular, the

power spectrum of such oscillations develops a pronounced peak at

some frequency in the b-band –between 20 and 30 Hz– together

with a substantial increase in the spectral power all along the b=c
range. Remarkably, no similar peak has ever been observed in

Down states [25,26].

Another remark acknowledged by Compte et at. in [26] is that,

while measurements of local field potentials in the Up state reveal

robust oscillations in the b=c, individual membrane potentials at

the intracellular level do not show any trace of similar oscillations

in that frequency band. This suggests, on the one hand, that high-

frequency oscillations are a collective phenomenon emerging at

the network level and, second, that there is no global synchroni-

zation (frequency locking) of individual neurons to the systemic

rhythm. Thus, individual neural rhythms and the global emerging

rhythm are independent.

At the modeling side, several authors have before addressed

some of these issues and computed, in particular, the power-

spectrum of network oscillations. For instance, Kang et al. [27]

studied a mean field model in the presence of noise. They

performed an analytical calculation of the power spectrum of a

Wilson-Cowan-like model with excitatory and inhibitory neurons

and showed the emergence of a resonant peak at gamma

frequency. In a similar model, Wallace et al. [28] made the noise

variance to scale with the network size and derived analytically the

power-spectrum showing that it is possible to have coexistence of

high-frequency oscillations for the population without having

oscillations for individual neurons. On the other hand, for spiking

neural networks, Spiridon and Gerstner [29] showed that the noise

accounting for network-size effects affected the power-spectrum of

the population activity. Similarly, and by using a Fokker-Planck

formalism, Mattia and Del Giudice [30,31], described the time

evolution of the average network activity in presence of size-effects

noise, and analytically derived its power spectrum and their

resonant peaks.

Even if much has been written and is known about neural

oscillations, our goal here is to shed some more light on the

previously discussed questions by studying general aspects, beyond

modeling details, as well as a simple and general theory accounting

in general for the above described phenomenology and, in

particular, for the asymmetry between Up state and Down state

power spectra. For this, we study two different network models,

one mean field and the other a network of spiking neurons, and

discern whether high-frequency collective oscillations exist within

the Up and/or within the Down state, respectively. Some of our

results coincide with existing ones, as those reported in the

previous paragraph, but, using a unified approach, here we

conclude that a phenomenon termed stochastic amplification of

fluctuations which can operate during Up –but not Down– states

explains all the observations above in a robust, precise, and

parsimonious way.

Materials and Methods

Hereafter, we present two different network models reproducing

the dynamics of Up-and-Down states, one based on a mean-field

single population model (Model A) and one based on a network of

spiking-neurons (Model B). Our strategy is to keep models as

simple as possible to uncover the essence of Up-and-Down states.

The theory of stochastic amplification of fluctuations, aimed at

accounting for the non-trivial phenomenology above beyond

modeling details, is presented also in this section.

Model A: Minimal model for Up-and-Down states
The simplest possible models for Up and Down states have a

deterministic dynamics and characterize neural network activity

by a global (‘‘mean-field’’) variable, the population averaged firing

rate (which is a proxy for measurements of local field potential).

Different models including synaptic depression and/or some other

regulatory mechanism such as inhibition, have been employed in

the past to describe Up and Down states. We focus here on the

model proposed by Tsodyks et al. [32,33]) including activity-

dependent short-term synaptic plasticity as the key regulatory

mechanism. In the Appendix S1 we present results for a similar

model with inhibition. In this context, Up and Down states

correspond to fixed points of the deterministic dynamics with,

respectively, high and low firing-rates. The deterministic model is

described by the mean membrane potential, v, and the variable u
accounting for the strength of synaptic depression. This second

variable mimics the amount of available resources (varying

between 0 and 1) in the presynaptic terminal to be released after

presynaptic stimulation, thus, the larger u the more synaptic input

arriving to the postsynaptic cell [32,33]. The mean voltage grows

owing to both external and internal inputs and decreases owing to

voltage leakage. On the other hand, synaptic resources are

consumed in the process of transmitting information and

generating internal activity (providing a self-regulatory mecha-

nism) and spontaneously recover to a target maximum value, fixed

here to u~1:

