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Meaning has been left outside most theoretical approaches to information in biology. Functional responses
based on an appropriate interpretation of signals have been replaced by a probabilistic description of
correlations between emitted and received symbols. This assumption leads to potential paradoxes, such as
the presence of a maximum information associated to a channel that creates completely wrong
interpretations of the signals. Game-theoretic models of language evolution and other studies considering
embodied communicating agents show that the correct (meaningful) match resulting from agent-agent
exchanges is always achieved and natural systems obviously solve the problem correctly. Inspired by the
concept of duality of the communicative sign stated by the swiss linguist Ferdinand de Saussure, here we
present a complete description of the minimal system necessary to measure the amount of information that
is consistently decoded. Several consequences of our developments are investigated, such as the uselessness
of a certain amount of information properly transmitted for communication among autonomous agents.

M
ajor innovations in evolution have been associated with novelties in the ways information is coded,
modified and stored by biological structures on multiple scales1. Some of the major transitions involved
the emergence of complex forms of communication, being human language the most prominent and

difficult to explain2. The importance of information in biology has been implicitly recognized since the early
developments of molecular biology, which took place simultaneously with the rise of computer science and
information theory. Not surprisingly, many key concepts such as coding, decoding, transcription or translation
were soon incorporated as part of the lexicon of molecular biology3.

Communication among individual cells promoted multicellularity, which required the invention and diver-
sification of molecular signals and their potential interpretations. Beyond genetics, novel forms of non-genetic
information propagation emerged. At a later stage, the rise of neural systems opened a novel scenario to interact
and communicate with full richness2. Human language stands as the most complex communication system and,
since communication deals with the creation, reception and processing of information, understanding commun-
ication in information theoretic terms has become a major thread in our approach to the evolution of language.

In its classical form, information theory (IT) was formulated as a way of defining how signals are sent and
received through a given channel with no attention to their meaning. However, in all kinds of living systems, from
cells sharing information about their external medium, individuals of a given species surviving in a world full of
predators or when two humans or apes exchange signals, a crucial component beyond information is its mean-
ingful content4. The distinction is very important, since information has been treated by theoreticians since
Shannon’s seminal work5 as a class of statistical object that measures correlations among sets of symbols, whereas
meaning is inevitably tied to some sort of functional response with consequences for the fitness of the commun-
icating agents. This standard scheme describing information transmission through a noisy channel5 is summar-
ized in figure (1)a. The most familiar scenario would be described by a speaker (S) and a listener or receiver (R)
having a conversation in a living room. The air carries the voice of the first and is the channel, which would be
reliable (low or zero noise) if nothing except R and S were present. Instead, the channel will become more and
more unreliable (noisy) as different sources of perturbation interfere. These can be very diverse, from air
turbulence and children laughing to another conversation among different people. Consistently with any stand-
ard engineering design, Shannon’s picture allows us to define efficient communication in terms somewhat similar
to those used -for example- within electric transmission networks. In this case, a goal of the system design is
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minimizing the heat loss during the transmission process.
Information is a (physically) less obvious quantity, but the approach
taken by standard IT is quite the same.

As a consequence of its statistical formulation, IT does not take
into account ‘‘meaning’’ or ‘‘purpose’’ which, as noted by Peter
Schuster1, are also difficult notions for evolutionary biology.
Despite this limitation, it has been shown to successfully work in
the analysis of correlations in biology6. However, one undesirable
consequence of this approach is that some paradoxical situations
can emerge that contradict our practical intuition. An example is
that a given pair of signals s1, s2 associated to two given objects or
events from the external world could be ‘‘interpreted’’ by the receiver
of the messages in a completely wrong way –‘‘fire’’ and ‘‘water’’, for
example, could be understood, as ‘‘water’’ and ‘‘fire’’, respectively.
Measured from standard IT -see below- the information exchanged
is optimal -even perfect- if ‘‘fire’’ (‘‘water’’) is always interpreted as
‘‘water’’ (‘‘fire’’). In other words, full miscommunication can also
score high, as perfectly ‘‘efficient’’, within Shannon’s framework.

Therefore, one should approach the communicative sign as a dual
entity that must be preserved as a whole in the communicative
exchange. This crucial duality sign in communicative exchanges
was already pointed out -with some conceptual differences to the
version we will develop below-before the birth of information theory
by the Swiss linguist Ferdinand de Saussure in his acclaimed Cours de
linguistique générale7.

