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2 Spin-current noise from fluctuation relations

Jong Soo Lim∗, David Sánchez∗,† and Rosa López∗,†

∗Institut de Física Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca,
Spain

†Departement de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain

Abstract. We present fluctuation relations that connect spin-polarized current and noise in mesoscopic conductors. In
linear response, these relations are equivalent to the fluctuation-dissipation theorem that relates equilibrium current–current
correlations to the linear conductance. More interestingly, in the weakly nonlinear regime of transport, these relations establish
a connection between the leading-order rectification spin conductance, the spin noise susceptibility and the third cumulant of
spin current fluctuations at equilibrium. Our results are valid even for systems in the presence of magnetic fields and coupled
to ferromagnetic electrodes.
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We have recently derived fluctuation relations valid
beyond the linear response regime of mesoscopic trans-
port fully taking into account the spin degree of freedom
and magnetic interactions [1]. These relations represent
higher-order fluctuation-dissipation relations [2] and are
satisfied even if microreversibility is broken due to an
externally applied magnetic fieldB [3, 4].

Consider a generic multiterminal conductor coupled
to reservoirsα,β . . . with voltagesVα ,Vβ . . . and back-
ground temperatureT (see Fig. 1). We assume that there
exists a spin quantization axis common to all terminals
and thus denote the spin index withs,s′ . . ., wheres=+
(s= −) for electrons with spin↑ (↓). Additionally, the
leads can be magnetized with a polarizationp, allow-
ing for spin-dependent transport across the sample. We
allow for possible spin biases present in the lead volt-
ages:Vαs,Vβ s′ . . . Then, the current〈Iαs〉 flowing through
terminal α associated with electronic spinss can be
expanded in powers of voltage around the equilibrium
point:

〈Iαs〉= ∑
β s′

G(1)
αs,β s′Vβ s′ +

1
2 ∑

β s′,γs′′
G(2)

αs,β s′γs′′Vβ s′Vγs′′

+O(V3) , (1a)

〈Sαsβ s′〉= S(0)αsβ s′ +∑
γs′′

S(1)αsβ s′,γs′′Vγs′′ +O(V2) , (1b)

〈Cαsβ s′γs′′〉=C(0)
αsβ s′γs′′ +O(V) , (1c)

where G(1)
αs,β s′ is a linear conductance coefficient and

G(2)
αs,β s′γs′′ is the leading-order rectification term. Both co-

efficients are evaluated at equilibrium but their functional
dependence on the scattering properties of the conductor
is very different [5]. In Eqs. (1b) and (1c) we have also

B
I αsVαs Vβs’

Vγ s’’

I γ s’’
I βs’

FIGURE 1. Sketch of a mesoscopic conductor in the pres-
ence of magnetic fieldB and attached to multiple terminals with
applied voltagesVαs,Vβs′ . . .. We indicate spin currents flowing
through the system.

expanded the noiseS (current–current correlations) and
the third cumulantC, for which(0) label equilibrium re-
sponses.

Let fαs± = fαs(B, p)± fα s̄(−B,−p) be the symmet-
ric (+) and antisymmetric (−) combinations of a given
transport coefficient (G, SorC). In Ref. [1] we show that
the fluctuation relations for spintronic systems read

S(0)αsβ s′± = kBT
(

G(1)
αs,β s′±+G(1)

β s′,αs±

)
, (2a)

C(0)
αsβ s′γs′′± = kBT

[(
S(1)αsβ s′,γs′′±+S(1)αsγs′′,β s′±+S(1)β s′γs′′,αs±

)

−kBT
(

G(2)
αs,β s′γs′′±+G(2)

β s′,αsγs′′±+G(2)
γs′′,αsβ s′±

)]
.

(2b)

These expressions are to be supplemented with

S(0)αsβ s′(B, p) = S(0)α s̄β s̄′(−B,−p) and C(0)
αsβ s′γs′′(B, p) =

−C(0)
α s̄β s̄′γ s̄′′(−B,−p), which state that the even (odd)

equilibrium cumulants respond symmetrically (anti-
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symmetrically) to simultaneous reversals of the spin
direction, the magnetic field and the lead magnetization.