_vv~{
v{Vr

t
z

winmuf (v)

t

_uu~
1{u

tR

{muf (v), ð1Þ

where t~RC (R membrane resistance and C capacitance) and tR

are the characteristic times of voltage leakage and synaptic

recovery, respectively, win is the amplitude of internal inputs, Vr is

the resting potential, and m is the release fraction indicating the

efficiency of synapses. The firing rate function, f , is assumed to

depend on v as f (v)~a(v{T) if v§T , where T is a threshold

value, and f (v)~0 otherwise (i.e. it is a ‘‘threshold-linear’’ gain

function). External inputs could also be added to the model, but

they are irrelevant for our purposes here. Spontaneous transitions

between these two stable states can also be described within this

framework by switching-on some stochasticity. Possible sources of

noise are network size effects, sparse connectivity, unreliable

synaptic connections, background net activity, synapses heteroge-

neity, or irregular external inputs. An instance of this stochastic

approach is the work of Holcman and Tsodyks [18] (see also [34])

where a noise term was introduced into the above mentioned

Stochastic Amplification in Cortical Up-States

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e40710



mean-field model with synaptic depression. Indeed, adding

uncorrelated Gaussian white noises, gv(t) and gu(t), of amplitude

sv and su respectively, to equation 1, converts them into a set of

stochastic/Langevin equations [18]. While the noiseless version of

the model presents bistability its noisy counterpart exhibits Up-

and-Down states.

Model B: Spiking-neuron network model for Up-and-
Down states

Millman and coauthors [21] proposed an integrate-and-fire

(neuron-level) generalization of the model above, including some

additional realistic factors. These refinements allow us to compare

the emerging results with empirical ones not only qualitatively but

also quantitatively. The model (Model B, from now on) consists in

a population of N leaky integrate-and-fire neurons, each one

connected by excitatory synapses with (on average) another K of

them, forming a random (Erdos-Renyi) network. Each neuron is

described by a dynamical equation for its membrane potential Vi

(with i[f1,:::,Ng) in which Vi increases owing to (i) external

(stochastic) Poisson-distributed inputs arriving at rate fe and (ii)

internal inputs from connected spiking pre-synaptic neurons, and

decreases owing to voltage leakage (see Appendix S2 for further

details). When a neuron membrane potential Vi reaches a

threshold value h the neuron fires: Vi is reset to Vr and its

dynamics is switched-off during a refractory period trp. When a

(pre-synaptic) neuron fires, it may open –with probability pr– each

of the nr release sites existing per synapsis, inducing a current in

the corresponding postsynaptic neuron. External (resp. internal)

inputs, Ie(t) (resp. Iin(t)) are modeled by exponentials of amplitude

we (resp. win) and time constant ts. Similarly to Model A a variable

Uij[½0,1� (for neuron i and release site j) such that the release

probability is modulated by Uij , i.e. pr?prUij , allows to

implement short-time synaptic depression. Uij is set to 0

immediately after a release and recovers exponentially to 1 at

constant rate, tR (see Appendix S2).

Stochastic amplification of fluctuations (SAF)
Following [35] (see also [36] for an earlier reference) consider a

set of deterministic equations, _vv~gv(v,u) and _uu~gu(v,u), comple-

mented respectively with additive Gaussian white noises gv(t) and

gu(t), giving rise to a set of two Langevin equations. To analyze

fluctuations around a fixed point (v�,u�) of the deterministic

dynamics, a standard linear stability analysis can be performed.