It seems obvious that meaning -and its connection to some signal,
in order to create the dual entity- plays an essential role and has been
shaped through evolution: ‘‘the message, the machinery processing
the message and the context in which the message is evaluated are
generated simultaneously in a process of coevolution’’1. In our
bodies, proper recognition of invaders is essential to survival, and
failures to recognizing the self and the non-self are at the core of
many immune diseases8,9. Similarly, learning processes associated to
proper identification of predators and how to differentiate them
from inmates are tied to meaningful information. Beyond the specific
details associated to each system, correct information storing and
sharing, and the relevance of meaning is well illustrated by its impact
on evolutionary dynamics. As pointed out in3 we can say that, in
biology, the coder is natural selection. In this way, the use of evolu-
tionary game theoretic arguments has played a very important role in
shaping evolutionary approaches to language and commmunica-
tion10–15, but require some extension in order to properly account
for meaningful information. Moreover, evolutionary robotics and
the artificial evolution of protolanguages and proto-grammars is a
unique scenario where such a framework naturally fits16–22. Evolving
robots capable of developing simple communication skills are able of
acquiring a repertoire of appropriate signals, share them and inter-
pret correctly the signals sent by other agents. The coherent develop-
ment of a shared set of symbols that is correctly used -and thus where
‘‘meaning’’ is preserved- becomes central. Such coherence results
from the combination of a shared repertoire of signals together with
a shared perception of the external world, as detected and perceived
by the same class of sensing devices.

In this paper we develop and describe an information-theoretic
minimal system in which the signal is linked to a referential value.
This relation is assumed to be simple and direct, so that no other
process than the mapping is assumed. Other forms of more complex
meaning associations would deviate from the spirit of the paper,
which is to introduce the minimum framework accounting for the
conservation the simplest form of meaning. In a nutshell, we are
going to derive an information-theoretic measure able to grasp the
consistency of the shared information between agents, when mean-
ing is introduced as a primitive referential value attributed to one or
more signals.

Results
We start this section describing the minimal system incorporating
referential values for the sent signals. Within this system, we show
what is meant when we say that information theory is blind to any
meaning of the message. We then derive the amount of consistently
decoded information between two given agents exchanging informa-
tion of their shared world, thereby fixing the problem pointed out
above, and analyze some of its most salient properties, including the
complete description of the binary symmetric channel within this
new framework.

The minimal system encompassing referentiality. Our minimal
system to study the referential or semantic consistency of a given
information exchange will involve two autonomous communicative
agents, A, B, a channel, L, and a shared world, V. Agents exchange
information about their shared world through the channel -see
figure (2). Now we proceed to describe it in detail.

Figure 1 | In standard theory of information, as defined in Shannon’s

theory, a communication system (a) is described in terms of a sequential

chain of steps connecting a source of messages (S) and a final receiver (R).

The source can be considered linked to some external repertoire of objects

(V). An encoder and a decoder participate in the process and are tied

through a channel L, subject to noise. The acquisition and evolution of a

language, as it happens in artificial systems of interacting agents, like robots

(b), involves some additional aspects that are usually ignored in the

original formulation of Shannon’s approach. Those include the

embodiment of agents and the necessary consistency in their

communicative exchanges emerging from the their perceptions of the

shared, external world. Picture courtesy of Luc Steels.
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Description. An agent, A, is defined as a pair of computing devices,

A: PA,QA
� �

, ð1Þ

where PA is the coder module and QA is the decoder module. The
shared world is defined by a random variable XV, which takes values
from the set of events,V,V5 {m1, …, mn}, denoting the (always non-
zero) probability associated to any event mk gV as p(mk). The coder
module, PA, is described by a mapping from V to the set of signals:
S~ s1, . . . ,snf g. We will here assume Vj j~ Sj j~n, unless the con-
trary is indicated. The mapping that represents the coder module is
defined by means of a matrix of conditional probabilities PA, whose
elements PA

ij ~PA sjjmi

� �
satisfy the normalization conditions

(namely, for all mi g V,
X

jƒn
PA

ij ~1). The outcome of the coding

process is depicted by the random variable Xs, taking values from S
according to a probability distribution

q sið Þ~
X
jƒn

p mj
� �

PA
ij : ð2Þ

The channel L is characterized by the n 3 n matrix of conditional
probabilities L, with matrix elements Lij~RL sjjsi

� �
). The random

variable X0s describes the output of the composite system world 1

coder 1 channel, thereby taking values on the set S, and follows the
probability distribution q9, defined as

q0 sið Þ~
X

k

p mkð Þ
X
jƒn

PA
kjLji: ð3Þ

Finally, the decoder module is a computational device described by a
mapping from S to V; i.e. it receives S as the input set, emitted by
another agent through the channel, and yields as output elements of
the set V. QA is completely defined by its transition probabilities,
namely, QA

ik~PA mkjsið Þ, which satisfy the normalization conditions
(i.e., for all si[S,

X
kƒn

QA
ik~1). We emphasize the assumption that,

in a given agent A, following [14, 15] (but not [10, 11]) there is a
priori no correlation between PA and QA.

