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Abstract 

The metabolic syndrome (MS) may be defined as the constellation of cardiovascular 

disease (CVD) risk factors that comprises obesity, type 2 diabetes, dyslipidemia, and 

hypertension. Recent evidences suggest that, primarily due to its high monounsaturated 

fatty acids (MUFAs) content, olive oil and omega-3 polyunsaturated fatty acids 

(PUFAs) could be useful as a dietary approach for MS management, with relevance in 

the postprandial state. Vitamin B3, as a major substrate for nicotinamide 

phosphoribosyltransferase (NAMPT), also constitutes a nutritional intervention strategy 

for the treatment of MS. NAMPT has been shown to exert activities of central 

importance to cellular energetics and innate immunity. Within the cell, NAMPT is the 

rate-limiting step in a salvage pathway of nicotinamide adenine dinucleotide (NAD+) 

biosynthesis. NAMPT has been shown to correlate with triglycerides in the fasting 

plasma, and a potential regulatory role for fatty acids on NAMPT expression has been 

proposed. Whether different dietary fatty acids, including olive oil as a source of 

MUFA, play a role in NAMPT excursions and in the NAMPT-dependent regulation of 

glucose and lipid metabolism and inflammation states remains to be solved. In general, 

the mechanisms that alter NAD+ metabolism probably include multiple processes, but 

the understandings of these mechanisms are currently very unclear and a considerable 

effort in this area is required before we know how changes in NAD+ metabolism 

influence physiology of glucose and lipid metabolism and how NAD+ metabolism 

might be manipulated for healing benefit by specific dietary fatty acids as a therapeutic 

treatment for MS. 
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Introduction 

Cardiovascular disease (CVD) is the first cause of death worldwide, with type 2 

diabetes (T2D) making up about 90% of the cases [1,2]. Incorporating a cluster of 

metabolic abnormalities, the metabolic syndrome (MS) was advocated by several 

organizations as a major predictor of CVD and T2D [3-6]. MS is characterized by four 

major traits: increased abdominal fat, hypertension, hyperglycemia, and dyslipidemia 

[7]. Lacks of habitual physical activity combined with diet contribute to increase the 

risk of CVD, and the development of MS in particular. The core components of the 

dyslipidemia in the MS, which most likely initiate CVD, are the “lipid triad” of high 

plasma triglycerides (TG), low levels of high-density lipoproteins (HDL), and a 

preponderance of small, dense low-density lipoproteins (LDL) at fasting [8]. 

Abnormally elevated postprandial (non-fasting) TG levels are also recognized as an 

important component for atherosclerosis, as first suggested by Zilversmit [9]. More 

recently, several studies have described abnormalities during the postprandial state in 

patients with coronary artery disease (CAD) [10] and have shown that non-fasting TG 

levels are independent predictors of CAD in multivariate analysis [11], even after 

adjustment for fasting TG or HDL levels in normolipidemic men. Exacerbated non-

fasting TG levels are often found in insulin-resistant subjects, denoting that 

hyperinsulinemia and/or decreased insulin sensitivity are involved in altered 

postprandial metabolism of dietary fats [12]. 

One of the current global recommendations to counteract disability and 

premature death resulting from CVD is to decrease the consumption of energy-dense 

diets, including high-fat foods enriched in saturated fatty acids (SFAs). The most 

effective replacement for SFAs in terms of risk factor outcomes for CVD is the 

monounsaturated fatty acids (MUFAs), and the polyunsaturated fatty acids (PUFAs) but 
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in much less importance [13]. In accordance, recent studies have demonstrated that 

olive oil, which is the only natural and most relevant source of MUFAs in the diet, 

when compared with butter, can postprandially limit TG excursions and buffer the 

pancreatic β-cell hyperactivity and peripheral insulin intolerance in subjects with 

normal [14] and high fasting [15] TG levels. 

Dietary fatty acids have received considerable attention for their ability to 

regulate inflammatory gene expression and secretion. It has been proposed that dietary 

fatty acids affect insulin resistance and inflammatory processes through the modulation 

of transcription factors such as NFκB and peroxisome proliferator-activated receptor 

gamma (PPARγ) [16, 17]. 