Defining x~v{v� and y~u{u�, one can linearize the

deterministic part of the dynamics

_xx~avvxzavuyzgv(t)

_yy~auvxzauuyzgu(t), ð2Þ

where azz’~Lgz(v,u)=Lz’ (z and z’ standing for either v or u) are

the elements of the Jacobian matrix, A, evaluated at the fixed

point. The associated eigenvalues l+ can be written as

l+~C=2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2=4{V2

0

q
with V2

0~det(A)~avvauu{avuauv and

C~Tr(A)~avvzauu.

A useful tool to identify oscillations in noisy time-series is the

power spectrum Px(w)~SD(w)D2T, where (w) is the Fourier

transform of x(t) (similarly Py(w) for y(t)), and S:T stands for

independent runs average. Fourier transforming equation 2,

solving for ~xx(w) and ~yy(w), and averaging its squared modulus,

we find

Pz(v)~
azzs2

zv2

V2
0{v2

� �2
zC2v2

ð3Þ

where z stands for x or y, and ax~a2
vus2

yza2
uus2

x,

ay~a2
uvs2

xza2
vvs2

y. For small noise amplitudes both of the power

spectra exhibit maxima near

v0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

0{C2=2

q
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{avuauv{(a2

vvza2
uu)=2

q
ð4Þ

where the denominator has a minimum if v0 is a real number. To

have a real v0 requires that both avu and auv are non-vanishing

and of opposite sign; when this happens, both eigenvalues of A are

complex (see Appendix S3). As we shall see in what follows this

condition is fulfilled for Up- but not for Down states. Finally, let us

underline that v0 does not depend on the noise amplitude.

The presence of a non-trivial peak in the spectrum of

fluctuations reflects the existence of quasi-cycles of a leading

characteristic frequency, coexisting with many other frequencies,

and producing a complex oscillatory pattern. Notice that, even if

the peak location v0 is noise independent (as long as the noise

amplitude does not vanish) the very presence of a peak is a noise

induced effect: in the noiseless limit the system reaches a fixed

point. The phenomenon we have just described –termed stochastic

amplification of fluctuations (SAF)– has been recently put forward

in the context of population oscillations in Ecology [35] (see also

[36]) has also been claimed to be relevant in various other areas,

such as Epidemiology [37]. SAF requires the presence of some

noise source acting on top of the underlying deterministic stable

fixed point with complex eigenvalues l+, i.e. the relaxation

towards the stable fixed point should be in the form of damped

oscillations (this is, it is a ‘‘focus’’) with a not too small damping

frequency (details are explained in Appendix S3). Noise ‘‘kicks’’

the system away from the fixed point, and amplifies predominantly

some frequency which –surprisingly enough– turns out to be

different from the characteristic frequency of the deterministic

damped oscillations (see Appendix S3). It is also noteworthy that a

set of at least two coupled equations is required to have complex

eigenvalues, and hence, too simplistic models in terms of only one

effective variable, cannot give raise to SAF. Also, if the equations

become decoupled (as it turns out to be the case for Down-states)

the eigenvalues become real and the possibility of stochastic

amplification is lost.

Results

Model A
Time-series produced by numerical simulations of such a Model

A are shown in Fig. 1. Depending on the noise amplitude different

outputs are produced. For low noises, either an Up state (with a

high firing rate) or a stable Down state (with mean v close to the

resting potential, and therefore with a vanishing firing rate, and

mean u close to unity) coexist (converging into one or the other

depends on the initial conditions). For larger noise Up-and-Down

transitions are induced and Up-and-Down states emerge.

By performing a linear stability analysis equation 1 of as

described above, we have measured the power-spectrum P(w),
both analytically and numerically, at either the Up state and the

Down state. The deterministic Up-state fixed point turns out to be

a focus, with complex eigenvalues, satisfying the conditions for the

existence of a non-trivial peak in the power spectra for both v and

u. On the other hand, the Down-state fixed point (owing to the

Stochastic Amplification in Cortical Up-States
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vanishing firing rate and, therefore, to the absence of crossed

coupling terms (avu~auv~0 in Eq.(2)) is a node with real

eigenvalues and, consequently, there is no non-trivial peak in the

power-spectrum.