Now suppose that we want to study the information transfer
between two agents sharing the world. Let us consider A the encoder
agent and B the decoder one, although we emphasize that both agents
can perform both tasks. Agent B tries to reconstruct XV from the
information received from A. The description of V made by agent B
is depicted by the random variable X0V, taking values on the set V and
following the probability distribution p9, which takes the form:

p0 mið Þ:
X
lƒn

p mlð ÞPAB mijmlð Þ, ð4Þ

where

PAB mijmlð Þ~
X
j,rƒn

PA
lj LjrQB

ri: ð5Þ

From which we can naturally derive the joint probabilities,
PAB mi,mj

� �
as follows:

PAB mi,mj
� �

~
X

l,r

p mj
� �

PA
jl LlrQB

ri: ð6Þ

We say that X0V is the reconstruction of the shared world, XV, made by
agent B from the collection of messages sent by A. Summarizing, we
thus have a composite system where the behavior at every step is
described by a random variable, from the description of the world,
XV to its reconstruction, X0V -see figure (2a):

V ?
z}|{XV*p

A ?
z}|{Xs*q

L ?
z}|{X0s*q0

B ?
z}|{X0
V
*p0

V: ð7Þ

At this point, it is convenient to introduce, for the sake of clarity,
some new notation. We will define two matrices, namely J(AB) and
L(AB) in such a way that Jij ABð Þ:PAB mi,mj

� �
and

Lij ABð Þ:PAB mjjmi
� �

. Finally, we will define the probability distri-
bution Li(AB) ; {Li1(AB), …, Lin(AB)}. This new notation will
enable us to manage formulas in a more compact way.

Information-theorethic aspects of this minimal system. First we shall
explore the behaviour of mutual information in this system. Detailed
definitions of information-theory functionals used in this subsection
are provided in the Methods section. Under the above described
framework, we have two relevant random variables: the world XV

and the reconstruction of the world X0V. Its mutual information
I XV : X0V
� �

is defined as5,23,24:

I XV : X0V
� �

~H XVð Þ{H XVjX0V
� �

: ð8Þ

The above expression has an equivalent formulation, namely

Figure 2 | Minimal communicative system to study the conservation of

referentiality (a): A shared world, whose events are the members of the set

V and whose behavior is governed by the random variable XV. A coding

engine, PA, which performs a mapping between V and the set of signals S,

being Xs the random variable describing the behavior of the set of signals

obtained after coding. The channel, L, may be noisy and, thus, the input of

the decoding device, QB, depicted by X0s, might be different from Xs. QB

performs a mapping between S and V, whose output is described by X0V.

Whereas mutual information provides a measure of the relevance of the

correlations between XV and X0V, consistent information evaluates the

relevance of the information provided by consistent pairs with regard to

the overall amount of information. In this context, from a classical

information-theoretical point of view, situations like b) and c) could be

indistinguishable. By defining the so-called consistent information we can

properly differentiate b) and c) by evaluating the degree of consistency of

input/output pairs -see text.
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I XV : X0V
� �

~
X
i,jƒn

Jij ABð Þ log
Jij ABð Þ

p mið Þq mj

� � , ð9Þ

where the right side of the above equation can be identified as the
Kullback-Leibler divergence between distributions J(AB) and p ? q:

I XV : X0V
� �

~D J ABð Þjjp:qð Þ: ð10Þ

Within this formulation, the mutual information is the amount of
accessory bits needed to describe the composite system XV, X0V taking
as the reference the distribution p ? q, which supposes no correlation
between XV and X0V.

Let us underline a feature of mutual information which is relevant
for our purposes. As is well-known, max I XV,X0V

� �
ƒH XVð Þ, and

equality holds if there is no ambiguity in the information processing
process, meaning that the process is reversible, in logical terms. Thus,
every event mi g V has to be decoded with probability 1 to some
event mj g V which, in turn, must not be the result of the coding/
decoding process of any other event. In mathematical terms, this
means that PA, QB, L g Pn3n, being Pn3n the set of n 3 n per-
mutation matrices, which are the matrices in which every file and
column contains n 2 1 elements equal to 0 and one element equal to
1 -see Methods section. It is worth emphasizing that dn3n, the n 3 n
identity matrix is itself a permutation matrix. Notice that if L(AB) ?
d some symbol mi sent by the source is decoded as a different element
mj. This shift has no impact on the information measure
I XV : X0V
� �

if L ABð Þ[Pn|n, and this is one of the reasons by which
it is claimed that the content of the message is not taken into account
in the standard information measure. Actually, it is straightforward
to show -see Appendix B- that only n! out of the (n!)3 configurations
leading to the maximum mutual information also lead to a fully
consistent reconstruction -i.e., a reconstruction where referential
value is conserved. This mathematically shows that, for autonomous
agents exchanging messages, mutual information is a weak indicator
of communicative success.

Derivation of consistent information. Now we have a complete
description of the minimal system able to encompass referential
values for the sent signals. It is the objective of this section to
derive an information-theoretic measure, different from mutual
information, that will allow us to evaluate the amount of
consistently decoded information.