There is general agreement that increasing dietary SFA intake, especially in 

overweight or obese individuals, is associated with raised inflammatory markers [18], 

predominately by activating the toll-like receptor 4 (TLR4) pathway. TLR4 is expressed 

in both subcutaneous (SAT) and visceral (VAT) adipose tissues. SFAs serve as ligands 

for TLR4, inducing inflammatory responses in both adipocytes and macrophages 

through an increase of adipocytokine gene expression and production [19,20]. 

Moreover, SFA is associated with NFκB activation [21] which is a fundamental 

component underlying chronic inflammatory diseases such as atherosclerosis, 

rheumatoid arthritis, and MS [22]. Conversely, unsaturated fatty acid have well known 

anti-inflammatory effects, which range from the inhibition of the lipoxygenase and 

cyclooxygenase pathways, inhibition of TLR4 signaling, and PPARγ activation [23,24]. 

Thus, MUFAs can reproduce a number of the anti-inflammatory effects of TLR4 or 

induce TNF-α inhibition [25], which suggest that dietary MUFAs constitute an 

attractive nutritional approach for the treatment of MS. 

PPARγ is a fatty acid sensor that adapts β-cell mitochondrial function [26]. 
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Unsaturated fatty acids enhance mitochondrial oxidation levels in insulin-secreting 

cells, which protects against β-cell dysfunction [27]. In line it has been demonstrated 

that NAMPT (also known as visfatin or PBEF) improves insulin sensitivity and exerts 

its hypocholesterolemic effects at least partially through upregulation of the tyrosine 

phosphorylation of IRS-1 protein and the mRNA levels of PPARγ and SREBP-2 [28]. 

NAMPT is considered as a multifunctional adipokine involved in the regulation 

of different pathophysiological conditions. NAMPT is the rate-limiting enzyme in the 

NAD+ biosynthetic pathway starting from nicotinamide and essential when the cellular 

NAD+ pool is depleted, for example through poly-ADP-ribosylation during DNA repair 

and NAD+-dependent protein deacetylase activity. Two forms of NAMPT exist (Figure 

1), intracellular (iNAMPT) and extracellular (eNAMPT). While the function of 

iNAMPT as a NAD+ biosynthetic enzyme is well established, the physiological role of 

eNAMPT is still a matter of debate [29]. eNAMPT is positively secreted through a non-

classical secretory pathway by fully differentiated human adipocytes and hepatocytes. It 

has been suggested that eNAMPT exhibits robust, even higher NAD+ biosynthetic 

activity compared to iNAMPT and that NAD+ biosynthesis mediated by iNAMPT and 

eNAMPT plays a critical role in the regulation of glucose-stimulated insulin secretion in 

pancreatic β-cells. 

The observation that NAMPT has insulin-mimetic functions and is involved in 

the modulation of inflammation has raised the hypothesis that a dysregulation of the 

activity of this molecule may contribute to T2D and MS. Many research papers have 

been published on this topic, with controversial findings. Fasting NAMPT levels were 

found to be elevated in T2D patients, in women with gestational diabetes, and in 

extremely obese individuals (BMI >40), whereas fasting NAMPT levels were reduced 

by weight loss [30]. By contrast, other studies have failed to detect any correlation 
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between fasting NAMPT levels and body fat or insulin sensitivity [31]. In addition, 

NAMPT expression was not altered in a rodent model of the MS as compared with 

wild-type animals. Thus, the role of NAMPT in insulin resistance and diabetes is largely 

unknown and deserves further examination. 