These results are illustrated in Fig. 2. Observe (i) the perfect

agreement between analytical and numerical results in all cases,

(ii) the presence of a peak (around 1:6 Hz) for the v power

spectrum in the Up state (note that this rhythm is much faster than

that of the Up-and-Down transitions, see Fig. 1), as well as (iii) the

absence of similar peaks for the Down-state, and finally, (iv) the

presence of a w{2 tail in all power spectra. Very similar plots can

be obtained –in analogy with measurements in [26]– in the Up-

intervals within Up-and-Down states as well as for u(t) as reported

in Appendix S4.

Summing up, a mean-field single-population model in presence

of short-term synaptic depression as the key regulatory ingredient

reproduces Up-and-Down transitions, with a non-trivial peak in

the up state power spectrum emerging as a consequence of the

phenomenon of SAF. Numerical results are in full agreement with

this theory, and consequently no analogous peak is found in Down

states.

To test the generality of this hypothesis, we have also considered

the mean-field dynamics of a simple model in presence of synaptic

inhibition rather than synaptic depression (cf. Appendix S1). The

model also exhibits Up-Down states transitions, with a non-trivial

emerging peak in the Ups but not in the Downs, consistent with

SAF. Remarkably, this supports that the phenomenon of SAF

invoked here remains valid beyond the particular type of neuro-

physiological mechanism for network self-regulation.

Despite this success, the strategy of resorting to simplistic mean-

field models presents some undeniable drawbacks: (i) given the

lack of a detailed correspondence with neuro-physiological realistic

parameters it is not possible to quantitatively compare the results

with experimental ones; (ii) noise is implemented in a poorly

understood way; and (iii) last but not least, mean-field models do

not allow for comparison of individual-neuron activity with

collective rhythms, which is important to figure out whether

single cells frequency-lock to emergent oscillations or not. Aimed

at overcoming these difficulties, in the next section we present

results for a network of spiking-neurons, Model B.

Model B
We have scrutinized Model B by numerically integrating the

corresponding integrate-and-fire stochastic equations on sparse

random networks as well as on regular networks. Parameters are

fixed –mostly as in [21]– to neuro-biologically realistic values (see

Fig. 1). We compute numerically membrane-potential and

synaptic-resource time-series for each individual neuron as well

as for the network as a whole. The release probability, pr, is kept as

a control parameter [32]: for intermediate values as pr~0:3 the

system exhibits Up-Down transitions as illustrated in Fig. 1; for

larger values (e.g. pr~0:5) it remains steadily in the Up state, while

for sufficiently low ones (pr~0:2) only Down states are observed

(see Fig. 1).

Figure 1. Up and Down states and Up-and-Down transitions in
two different network models. (A) Model A (mean-field model) [18]:
time-series for the membrane potential, v(t). Observe the presence of
two steady states lower one around {70 mV (Down-state/blue curve)
and a larger one (Up state/green curve) at about {55 mV; these two
are obtained for low noise amplitudes (sv~0:03 mV=

ffiffiffi
t
p

, su~0:0004

1=
ffiffiffi
t
p

) and different initial conditions. Instead, the Up-and-Down state
(red curve), corresponds to a high noise amplitude (sv~2:2mV=