Preliminaries. The rawest evaluation of the amount of consistently
decoded pairs is found by averaging the probability of having a
consistent coding/decoding process during an information exchange
between agent A and agent B. This corresponds to the view of an
external observer simply counting events and taking into account
only whether they are consistently decoded or not. This probability,
denoted as hAB, is obtained by summing the probability of having
consistent input output pair, i.e.:

hAB~tr J ABð Þ~
X
iƒn

Jii ABð Þ: ð11Þ

This formula has been widely used as a communicative payoff for an
evolutionary dynamics in which consistent communication has a
selective advantage11,14,15. We observe that the probability of error
pe(AB) in this scenario is given by pe(AB) 5 1 2 hAB. Therefore,
thanks to Fano’s inequality -see Methods section-, we can relate this
parameter to the information-theoretic functionals involved in the
description of this problem, namely:

hABƒ1{
H XVjX0V
� �

log n{1ð Þ : ð12Þ

From this parameter, we can build another, a bit more elaborated
functional. We are still under the viewpoint of the external observer

who is now interested in the fraction of information needed to
describe the composite system XV, X0V that comes from consistent
input/output pairs when information is sent from A to B. This frac-
tion, to be named sAB, is:

sAB~
tr J ABð Þlog J ABð Þð Þ

H XV,X0V
� � : ð13Þ

We observe that the above quantity is symmetrical in relation to XV

and X0V. These two estimators provide global indicators of consist-
ency of the information exchange.

Consistent information. However, we can go further and ask us how
much of the information from the environment is consistently decoded
by agent B when receiving data from A. As a first step, we observe that,
since Jij(AB) 5 p(mi)Lij(AB), we can rewrite equation (9) as:

I XV : X0V
� �

~
X
iƒn

p mið Þ
X
jƒn

Lij ABð Þlog
Lij ABð Þ
p0 mj
� �

~
X
iƒn

p mið ÞD Li ABð Þkp0ð Þ:
ð14Þ

Knowing that D(Li(AB)jjq) is the information gain associated to
element mi, p(mi)D(Li(AB)jjq) is its weighted contribution to the
overall information measure. If we are interested in the amount of
this information that is consistently referentiated, we have to add an
‘‘extra’’ weight to p(mi), namely Lii(AB), which is the probability of
having mi both at the input of the coding process and at the output.
Thus, since

Lii ABð Þp mið ÞD Li ABð Þkqð Þ~Jii ABð ÞD Li ABð Þkp0ð Þ, ð15Þ

the amount of consistent information conveyed from agent A to agent
B, I ABð Þ, will be:

I ABð Þ~
X
iƒn

Jii ABð ÞD Li ABð Þkp0ð Þ: ð16Þ

Since this is the most important equation of the text, we rewrite it
using standard probability notation:

I ABð Þ~
X
iƒn

PAB mi, mið Þ
X
jƒn

PAB mj

��mi

� �
log

PAB mj

��mi
� �
p0 jð Þ

� �
:ð17Þ

We observe that the dissipation of consistent information is due to
both standard noise H XVjX0V

� �
, and another term, which is sub-

tracted to I XV : X0V
� �

, accounting for the loss of referentiality.
Using equations (8, 9) and (16) we can isolate this new source of
information dissipation, the referential noise, n(AB), leading to:

n ABð Þ~
X
iƒn

D Li ABð Þkqð Þ
X
k=i

Jik ABð Þ
" #

: ð18Þ

Therefore, the total loss of referential information or total noise will
be described as

g ABð Þ:H XVjX0V
� �

zn ABð Þ: ð19Þ

The above expression enables us to rewrite equation (16) as:

I ABð Þ~H XVð Þ{g ABð Þ, ð20Þ

which mimics the classical Shannon Information, now with a more
restrictive noise term. Interestingly, the above expression is not sym-
metrical: the presented formalism distinguishes the world, XV, from
its reconstruction, X0V. If we take into account that, according to the
definition we provided for an autonomous communicating agent, the
information can flow in both senses (A R B and B R A), we can

www.nature.com/scientificreports
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compute the average success of the communicative exchange
between A and B, I A : Bð Þ, as:

I A : Bð Þ~H XVð Þ{ 1
2

g ABð Þzg BAð Þð Þ: ð21Þ

I A : Bð Þ is the consistent information about the world V shared by
agents A and B. In contrast to the previous one, the above expression
is now symmetrical, I A : Bð Þ~I B : Að Þ, because both agents share
the same world, represented by XV. We remark that this is an
information-theoretic functional between two communicating
agents, it is not an information-measure between two random vari-
ables, like mutual information is. This equation quantifies the com-
munication success between two minimal communicating agents A,
B transmitting messages about a shared world.

Properties. In this section we draw several important consequences
from the treatment just presented, based on the consistent
information concept. The rigorous and complete proofs behind
them can be found in the Methods section, together with a brief
discussion about the actual consistency of this measure when
applied to single agents in a population (i.e., the ‘self-consistency’
or coherence that an individual agent should also keep about the
world).

