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Abstract

Population proteomics has a great potential to address evolutionary and ecological questions, but its use in wild
populations of non-model organisms is hampered by uncontrolled sources of variation. Here we compare the response to
temperature extremes of two geographically distant populations of a diving beetle species (Agabus ramblae) using 2-D
DIGE. After one week of acclimation in the laboratory under standard conditions, a third of the specimens of each
population were placed at either 4 or 27uC for 12 h, with another third left as a control. We then compared the protein
expression level of three replicated samples of 2–3 specimens for each treatment. Within each population, variation
between replicated samples of the same treatment was always lower than variation between treatments, except for some
control samples that retained a wider range of expression levels. The two populations had a similar response, without
significant differences in the number of protein spots over- or under-expressed in the pairwise comparisons between
treatments. We identified exemplary proteins among those differently expressed between treatments, which proved to be
proteins known to be related to thermal response or stress. Overall, our results indicate that specimens collected in the wild
are suitable for proteomic analyses, as the additional sources of variation were not enough to mask the consistency and
reproducibility of the response to the temperature treatments.
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Introduction

The comparison of natural populations using proteomic

methods, which has been termed ‘‘population proteomics’’ [1,2]

has a high potential to address fundamental questions in ecology

and evolutionary biology, as it allows us to directly link

environmental conditions to changes in protein expression [3–6].

Proteomic methods are especially suited to understanding

phenotypic changes induced by the environment, since they

enable detection of alterations affecting physiologically significant

protein expression and modification, rather than changes in

mRNA expression levels [7–9]. When applied to different

populations exposed to varying environmental conditions, differ-

ences in proteome expression are likely to be directly linked to a

physiological response [1,10,11].

Although proteomic studies of non-model organisms are

increasingly common (see e.g. [8] for review), in most cases

specimens are kept in the laboratory under controlled conditions,

as the use of specimens directly taken from their natural

environment poses an additional challenge [12]. Many unknown

factors, such as the genetic background of the individuals, their

age, the physiological state, the presence of parasites or other

pathogens may introduce variation of unpredictable importance

[13–15]. Thus, it seems that previous to any comparative study of

wild populations it is necessary to estimate the degree of variability

due to unknown or unforeseeable sources of variation, and to

assess both the reproducibility and consistency of the protein

expression data.

In the study presented here we approach this problem using two

natural populations of a diving beetle species (Agabus ramblae
Millán & Ribera). This species has a disjunct distribution in the

South and East of the Iberian Peninsula and Central Morocco,

and is usually found in highly mineralized, temporary running

waters [16]. It belongs to a complex of three closely related species

(the Agabus brunneus group [16]) distributed in the western

Mediterranean, which most likely diversified during the Pleisto-

cene, within the Iberian peninsula [17]. Variation in protein

expression was quantitatively assessed with 2-D Differential Gel

Electrophoresis (2D-DIGE). The experimental setup also included

investigation of temperature induced protein expression, as

temperature is one of the most important abiotic factors known

to influence a wide range of physiological reactions [18–20]. In the

evolutionary lineage the studied species belongs to, thermal

tolerance is known to be related to the size of the geographical
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range [21]. In the context of a wider study of ecological

segregation and speciation in A. ramblae and its most closely

related species, we studied the response of two geographically

separated populations (in Central Morocco and Southern Spain)

to two temperatures at the extremes of what they may experience

in the field. Our main interest was to assess the possibility of

comparing the overall protein expression of wild populations

subjected to different temperature treatments, without being

overwhelmed by confounding variation. We specifically aimed to

determine the variability of 1) technical replicas, by comparing the

internal standards of each experiment; 2) biological replicas, by

comparing pooled samples of several individuals of the same

population exposed to the same treatment (referred to as

‘‘replicated samples’’); 3) temperature treatment, by comparing

the different treatments within the same population; and 4) the

response of the specimens of two different populations to the same

treatment.

Methodology

Studied populations, acclimation
In order to determine potential differences in response to

temperature treatment, two natural populations of the diving

beetle Agabus ramblae (Coleoptera, Dytiscidae, size range 7–

9 mm) were used for the experiments: 1) Spain, Murcia, Corneros

stream N37u42910.70 W1u55933.80 (30 adult specimens); and 2)

Morocco, Tinghir, Toudgha river N31u33925.10 W5u34949.50 (24

adult specimens). Agabus ramblae is not included in any national

or international list of protected or endangered species, and the

two populations were in public land not covered by any special

legal protection. No permits or ethical approval were required for

the experimental procedures. The two populations were sampled

in September 2007 and May 2011 respectively, and all specimens

that could be found during a search of 2–3 h in the available

microhabitats were collected and transported under similar

conditions to the laboratory. Three specimens of the Spanish

population were snap frozen in the field in liquid nitrogen, serving

as a field control (FC).