ffiffiffi
t
p

,
su~0). Note that, typically the Up-state intervals start with an abrupt
spike which parallels empirical observations as discussed in [18].
Parameters have been fixed as in [18]: t~RC~0:05 s, tR~0:8 s,
win~12:6 m V / H z , R~0:5, T~{68:0 m V , Vr~{70 m V , a n d
a~1:0 Hz/mV. (B) Model B (network of spiking neurons) [21]: Time
series of membrane potential. Curves and color code are as for Model A.
For pr~0:3 the system exhibits Up-and-Down transitions, for larger
(smaller) values as pr~0:5 (pr~0:2), it remains steadily in the Up
(Down) state. Parameters have been fixed as in [21]: vesicles per
synapsis nr~6, resting potential Vr~{70 mV, membrane threshold
h~{50 mV, capacitance C~30 pF, leakage characteristic time
t~RC~0:02 s, synaptic recovery time tR~0:1 s, signal time decay
ts~0:005 s, refractory period trp~0:001 s, input amplitudes
win~50 pA, we~95 pA, and external driving rate fe~5 Hz.
doi:10.1371/journal.pone.0040710.g001

Figure 2. Power spectrum of membrane potential v(t) time-
series in Up- and in Down states computed in Model A
and Model B, respectively. Histograms are normalized to unit
area. The main plots show the power-spectra in linear scale: a
pronounced peak appears for the Up state (green curve) around (A)
&1:6 Hz and (B) &20 Hz. Instead, there is no track of similar peaks for
Down states (blue curve). Observe the excellent agreement between
simulation results (noisy curves) and analytical results for Model A,
Eq.(3) (black dashed lines); for Model B a precise analytical prediction
cannot be obtained. Insets represent analogous double logarithmic

plots, illustrating in all cases the presence of w{2 tails.
doi:10.1371/journal.pone.0040710.g002
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The power-spectrum P(w) of the membrane potential time-

series is illustrated in Fig. 2 (green for the Up state, blue for the

Down one, both in linear and in double-logarithmic scale). Very

similar plots can be obtained –in analogy with measurements in

[26]– in the Up-intervals within Up-and-Down states as well as for

u(t) as reported in Appendix S4. In the Up state, the spectrum

exhibits a sharp peak at a frequency around *20 Hz, together

with the expected power-law decay. On the other hand, the power

spectrum for Down states lacks a similar peak. In analogy with the

mean-field model in the previous section, there is a significant

enhancement of the power-spectrum for Up vs Down states in the

whole b{c range. However, on the contrary to the model above –

giving the more detailed neuron-level modeling and the use of

realistic parameter values– results can be quantitatively compared

with empirical findings. Indeed, observe that, in remarkable

accordance with the experimental observations in [26] (see, e.g.

Fig. 1D in [26]) the peak in the Up state spectrum lies at

frequencies in the b2-range, between 20 and 30 Hz. Let us remark

that no parameter fine-tuning has been required to achieve this

result.

Furthermore, Millman et al. showed in [21] that Up-and-Down

states in Model B are robust against addition of fast AMPA

currents, NMDA currents and (moderate) inhibition, more

structured (small-world) network topologies, as well as voltage-

dependent membrane resistance. Also, the non-trivial peak of the

power-spectra and the associated spectral power enhancement in

the b=c range for Up states, together with the absence of similar

traits for Down states, are robust features against the extensions of

the model we have scrutinized.

We have also analyzed time-series of individual neurons and

compared their individual rhythms to that of the global, mean-

field v(t). Fig. 3 (left) shows that individual neurons do follow the

global trend in Up-and-Down states: global high (resp. low)

average membrane potentials correspond to high (resp. low) firing

rates at the individual neuron level. On the other hand, and

contrary to naive expectations, within Up states (as well as within

Up periods of up-and-down states) where collective quasi-

oscillations for the global mean-field emerge, individual neurons

do not lock themselves to such a collective rhythm; as shown in

Fig. 3 (right) individual neurons fire at a much faster pace than

that of the global rhythm.

Actually, a histogram of the inter-spike intervals for all neurons

in the network (shown in Appendix S5) has an averaged value

&17 ms, corresponding to a frequency f&60 Hz. Therefore,

given that the peak-frequency of the collective quasi-oscillations is

located around 20 Hz each neuron fires on average 3 times before

a cycle of the collective rhythm is completed. The same result has

been achieved by analyzing the power-spectrum for individual

neurons, which turns out to exhibit a peak around f&60 Hz and

no sign of power enhancement in the 20{30 Hz band (see

Appendix S5).