The binary symmetric channel. We first consider the simplest case,
from which we can easily extract analytical conclusions that help us
gain intuition: the Binary Symmetric Channel with uniform input
probabilities. We are concerned with a world V having two events
such that p(1) 5 p(2) 5 1/2, two agents A and B sharing information
about this world, and a binary channel, L. The agents’ and channel
configuration are assumed to be of the following form:

L ABð Þ~
1{

1{

� �
, ð22Þ

being L(AB) 5 PALQB, as defined at the beginning of the results
section. We will refer to as the referential shift, which is the prob-
ability that a given event is wrongly decoded in the reconstruction of
V. In this minimal system all functionals can be easily evaluated.
First, we have that I XV, X0V

� �
~1{Hð Þ, and that hAB~1{ , being

Hð Þ the entropy of a Bernouilli process having parameter -see
Methods section. This leads to the following expression of the con-
sistent information:

I ABð Þ~hAB 1{Hð Þð Þ~hABI XV, X0V
� �

: ð23Þ

We can also easily compute sAB:

sAB~hAB
1{loghAB

2{Hð Þ : ð24Þ

The behavior of consistently decoded information is shown in fig-
ure (3). In these plots we confronted the behavior of I XV : X0V

� �
,

H XV, X0V
� �

and H XVjX0V
� �

with their analogous counterparts when
referentiality is taken into account, nalemy I ABð Þ and sAB and
n(AB) (and g(AB)) respectively. We can observe the symmetric
behavior of the first ones against , which highlights the total insens-
ibility to referentiality conservation of these classical measures.
Instead, we observe that I ABð Þ, sAB, g(AB) and n(AB) do reflect
the loss of referentiality conservation, showing a non-symmetric
behavior with a generally decreasing trend as referentiality is pro-
gressively lost.

Decrease of information due to referential looses. One interesting
consequence of equation (23) is that, except for very restricted situa-
tions, the presence of noise has a negative impact on the value of the
consistent information, leading to the general conclusion that:

I ABð ÞvI XV : X0V
� �

: ð25Þ

This latter inequality shows that, in most cases, in the absence of a
designer, part of the information properly transmitted is actually
useless for communication in a framework of autonomous agents.
As demonstrated in the Methods section, the strict inequality holds
in general. Indeed, the above relation becomes equality only in the
very special case where there is perfect a matching between the two
agents (i.e.: L(AB) 5 dn3n, being dn3n the n 3 n identity matrix.) or
trivially, in the case where I XV : X0V

� �
~0.

But we can go further. Let us consider that we know that the
system displays a given value of I XV : X0V

� �
and, by assumption,

we also know H(XV). In these conditions, one can easily derive
H XVjX0V
� �

by simply computing H XVð Þ{I XV : X0V
� �

. But it is pos-
sible to set a bound to the value of I ABð Þ as well. As in many
problems of information theory, the general case is hard, even
impossible to deal with. However, several approaches become viable

Figure 3 | The binary symmetric channel when we enrich the
communication system with a referential set shared by coder and decoder
agent. Plots correspond to the different values of the binary symmetric

channel along , the referential shift parameter, from ~0 (total

information with no loss of referentiality) to ~1 (total information with

total loss of referentiality). On the left, from top to bottom, we have the

classical, well known plots of I XV : X0V
� �

, H XV, X0V
� �

(normalized to 1)

and H XVjX0V
� �

. On the right, we have the equivalent ones accounting for

the referentiality conservation, namely, on top, I ABð Þ, next, sAB and in

the last plot, we have g(AB) (black line) and n(AB) (red line). Units are

given in bits. We observe that both I XV : X0V
� �

(and H XVjX0V
� �

) have a

symmetric behavior, with a minimum (maximum) at ~
1
2

(total

uncertainty). On the contrary, I ABð Þ does not show a symmetric

behavior, showing two minima, at ~
1
2

and at ~1. There is a local

maxima at about <0:85, which is a by-product of the combination of the

loss of uncertainty of the system and a small but non-vanishable degree of

referentiality conservation.
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in special but illustrative cases. Let us assume the paradigmatic
configuration in which (;mi g V)p(mi) 5 1/n and where L(AB)
acts as a symmetric channel. In this case, we have that
I ABð ÞƒhABI XV : X0V

� �
, where

hABƒ

I XV : X0V
� �

H XVð Þ , ð26Þ

and, therefore:

I ABð Þv
I2 XV : X0V
� �
H XVð Þ z1: ð27Þ

(See the Methods section for the details of the above derivations).
This tells us, after some algebra, that in this framework,

g ABð Þ§2H XVjX0V
� �

{
H2 XVjX0V
� �
H XVð Þ z1: ð28Þ

Therefore, for H XVð Þ?H XVjX0V
� �

, we have that
g ABð Þ *w 2H XVjX0V

� �
, leading to

I ABð Þ *v H XVð Þ{2H XVjX0V
� �

ð29Þ

and, for example, for the case in which H XVð Þ<2H XVjX0V
� �

we have
that:

I ABð Þ*vH XVð Þ{ 3
2

H XVjX0V
� �

~
1
2

I XV, X0V
� �

,

ð30Þ

The above examples enable us to illustrate the strong impact of noise
on the conservation of the referential value within a communication
exchange -stronger than the one predicted by standard noise.