Niacin (NA) or Vitamin B3 is a major substrate for NAMPT. In doses large 

enough to produce pharmacological effects, NA is a potent lipid-modifying agent with a 

broad spectrum of effects, including those aimed at attenuating the risks associated with 

low HDL, high LDL and TG levels in fasting plasma [32]. It is interesting to note that 

fasting TG levels strongly and positively correlated, and represented an independent 

factor associated, with NAMPT levels in healthy subjects and patients with obesity 

and/or T2D [30]. Moreover, fasting TG levels positively correlated with NAMPT 

mRNA expression in the VAT of obese subjects [31]. In contrast, there is also evidence 

of positive correlation between NAMPT and HDL levels, and of negative correlation 

between NAMPT and TG levels in the fasting state in a cohort of subjects with genetic 

predisposition for dyslipidemia [33], suggesting that NAMPT may be an indicator of 

beneficial lipid profile. In support of this notion, oral administration of NA significantly 

increased cellular NAD+ levels and had the ability to reduce fasting TG and LDL, 

whereas raising HDL [34]. These findings raise questions regarding of whether NA 

administration and the type of dietary fatty acids might be harmful or helpful NAMPT 

modulators to influence lipid homeostasis. At this stage, it is possible to argue that 

exogenous NA and the type of fatty acids in plasma TG may regulate NAMPT 

metabolism and function. This assumption substantiates the thought that exogenous TG 

in postprandial TRL may evoke pro- or anti-inflammatory signals in a fatty acid-

dependent fashion. Interestingly, a regulatory role for individual fatty acids, such as 

MUFAs (oleic acid), SFAs (palmitic acid), and omega-3 PUFAs (eicosapentaenoic 
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acid) on NAMPT gene expression has been described in 3T3-L1 murine adipocytes and 

monocytes [35,36]. In obese subjects, a recent cross-sectional study of associations 

between nutrient intake and fasting NAMPT levels has also demonstrated that MUFA 

intake, in the adjusted multivariate analysis, was the only independent predictor of 

fasting NAMPT levels [37]. 

Despite this considerable amount of data, whether different dietary fatty acids, 

including olive oil as a source of MUFAs and omega-3 PUFAs, play a role in NAMPT 

excursions and in the NAMPT-dependent regulation of glucose and lipid metabolism 

and inflammation in the fed and postprandial states remains to be solved. 

In general, the mechanisms that alter NAD+ metabolism probably include 

multiple processes, but the understandings of these mechanisms are currently very 

unclear and a considerable effort in this area is required before we know how changes in 

NAD+ metabolism influence physiology of glucose and lipid metabolism and how 

NAD+ metabolism might be manipulated for healing benefit by specific dietary fatty 

acids.  

 

References 

1. WHO (2011) Global atlas on cardiovascular disease prevention and control: policies, 

strategies and interventions.. 

2. WHO (2011) Diabetes: Fact sheet no. 312. 

3. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, et al. (2009) 

International Diabetes Federation Task Force on Epidemiology and Prevention; 

Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart 

Federation; International Atherosclerosis Society; International Association for the 

Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the 



	   8	  

International Diabetes Federation Task Force on Epidemiology and Prevention; 

National Heart, Lung, and Blood Institute; American Heart Association; World Heart 

Federation; International Atherosclerosis Society; and International Association for the 

Study of Obesity. Circulation120: 1640-1645. 

4. Mancia G, Bombelli M, Facchetti R, Casati A, Ronchi I, et al. (2010)Impact of 

different definitions of the metabolic syndrome on the prevalence of organ damage, 

cardiometabolic risk and cardiovascular events. J Hypertens28: 999-1006. 

5. Martínez-Larrad MT, Lorenzo C, González-Villalpando C, Gabriel R, Haffner SM, et 

al. (2012) Associations between surrogate measures of insulin resistance and waist 

circumference, cardiovascular risk and the metabolic syndrome across Hispanic and 

non-Hispanic white populations. Diabet Med29: 1390-1394. 

6. Duhper S, Buddhe S, Patel S (2013) Managing cardiovascular risk in overweight 

children and adolescents. Pediatr Drugs15: 181-190. 