To firmly establish the correspondence between the just-

described phenomenology for Model B and SAF we need to

write down a set of effective Langevin equations, analogous to

Eq.(1) for the global, network-averaged, variables and compute

power-spectra from them. For a network of finite size, this can not

be done in an exact way. However, as detailed in Appendix S2,

the Fokker-Planck equation for the probability distribution of any

individual-neuron membrane potential Vi in Model B can be easily

written down for infinite networks [21]. The network-averaged

firing rate, f , appears explicitly in such an equation, and needs to

be self-consistently determined: f has to coincide with the outgoing

probability flux, i.e. the fraction of neurons overcoming the

threshold h per unit time in the steady state [21]. By scrutinizing

such a Fokker-Plank equation it is straightforward to see that

individual neurons, follow an oscillatory pattern in which each of

them is progressively charged and then fires at a pace that

coincides with the (numerically determined above) rhythm of

individual neurons. No track of SAF can be seen at this individual-

neuron level.

In order to have an equation for the collective rhythms, we have

taken the previous Fokker-Planck equation and from it computed

the network-averaged membrane potential (needed to scrutinize

the possible existence of SAF) at a network level, defined as

v(t):
ðh

Vr

VP(V ,t)dV : ð5Þ

and similarly, the network-averaged synaptic depression variable

u(t). As shown in Appendix S6 they obey

_vv~{(h{Vr)f (t){
v{Vr

RC
zVefezKuVinf (t)zDP(Vr,t)

_uu~
1{u

tR

{pruf (t): ð6Þ

In the first equation (h{Vr)f describes the average potential

reduction owing to resetting, {
v{Vr

RC
is the average leakage, Vefe

and KuVinf (with values of constants detailed in Appendix S2 and

caption of Fig. 1) stand for the average external and internal

charging, respectively, and DP(Vr) is proportional to the fraction

of neurons in the resting state. The two terms in the second

equation describe average recovering and consumption of synaptic

resources respectively.

Eq.(6), valid for infinitely large networks, are deterministic

equations. Instead, for any finite network of size N, with finite

connectivity and finite number of release sites, the former is no

longer true: f becomes a stochastic variable fluctuating around its

averaged value. Something similar happens with the fraction of

neurons at resting value, P(Vr,t) appearing in Eq.(5).

Consequently, writing f (t) and P(Vr,t) as deterministic

functions (depending on both variables, v and u) plus a noise

(fluctuating part), Eq.(6) becomes a set of Langevin equations,

from which power spectra could be computed. However, de-

termining analytically the functional dependence of f (t) and

P(V ,r,t) on v and u for finite values of N (which is necessary to

perform the stability analysis) is not feasible. Owing to this, we

have resorted to a numerical evaluation of such dependences.

Simulation results show that P(Vr,t) hardly departs from its

infinite N limit value, and hence its variability can be neglected for

all purposes here. Instead, f depends strongly on v and is almost

independent of u; f (v) can be approximated by a ‘‘threshold-linear

gain function’’ –zero for vvh’ and linear when vwh’– as

commonly used in the literature to approximate firing rates e.g.

[18], plus a noise term, for both the Up and the Down state (see

Appendix S6). It can also be verified that the amplitude of such

a noise decreases with the square-root of the system size, as

expected on the basis of the central limit theorem (see

Appendix S6).