Once in the laboratory, individuals were acclimated for one

week in aquaria, with mineral water and some vegetation taken

from the place of origin. Specimens were kept at room

temperature (RT, always below 25uC), which was considered the

control for these experiments, and with a natural day/night cycle.

Specimens were fed ad-libitum on frozen red Chironomidae

larva from commercial sources (sold as fish food). After a week, an

equal number of specimens were randomly allocated to each of

three treatments for 12 h: 4uC, RT, and 27uC. This is within the

range of temperatures the species are likely to experience under

natural conditions (WorldClim_2.5 m database). After the treat-

ment, specimens were snap frozen in liquid nitrogen, separated

into three samples of 2–3 specimens for each temperature

treatment and stored at 280uC. The number of specimens per

replicated sample was limited by the total number of specimens

available and the need of having at least three replicas per

treatment for comparison. By using only 2–3 specimens we

increased the potential variability between replicated samples, so it

can be expected that by using more specimens this individual

variability could be further reduced.

Protein extraction and sample preparation
Proteins of whole specimens were extracted in a solution of

9.5 M urea, 1% Dithiothreitol (DTT), 2% (3-cholamidopropyl)-

dimethyl-ammonia (CHAPS) and 2% PharmalyteTM (pH gradient

3–11), using a mortar and liquid nitrogen to maintain the low

temperature [22]. The samples were sonicated after extraction to

break up nucleic acids. After centrifugation at 13,200 rpm for

2 min the supernatant was transferred into a new tube for further

processing. Samples were precipitated using 2-D-CleanUp kit

(GE/Amersham Biosciences, Freiburg, Germany) to remove

interfering contaminants. The total protein was then resuspended

in an appropriate volume of DIGE lysis buffer (Tris 30 mM, Urea

7 M, Tiourea 2 M, CHAPS 4%, HCl to reach pH 8.5). Samples

were quantified with a Bio-Rad RCDC Protein Assay (Bio-Rad,

Hercules, CA, USA).

Experiment design and DIGE analysis
An internal standard for each experiment was generated by

pooling equal amounts of protein from each extraction. Five gels

per experiment were run with the internal standard and two

samples derived from different treatments.

Sample aliquots of 50 mg were labelled with Cy3 and Cy5 NHS

ester and the pooled internal standard was labelled with Cy2 (GE

Healthcare, Buckinghamshire, UK), according to the Ettan DIGE

minimal labelling protocol (GE Healthcare). To avoid any possible

bias due to labelling efficiency, the samples of each group were

alternately labelled with both Cy3 and Cy5 dyes. The DIGE

experiments followed the standard protocol as described in ref.

[23]. Gel images were obtained with a Typhoon 9400 scanner (GE

Healthcare). Images were scanned at 550/580, 560/620 and 525/

555 nm excitation/emission wavelengths for the Cy2, Cy3 and

Cy5 dies respectively, at 100 mm resolution. 2D-DIGE image

analysis and statistical quantification of relative protein abundance

were performed with Progenesis SameSpots v4.0 (Nonlinear

Dynamics, Newcastle, UK). This software allows detecting,

quantifying and matching of spots between gels after normaliza-

tion to the internal standard. Statistically significant differences in

protein expression between groups (temperature treatments) were

tested with one-way ANOVA. To correct for multiple tests we

used the false discovery rate correction (FDR) as implemented in

SameSpots (q,0.05).

Statistical analyses
Gel images were aligned with reference to the internal standard,

normalized, and the protein spots verified. For each experiment,

pairwise comparisons of the expression level between replicated

samples and between treatments were done, selecting those spots

which indicated a significant difference according to the ANOVA

analysis at P,0.05, P,0.01 and P,0.001 levels. The analyses

included: 1) experimental variation due to technical error; 2)

variation between replicated samples, in order to detect variability

due to individual differences (genetic background, sex, age,

physiological state); 3) variation between treatments within the

same population; and 4) variation between treatments across

populations. To determine the variation due to technical reasons,

for each experiment the five images of the internal standard were

compared using the ‘single stain per gel’ option in SameSpots

software to detect false positives. We also computed the coefficient

of variation (CV) among the spot volumes across the different

replicas, averaged for all spots (CV = SD/mean 6100; [24]).

To assess the variability between replicated samples or

treatments within the same population we calculated the

distribution of the differences in expression of the same protein

spot for each comparison, generating a matrix of protein

expression data which showed significantly different level of

expression at the selected P-level. With these matrixes we did a

hierarchical cluster analysis using the Euclidean distance and

Ward’s amalgamation method (see [1] for comparison). We used

the single available field control to have an estimate of the changes
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introduced by the acclimation process, with a standardised food

supply.