7. Di Lorenzo C, Dell'agli M, Colombo E, Sangiovanni E, Restani P (2013) Metabolic 

syndrome and inflammation: a critical review of in vitro and clinical approaches for 

benefit assessment of plant food supplements. Evid Based Complement Alternat 

Medhttp://dx.doi.org/10.1158/2013/782461 

8. Nakajima K (2010) Pharmacotherapy of mixed dyslipidemia in the metabolic 

syndrome. Curr Clin Pharmacol5: 133-139. 

9. Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60: 

473-485. 

10. Nakamura T, Obata JE, Takano H, Kawabata K, Sano K, et al. (2009) High serum 

levels of remnant lipoproteins predict ischemic stroke in patients with metabolic 

syndrome and mild carotid atherosclerosis. Atherosclerosis 202 234-240. 

11. Nordestgaard BG, Langsted A, Freiberg JJ (2009) Nonfasting hyperlipidemia and 



	   9	  

cardiovascular disease. Curr Drug Targets 10 328-335. 

12. Enkhmaa B, Ozturk Z, Anuurad E, Berglund L (2010) Postprandial lipoproteins and 

cardiovascular disease risk in diabetes mellitus. Curr Diab Rep 10 61-69. 

13. Ortega A, Varela LM, Bermudez B, Lopez S, Abia R, et al. (2012) Dietary fatty 

acids linking postprandial metabolic response and chronic diseases. Food Funct  3: 22-

27. 

14. López S, Bermúdez B, Pacheco YM, Villar J, Abia R, et al. (2008) Distinctive 

postprandial modulation of beta cell function and insulin sensitivity by dietary fats: 

monounsaturated compared with saturated fatty acids. Am J Clin Nutr  88 638-644. 

15. Lopez S, Bermudez B, Ortega A, Varela LM, Pacheco YM, et al. (2011) Effects of 

meals rich in either monounsaturated or saturated fat on lipid concentrations and on 

insulin secretion and action in subjects with high fasting triglyceride concentrations. 

Am J Clin Nutr 93: 494-499. 

16. Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, et al. (2013) 

Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr 

Biochem24: 613-623.  

17. Van den Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, et al. 

(2003) A paradigm for gene regulation: Inflammation, NF-κB and PPAR. Adv Exp Med 

Biol 544: 181–196. 

18. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, et al. (2011) Dietary 

factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr 

106: S5–S78.  

19. Fessler MB, Rudel LL, Brown JM (2009) Toll-like receptor signaling links dietary 

fatty acids to the metabolic syndrome. Curr Opin Lipidol 20: 379–385.  

20. Sears B, Ricordi C (2012) Role of fatty acids and polyphenols in inflammatory gene 



	   10	  

transcription and their impact on obesity, metabolic syndrome and diabetes. Eur Rev 

Med Pharmacol Sci 16: 1137-1154. 

21. Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose 

tissue remodeling. J Leukoc Biol 88: 33-39.  

22. Killeen MJ, Linder M, Pontoniere P, Crea R (2013) NF-κB signaling and chronic 

inflammatory diseases: exploring the potential of natural products to drive new 

therapeutic opportunities. Drug Discov Today 19: 373-378. 

23. Mihály J, Gericke J, Törőcsik D, Gáspár K, Szegedi A, et al. (2013) Reduced 

lipoxygenase and cyclooxygenase mediated signaling in PBMC of atopic dermatitis 

patients. Prostaglandins Other Lipid Mediat 18, S1098-8823(13)00021-X.  

24. Norris PC, Dennis EA (2012) Omega-3 fatty acids cause dramatic changes in TLR4 

and purinergic eicosanoid signaling. Proc Natl Acad Sci USA 109: 8517-8522. 

25. Sánchez-Fidalgo S, Cárdeno A, Sánchez-Hidalgo M, Aparicio-Soto M, et al. (2013) 

Dietary extra virgin olive oil polyphenols supplementation modulates DSS-induced 

chronic colitis in mice. J Nutr Biochem 24: 1401-1413.  

26. Poulsen Ll, Siersbæk M, Mandrup S (2012) PPARs: fatty acid sensors controlling 

metabolism. Semin Cell Dev Biol 23: 631-639. 