From 6, plugging in the approximate expression for f (v) we can

calculate analytically the fixed points of the deterministic

dynamics, v� and u�. Results agree reasonably well with
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numerically measured averaged values both in the Up and in the

Down state. Having evaluated the deterministic fixed points we

can follow a standard linear stability analysis as above, compute

the stability matrix, the corresponding eigenvalues, and finally the

power-spectra in the Up and in the Down state as detailed above

(see Appendix S6 as well as Appendix S7). For the Up state the

corresponding eigenvalues turn out to be complex (i.e. as

explained above, auv and avu are both non-zero and of opposite

signs, implying that v0 is real) entailing a non-trivial peak in the

power-spectrum located at f0~12:64 Hz. This analytical predic-

tion slightly deviates from the numerical results as reported in

Fig. 2, exhibiting a peak at f^20 Hz. This deviation stems from

the approximate nature of the present calculation. Developing a

more precise analytical way to deal with finite networks remains

an open and challenging task. On the other hand, for the Down

state, the equations for v and u are essentially decoupled,

eigenvalues are consequently real and, as a result, there is no

peak in the power spectrum nor any significant enhancement of

fluctuations.

In conclusion, we have shown that also for this more complex

network model, an analytical (even if approximate) approach

permits us to elucidate that the phenomenon of stochastic

amplification of fluctuations is responsible for the non-trivial

enhancement of fluctuations in the whole b=c range as well as the

emergence of a peak in power spectra of Up states for a frequency

in the b2 band, around 20 Hz. Similar results do not hold for

Down states.

Discussion

Diverse computational models –with different levels of com-

plexity– for Up-and-Down states have been introduced in the

literature. Aimed at focusing on essential aspects of the Up-Down

transitions, we choose here to scrutinize models as simple as

possible. In particular we have studied two different models. The

first one, Model A, is a ‘‘mean-field’’ model defined in terms of

two global variables, equipped with some additional source of

stochasticity. The second, Model B, is a neuron-level based

network model. Both of them are described in terms of stochastic

equations for membrane potentials as well as for a second variable

modeling the dynamics of synaptic depression. A mechanism of

activity-dependent (short-term) synaptic depression allows the

system to generate negative feedback loops, ensuing self-regula-

tion. Under these conditions, Up and Down states and Up-and-

Down transitions emerge.

We first analyzed the simpler mean-field-like Model A

describing activity at a global/macroscopic level, and then went

on by introducing the spiking-neuron network Model B. For these,

we have first performed computer simulations, confirming the

existence of Up-and-Down states. To analyze fluctuations around

either the Up or the Down state, power-spectra for the global

(averaged) membrane potential –which is a proxy for experimen-

tally measured local field potentials– have been computationally

measured. They show similar phenomenology in all cases: in the

Up state there is a non trivial peak at some frequency together

with an overall enhancement of fluctuations in the whole b=c

Figure 3. Raster plots and average membrane potential in the spiking-neuron network model (Model B). Left: (Top) Raster plot of 15
randomly chosen neurons (out of a total of N~1000 neurons in the simulation). Sticks are plotted whenever a neuron spikes. (Bottom) Time-series of
the network-averaged membrane potential in the same simulation. Comparison of the two left panels (both of them sharing the same time axis)
reveals that individual neurons fire often during Up states, while they are essentially quiescent in Down-state intervals. Right: (Bottom) zoom of an Up
interval (green curve) and of a Down interval (blue curve); while the Up state exhibits quasi-oscillations, the Down-state does not. (Top) Raster plot of
15 randomly chosen neurons during the Up state. Remarkably, their spiking frequency is not locked to the collective rhythm: it is about three times
faster.
doi:10.1371/journal.pone.0040710.g003
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region, while no similar peak existing for Down states. These

results are in excellent accordance with the experimental findings

of diverse experimental groups –detailed in the Introduction–

showing a similar enhancement of fluctuations under different

experimental conditions in cortical Up states but never in Down

states. Therefore, we conclude that existing models for Up-Down

transitions succeed at reproducing realistic fluctuations in Up and

Down states, as described in the Introduction.