Discussion
Shannon’s information theory had a great, almost immediate impact
in all sorts of areas, from engineering and genetics to psychology or
language studies25. It also influenced the work of physicists, particu-
larly those exploring the foundations of thermodynamics, who found
that the entropy defined by Shannon provided powerful connections
with statistical mechanics, particularly in terms of correlations. It is
mainly at that level -i. e. the existence of correlations among different
subsystems of a given system- that the use of information theory has
proved useful. But correlations do not ensure a crucial type of coher-
ence that seems necessary when dealing with meaningful commun-
ication: the preservation of referentiality.

In this paper we have addressed a especially relevant problem,
namely the development of an information-theoretic framework able
to preserve meaning. This is a first step towards a more general goal,
which would involve establishing the basis for an evolutionary theory
of language change including referentiality as an explicit component.
We have shown that, if consistent information is considered, its value
is significantly lower than mutual information in noisy scenarios. We
have derived an analytical form of consistent information, which
includes referential noise along with the standard noise term. Our
information measure defines a non-symmetrical function and prop-
erly weights the -more strict- requirement of consistency. We have
illustrated our general results by means of the analysis of a classical,
minimal scenario defined by the binary symmetric channel. The
approach taken here should be considered as the formally appropri-
ate framework to study the evolution of communication among
embodied agents, where the presence of consistency is inevitable
due to shared perception constraints. Moreover, it might also be
useful as a consistent mathematical framework to deal with cognit-
ive-based models of brain-language evolution26–28. At this point,
we should point out an important issue: Consistency of the

communicative exchange is here evaluated between agents, not intern-
ally to a given agent talking to itself. Actually, there is no a priori any
correlation between the coding and the decoding modules of a given
agent. In doing so, we take the viewpoint proposed by [14] and [15].
Other approaches assumed an explicit link between the coding and
decoding modules of the agent, thereby avoiding from the beginning
the paradoxical situation in which two agents perfectly understand
each other but, at the same time, they are not able to understand
themselves [10, 11]. However, as shown in29, this situation is unlikely
to occur under selective pressures, for the frameworks depicted by
these earlier works. In the Methods section is shown that the proposed
framework has also the same property, i.e., that the maximisation of
consistent communication in a given community of agents leads to the
self-consistency of each of them, without the need of imposing it
externally, thereby simplifying the mathematical apparatus.

The framework we have developed is somehow inspired by
Saussure’s duality of sign: a (linguistic) sign is a twofold entity com-
pounded of a signifier and a signified. However, it must be mentioned
that there is a substantial difference between the theory we have
developed and a Saussurean approach. According to Saussure, the
relation between a signifier and a signified is fixed with respect to the
linguistic community that uses the sign. ‘‘The masses have no voice in
the matter, and the signifier chosen by language could be replaced by
no other’’. Saussure adopts therefore a ‘static’ approach to the study of
signs, whereas we adopt a dynamic perspective that allows us to
address the possibility that different agents assign different meanings
to the same symbol, in which case referentiality is not preserved. In
this way we extend evolutionary game-theoretic arguments in order
to derive a measure of consistency of the shared information between
agents by incorporating the (non-)preservation of referentiality.

In the presented work we took the simplest possible form of mean-
ing, namely, its referential object. However, we said nothing about
the object itself. Further works might explore the inclusion in the
above proposed framework an explicit quantification of meaning
beyond its referential value, to rank events of the world and to refine
the role of the information functional to evaluate proper commun-
ication exchanges in selective scenarios. In addition, new hallmarks
beyond the agent-channel-agent should be explored, leading to new
forms of information which play a role in biological organisation and
which are poorly reflected in such a schema.

Methods
Definitions. Information theoretic functionals. The following definitions are intended
to be minimal. We refer the interested reader to any standard textbook on
information theory, such as [23] or [24].

.-Given a random variable XV taking values over the set V following a probability
distribution p,

H XVð Þ~{
X
iƒn

p mið Þlog p mið Þ ð31Þ

is the standard Shannon or statistical entropy.
.-Given two random variables, XV and X0V ,

H XVjX0V
� �

~{
X
lƒn

q mið Þ
X
jƒn

P mj

��mi
� �

log P mj

��mi
� �

ð32Þ

is the conditional entropy of XV with respect X0V , being, in that case,

P mj

��mi
� �

:P XV~mj

��X0V~mi
� �

. Additionally,

H XVð Þ,X0V~{
X
lƒn

q mj
� �X

jƒn

P mj,mi
� �

log P mj,mi
� �

ð33Þ

where P mj,mi
� �

:P XV~mi,X0V~mj
� �

is the joint entropy of the two random vari-

ables XV, X0V.
.-Given two probability distributions p1, p2 defined over the set V, the Kullback-

Leibler divergence of relative entropy of p1 with respect p2 is:

D p1kp2ð Þ~
X
iƒn

p1 xið Þlog
p1 xið Þ
p2 xið Þ

, ð34Þ
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which is the amount of extra information we need to describe p1 taking as the
reference distribution p2.