27. García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Muñoz-Yagüe T, Solís-

Herruzo JA (2013) Pioglitazone leads to an inactivation and disassembly of complex I 

of the mitochondrial respiratory chain. BMC Biol11: 88. 

28.  Sun Q, Li L, Li R, Yang M, Liu H, et al.  (2009) Overexpression of 

visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann 

Med 41: 311-320. 

29. Garten A, Petzold S, Korner A, Imai S, Kiess W (2009) Nampt: linking NAD 

biology, metabolism and cancer. Trends Endocrinol Metab 20: 130-138. 



	   11	  

30. Esteghamati A, Alamdari A, Zandieh A, Elahi S, Khalilzadeh O, et al. (2010) Serum 

visfatin is associated with type 2 diabetes mellitus independent of insulin resistance and 

obesity.Diabetes Res Clin Pract 91: 154-158. 

31. Chang YC, Chang TJ, Lee WJ, Chuang LM (2010) The relationship of visfatin/pre-

B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose 

tissue with inflammation, insulin resistance, and plasma lipids. Metabolism 59: 93-99. 

32. Nelson RH, Vlazny D, Smailovic A, Miles JM (2012) Intravenous niacin acutely 

improves the efficiency of dietary fat storage in lean and obese humans. Diabetes 61: 

3172-3175. 

33. Wang P, van Greevenbroek MM, Bouwman FG, Brouwers MC, van der Kallen CJ, 

et al. (2007) The circulating PBEF/NAMPT/visfatin level is associated with a beneficial 

blood lipid profile. Pflugers Arch 454: 971-976. 

34. Schachter M (2005) Strategies for modifying high-density lipoprotein cholesterol: a 

role for nicotinic acid. Cardiovasc Drugs Ther 19: 415-422. 

35. Wen Y, Wang HW, Wu J, Lu HL, Hu XF, et al. (2006) Effects of fatty acid 

regulation on visfatin gene expression in adipocytes. Chin Med J 119: 1701-1708. 

36. de Kreutzenberg SV, Ceolotto G, Papparella I, Bortoluzzi A, Semplicini A, et al. 

(2010) Downregulation of the longevity associated protein sirtuin 1 in insulin resistance 

and metabolic syndrome: potential biochemical mechanisms. Diabetes 59: 1006-1015. 

37. de Luis DA, Aller R, Gonzalez Sagrado M, Conde R, Izaola O, et al. (2010) Serum 

visfatin concentrations are related to dietary intake in obese patients. Ann Nutr Metab 

57: 265-270. 

 

 

 

 



	   12	  

Legend to Figure 

 

Figure 1. Model of putative modes of action for NAMPT to affect cell metabolism 

adaptaed from Garten et al. [29]. NAMPT functions as an intra- and extracellular 

NAD+ biosynthetic enzyme. NAMPT catalyzes the formation of nicotinamide 

mononucleotide (NMN) from nicotinamide (NAM). NMN is subsequently converted to 

NAD+ by three organelle-specific isoforms of nicotinamide mononucleotide 

adenylyltransferase (Nmnat1–3). Intracellularly, NAMPT has been shown to be located 

in different cellular compartments. It affects the function of NAD+-degrading enzymes 

by raising cellular NAD+ levels and consequently influences the regulation of 

metabolism and stress resistance through sirtuins (Sirt1–7) and other NAD+-consuming 

enzymes, such as poly(ADP-ribose)polymerase-1 (PARP-1). The NAD+ metabolism of 

(a) mitochondria and (b) nucleus is possibly influenced by transport of NAD+ 

metabolites from and to the cytoplasm. (c) Extracellularly, NAMPT produces 

nicotinamide mononucleotide (NMN), which might act in an autocrine/paracrine 

fashion and/or be transported to other target tissues, where it acts on glucose-stimulated 

insulin secretion in pancreatic β-cells and potentially elicits other biological responses. 

(d) Possibly, NAMPT also functions as a cytokine by binding to and activating an 

unidentified receptor. 
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