The main contribution of the present work is to put forward that

the empirically measured enhancement of fluctuations in Up states

(as well as the lack of a similar effect in Down states) can be

perfectly explained by the mechanism of ‘‘stochastic amplification

of fluctuations’’. This mechanism consists in the resonant

amplification of some frequencies in the spectra of stochastic

systems when the corresponding fixed-point of its deterministic

dynamics is a focus (i.e. in the infinite size limit the steady state

fixed point has complex associated eigenvalues). The presence of

any source of noise kicks the system away from the deterministic

fixed point leading to a non-trivial power-spectrum. It is important

to remark that (i) empirical measurements of local field potentials

correspond to mesoscopic cortex regions, intrinsically affected by

noise effects and hence, a stochastic description of them is fully

justified, and that (ii) curiously enough, as explained here, the

selected/amplified dominant frequency is not that of the deter-

ministic damped oscillations towards the focus, as it could have

been naively expected.

To firmly establish the correspondence between the non-trivial

features of fluctuations observed empirically as well as in computer

models for Up and Down states and the phenomenon of stochastic

amplification, one needs to write down a deterministic equation

for the network-averaged variables and complement it with a noise

term, i.e. a Langevin equation. Writing down a Langevin equation

for the global dynamics of Model A, which is already a mean-field

model equipped with a noise term, is a trivial task. However, this is

difficult for Model B, for which we have needed to resort to a more

refined approach. In both cases, we have been able to construct

analytical equations (exact) for Model A and (approximate) for

Model B, study the associated power-spectra, and analytically

confirm the presence of non-trivial peaks appearing owing to a

stochastic amplification of fluctuations for Up states (which can be

described by a fixed point with complex eigenvalues at a

deterministic level) but not for Down states (with real valued

deterministic eigenvalues).

While for the first-studied mean-field-like Model A the

agreement between experimental results and theoretical predic-

tions is only qualitative, for the more refined spiking-neuron

network Model B, the accordance becomes also quantitatively

good. Indeed, observe that, in remarkable accordance with the

experimental observations in [26] (see, e.g. Fig. 1D in [26]) the

peak in the Up state spectrum lies at frequencies in the b2-range,

between 20 and 30 Hz.

In any case, the reported phenomenon of stochastic amplifica-

tion of fluctuations explains the emergence of quasi-oscillatory –

with a typical dominant frequency and a broad power-spectrum–

rhythms in the global-network activity within Up states as well as

(owing to the absence of a significant firing rate) the absence of a

similar effect for Down states. This explanation is robust beyond

modeling specificities as confirmed by the finding that many model

details can be changed without affecting the results and also by the

fact that a very different model, based on inhibition rather than on

synaptic depression, leads to identical conclusions. Using the

jargon of excitable systems, we conjecture that any activator/

repressor model –the repressor being, depression, inhibition or any

other form of adaptation, is in principle able to induce SAF in Up

states (but not in Down states) and consequently explain the non-

trivial shape of power-spectra for cortical fluctuations.

Furthermore, we have shown that the mechanism of stochastic

amplification of fluctuations operates for global variables but not

for individual neurons. In the framework on the neuron-level

based Model B, it is possible to compare the oscillatory behavior of

single neurons with the network collective rhythms. We have

explicitly shown that single neurons do not lock to the global

collective rhythm emerging within Up states. Actually, single

neurons fire at a much faster pace –typically 3 times larger– than

the collective oscillation period. This phenomenology, which

perfectly accounts for empirical findings in [26] as reported in the

Introduction, is similar to what has been called asynchronous-

states or sparse-synchronization in which a collective rhythm –to

which individual neurons do not lock– emerges (see [38,39] for

related, though different, phenomena). Observe that in the, so-

called, ‘‘fast-oscillations’’, as described for instance in [38], the

emerging global rhythm is much faster than individual neurons,

while here it is the other way around.

In summary, Up and Down states as well as Up-and-Down

transitions can be well described as collective phenomena

emerging at a network level. They exhibit generically a set of

highly non-trivial features which can be well captured by simple

models, and perfectly accounted for by the mechanism of

stochastic amplification of fluctuations.
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