Using the symmetry ofS(0)αsβ s′ in Eq. (2a) we recover the
Onsager-Casimir reciprocity relations, valid in the linear

response regime, i.e.,G(1)
αs,β s′(B, p) = G(1)

β s̄′,α s̄(−B,−p).
Importantly, Eq. (2) is valid not only for arbitrary
Coulomb interactions but also for magnetic couplings
such as spin-flip relaxation processes [1].

Now, in spintronics it is convenient to work withspin-
polarizedcurrent and noises. In fact, spin-resolved shot
noise can provide valuable information about the role of
interactions in mesoscopic systems [6]. Therefore, we
define the spin-polarized (SP) quantities

〈ISP
α 〉= 〈

(
Iα↑− Iα↓

)
〉= 〈Iα↑〉− 〈Iα↓〉= ∑

s
s〈Iαs〉 ,

(3a)

〈SSP
αβ 〉= 〈

(
Iα↑− Iα↓

)(
Iβ↑− Iβ↓

)
〉= ∑

s,s′
ss′〈Sαsβ s′〉 ,

(3b)

〈CSP
αβ γ〉= 〈

(
Iα↑− Iα↓

)(
Iβ↑− Iβ↓

)(
Iγ↑− Iγ↓

)
〉

= ∑
s,s′,s′′

ss′s′′〈Cαsβ s′γs′′〉 , (3c)

and, similarly to Eq. (1), expand Eq. (3) in powers of
voltage:

〈ISP
α 〉= ∑

β s′
G̃(1)

α ,β s′Vβ s′ +
1
2 ∑

β s′,γs′′
G̃(2)

α ,β s′γs′′Vβ s′Vγs′′

+O(V3) , (4a)

〈SSP
αβ 〉= S̃(0)αβ +∑

γs′′
S̃(1)αβ ,γs′′Vγs′′ +O(V2) , (4b)

〈CSP
αβ γ〉= C̃(0)

αβ γ +O(V) . (4c)

Our goal is to find the fluctuation relations obeyed by
the response coefficients̃G, S̃ andC̃. We substitute Eq.
(1) in Eq. (3) and use the fluctuation relations expressed
in Eq. (2). Then, we find

S̃(0)αβ± = kBT ∑
s

s
(

G̃(1)
α ,β s±+ G̃(1)

β ,αs±

)
(5a)

C̃(0)
αβ γ± = kBT ∑

s
s
(

S̃(1)αβ ,γs±+ S̃(1)αγ,β s±+ S̃(1)β γ,αs±

)

− (kBT)2∑
s,s′

ss′
(

G̃(2)
α ,β sγs′±+ G̃(2)

β ,αsγs′±+ G̃(2)
γ,αsβ s′±

)

(5b)

together with S̃(0)αβ− = 0 and C̃(0)
αβ γ+ = 0 (the former

is consistent with the Onsager-Casimir relations). Two
remarks are in order. First, Eq. (5a) establishes a re-
lation between the spin-resolved noise at equilibrium

(i.e., in the absence of bias voltage) and the polarized
linear conductance. It represents an extension of the
fluctuation-dissipation theorem valid for spintronic sys-
tems in the presence of magnetic fields and ferromag-
netic electrodes. Second, Eq. (5b) describes a nontrivial
connection between the third cumulant at equilibrium,
the spin-resolved noise susceptibility [S(1)] and the po-
larized nonlinear conductance to leading order. Clearly,
the differential conductance need not obey the Onsager-
Casimir symmetry relations [7, 8]. This is due to break-
ings of microreversibility away from equilibrium. How-
ever, Eq. (5b) connect the different asymmetries of the
noise susceptibility and the nonlinear conductance even

in systems for which̃C(0)
αβ γ+ = 0.

In conclusion, we have formulated novel fluctuation
relations applied to spin-dependent current and noises
for multiterminal systems in the presence of Coulomb in-
teractions, magnetic fields and ferromagnetic electrodes.
Our formalism is based on rather broad assumptions:
equilibrium microreversibility, global detailed balance
and probability conservation [1]. We emphasize that our
resuls hold even if a spin bias is present in the system
due to possible spin accumulations formed at the bound-
ary between the leads and the scattering region. There-
fore, our central result [Eq. (5)] is an excellent tool to in-
vestigate purely spintronic effects in out-of-equilibrium
situations.
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