.-Fano’s inequality. The probability of error in decoding is bounded satisfies the
following inequality:

pe§
H XVjX0V
� �

{1

log n{1ð Þ : ð35Þ

.-A Bernoulli process is a stochastic process described by a random variable X
taking value in the set A 5 {0, 1}, being p 0ð Þ~1{ and p 1ð Þ~ . is the parameter

of the Bernoulli process. Its entropy H(X) is commonly referred as Hð Þ, since it only

depends on this parameter:

Hð Þ~{ 1{ð Þlog 1{ð Þ{ log : ð36Þ

Permutation matrices. A permutation matrix is a square matrix which has exactly one
entry equal to 1 in each row and each column and 0’s elsewhere. For example, if n 5 3,
we have 6 permutation matrices, namely:

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA,

1 0 0

0 0 1

0 1 0

0
BB@

1
CCA,

0 1 0

1 0 0

0 0 1

0
BB@

1
CCA,

0 0 1

1 0 0

0 1 0

0
BB@

1
CCA,

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA,

0 0 1

0 1 0

1 0 0

0
BB@

1
CCA:

ð37Þ

The set of n 3 n permutation matrices is indicated asPn3n and it can be shown that, if
A g Pn3n, A21 5 AT g Pn3n and, if A, B g Pn3n, the product AB g Pn3n.
Furthermore, it is clear that dn3n g Pn3n, being d the identity matrix or Kronecker
symbol, defined as dij 5 1 if i 5 j and dij 5 0, otherwise.

Inequalities. We present the inequalities described in the main text in terms of three
lemmas on the upper bounds of I ABð Þ. The first one concerns inequality (25). The
second one is general and supports the third, which proves inequality (27):

Lemma 1.- Let AB be two agents sharing the world V. The Amount of consistent
information transmitted from A to B -when A acts as the coder agent and B as the
decoder one- satisfies that

I ABð Þ~I XV : X0V
� �

ð38Þ

only in the following two extreme cases:

1. I XV : X0V
� �

~0, or
2. L(AB) 5 dn3n.

Otherwise, I ABð ÞvI XV : X0V
� �

.
Proof.- The first case is the trivial one in which there is no information available due

to total uncertainty -corresponding to ~
1
2

in the case of the symmetric binary

channel studied above, see also figure (3). The second one is more interesting. Indeed,
having L(AB) 5 d means that

PA,L,QB[Pn|n
� �

and PA~ LQB
� �T

, ð39Þ

where we use that, if C g Pn3n, C21 5 CT, also having that CT g Pn3n. Out of these
two situations, ’Jik(AB) . 0, in which i ? k, since there are more than n non-zero
entries in the matrix L(AB), leading to

I ABð ÞvI XV : X0V
� �

: ð40Þ

Lemma 2.- Let AB be two agents sharing the world V. The Amount of consistent
information transmitted from A to B -when A acts as the coder agent and B as the
decoder one- is bounded as follows:

I ABð Þƒ 1{
H XV jX0Vð Þ{1

log n{1ð Þ

� �
max

i
D Li ABð Þ p0kð Þf g

� �
: ð41Þ

Proof.- Let~v and~u be two vectors of Rn . Its scalar product, ~v,~uh i
X

iƒn
viui, is

bounded, thanks to the so-called Hölder’s inequality, in the following way:

~v,~uh ij jƒ
X
iƒn

va
i

 !1
a X

iƒn

ub
i

 !1
b

, ð42Þ

as long as a and b are Hölder conjugates, i.e., 1/a 1 1/b 5 1. The above expression can
be rewritten, using the notation of norms as ~v,~uh ij jƒ ~vk ka

: ~uk kb -recall that, for a 5 b

5 1/2 we recover the well-known Schwartz inequality for the euclidean distance. If we
put a R 1 and b R ‘ we obtain

~v,~uh ij jƒ ~vk k1
: ~uk k?, ð43Þ

where

~vk k1~
X
iƒn

vi; and ~uk k?~ max
i

uif g, ð44Þ

being the last one the so-called Chebyshev’s norm. Now we want to apply this
machinery to our problem. The key point is to realize that I ABð Þ can be expressed as
a scalar product between two vectors, having the first one coordinates J11(AB), …,
Jnn(AB) and the second one D(L1(AB)jjq), …, D(Ln(AB)jjp9). We remark that this
step is legitimated because all the terms involved in the computation are positive.
Therefore, by applying the Hölder’s inequality over the definition of I ABð Þ, we have
that

I ABð Þ~
X
iƒn

Jii ABð ÞD Li ABð Þ p0kð Þ

ƒ

X
iƒn

Jii

 !
max

i
D Li ABð Þ p0kð Þf g

� �

~hAB max
i

D Li ABð Þ p0kð Þf g
� �

,

ð45Þ

being hAB defined in equation (11). Now we observe that the probability of error in
referentiating a given event of V is pe 5 1 2 hAB. This enables us to use Fano’s
inequality to bound hAB:

hABƒ 1{
H XVjX0V
� �

{1

log n{1ð Þ

� �
, ð46Þ

thereby obtaining the desired result.
Lemma 3.- (Derivation of inequality (27)). Let AB be two agents sharing the world

V and such that (Vmi g V)p(mi) 5 1/n and that the channel defined by L(AB) is
symmetric. Then, the following inequality holds:

I ABð Þv
I2 XV : X0V
� �
H XVð Þ z1: ð47Þ

Proof.- The first issue is to show that, if (Vmi g V)p(mi) 5 1/n and the channel
defined by L(AB) is symmetric, then Vmi[Vð Þ D Li ABð Þ qkð Þ~I XV : X0V

� �
. Indeed,

since the channel is symmetric p 5 p9 and thus H XVð Þ~H X0V
� �

~log n. Then take
any mi g V and compute D(Li(AB)jjp9):

D Li ABð Þ qkð Þ~
X
jƒn

Lij ABð Þ log Lij ABð Þzlog n

~log n{H X0V
��XV~mi

� �
~log n{

X
iƒn

1
n

X
jƒn

H X0V
��XV~mi

� �
~I XV : X0V
� �

,

ð48Þ

where in the third step we used the property that, in a symmetric channel, (Vmi, mj g
V) H X0V

��XV~mi
� �

~H X0V
��XV~mj

� �
. Thus, if we average a constant value, we

obtain such a value as the outcome (last step). Then, we apply inequality (41):

I ABð Þƒ 1{
H XVjX0V
� �

{1

log n{1ð Þ

� �
I XV : X0V
� �

v 1{
H XVjX0V
� �

{1

H XVð Þ

� �
I XV : X0V
� �

ƒ

I2 XV : X0V
� �
H XVð Þ z1,

ð49Þ

where, in the second step we used the fact that H(XV) 5 log n . log(n 2 1) and in the
third step we bound the remaining term

I XV : X0V
� �

H XVð Þ ƒ1, ð50Þ

since I XV : X0V
� �

ƒH XVð Þ, thus completing the proof.

Achieving self-consistency maximizing consistent information. The structure of
the functional accounting for the amount of consistent information shared by two
agents -equation (21)- can lead to the paradoxical situation in which high scores on
I A : Bð Þ do not imply high values of I A : Að Þ or I B : Bð Þ. In brief, the degeneracy of
possible optimal configurations seems to jeopardize self-understanding even in the
case in which communication is optimal. Interestingly, this apparent paradox can be
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ruled out if we consider a population of agents, for several representative cases, as
demonstrated in29 using a version of hAB. For the particular case where gAB 5 0, we
have seen at the beginning of this section that I ABð ÞƒI XV : X0V

� �
, having the

equality only in the special case in which L(AB) 5 dn3n, which, in turn, implies that
I ABð Þ~H XVð Þ. The interesting issue is that in the presence of three or more agents
A, B and C:

I A : Bð Þ~H XVð Þ
I A : Cð Þ~H XVð Þ
I B : Cð Þ~H XVð Þ

9>=
>;[

I A : Að Þ~H XVð Þ
I B : Bð Þ~H XVð Þ
I C : Cð Þ~H XVð Þ

ð51Þ

i.e., maximizing the communicative success over a population of agents results
automatically in a population of self-consistent agents, although there is no a-priori
correlation between the coder and the decoder module of a given agent. Now we
rigorously demonstrate this statement.

Lemma 3.- Let us have three Ai, Aj, Ak agents communicatively interacting and
sharing the world V. Then, if Vivkð ÞI Ai : Akð Þ~H XVð Þ, then
Við ÞI Ai : Aið Þ~H XVð Þ.

Proof.- We observe, as discussed above, that the premise only holds if (Vi , k)

PAi ,QAi ,L,PAk ,QAk[Pn|n, ð52Þ

and

PAi ~ LQAk
� �T^PAk ~ LQAi

� �T
: ð53Þ

Now we observe that, if I Ai : Akð Þ~H XVð Þ, I Ai : Aj
� �

~H XVð Þ, we conclude
that:

QAk ~QAj ;^PAk ~PAj ð54Þ

i.e., Ak 5 Aj. Now, knowing that I Ak : Aj
� �

~H XVð Þ, then:

I Ak : Akð Þ~H XVð Þ: ð55Þ

We can easily generalize this reasoning to an arbitrarily large number of commun-
icating agents.
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