For a global comparison of treatments across populations we

performed an ANOVA analysis for those protein spots exhibiting

significant differences of expression level in the pairwise compar-

ison between treatments within the same population. We

considered P-level, temperature treatment and population as

factors. All statistical analyses were done with Statistica version 7

(http://www.statsoft.com) and JMP v5.1 [25].

Protein selection and identification
Selection of protein spots. We selected and identified

protein spots with different levels of expression between experi-

ments as a proof of principle, to test the viability of our approach

and methodology for the study of the thermal biology of Agabus
ramblae. For this purpose, we set up a new analysis in SameSpots

v4.0 by directly comparing all images. All proteins spots were first

automatically selected and then manually checked for consistency

and quality of image, with a final selection of 565 protein spots

common to all experiments. We then compared the expression

level of the 565 protein spots in the 27uC vs 4uC replicas,

irrespective of the population of origin, as these were the ones most

likely to show strong differences in protein expression. We used the

normalized spot volumes to estimate fold changes, and compared

the values for each spot using a one-way ANOVA with a cut-off

absolute value of.1.3-fold (P,0.05, with FDR correction). The

normalized volume of the protein spots with significant differences

in expression was used in a Multiple Discriminant Analysis (MDA)

to identify the protein spots that better discriminate between

treatments. Finally, the selected protein spots were double-checked

again in SameSpots v4.0, where the final selection was made.

Protein identification and Liquid chromatography-Mass

spectrometric analysis. A new preparative gel was run to

extract and identify target proteins. Three hundred micrograms of

a mix of protein extracts from representative samples were Cy

labelled and gels were scanned and images analysed as described

above. The gel images were matched against the spots referenced

in the picking list created after the detection of the significantly up-

or down-regulated protein signals in the gels used for the analyses.

The selected protein spots were excised from the gel using an

automated Spot Picker (GE Healthcare), within-gel digestion with

trypsin (Promega, Wisconsin, USA) as described in [26].

Extracted samples were analysed on a Maxis high resolution Q-

TOF spectrometer (Bruker, Bremen), coupled to a nano-HPLC

system (Proxeon, Denmark). After evaporation and dissolution in

5% acetonitrile 0.1% formic acid in water, samples were first

concentrated on a 100 mm ID, 2 cm Proxeon nanotrapping

column and then loaded onto a 75 mm ID, 15 cm Acclaim

PepMap nanoseparation column (Dionex). Chromatography was

run using a 0.1% formic acid - acetonitrile gradient (5–35% in

10 min; flow rate 300 nL/min). The column was coupled to the

mass spectrometer inlet through a Captive Spray (Bruker)

ionization source. MS acquisition was set to cycles of MS (1 Hz),

followed by MS/MS (0.5–2 Hz) of the 8 most intense precursor

ions with an intensity threshold for fragmentation of 5000 counts

and using a dynamic exclusion time of 0.5 min. All spectra were

acquired on the range 100–2200 Da. LC-MSMS data was

analysed using the Data Analysis 4.0 software (Bruker).

Proteins were identified using Mascot (Matrix Science, London

UK) by search on the NCBI database limiting the search to

Other Metazoa (13,577,271 sequences; 4,662,347,403 residues).

MS/MS spectra were searched with a precursor mass tolerance

of 10 ppm, fragment tolerance of 0.04 Da, trypsin specificity with

a maximum of 2 missed cleavages, cysteine carbamidomethyla-

tion set as fixed modification and methionine oxidation as

variable modification.

Table 1. Protein yield obtained from each replicated sample.

population Replicated sample ind./replica average prot(mg)/ind

SE Spain (Murcia) FC 3 498,7

RT_r1 3 603,6

RT_r2 3 1343,4

RT_r3 3 1362,8

4_r1 3 1113,7

4_r2 3 1376,7

4_r3 3 1184,5

27_r1 3 1130,6

27_r2 3 1380,7

27_r3 3 1045,5

C Morocco (Tinghir) RT_r1 2 3829.3

RT_r2 2 448.4

RT_r3 2 1186.1

4_r1 2 1193.4

4_r2 2 1400.2

4_r3 2 1197.9

27_r1 2 2503.3

27_r2 2 2969.5

27_r3 2 1551.7

doi:10.1371/journal.pone.0104734.t001
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Table 2. Comparison between the five internal standards within each experiment (population) to estimate technical variation.

population ANOVA Spots signif. diff. P,0.05 max min avrg

SE Spain 12vs345 97 13.7 1.1 1.9

(Murcia) 14vs235 49 3.9 1.1 1.8

135vs24 95 4.0 1.1 1.8

C Morocco 12vs345 56 2.6 1.1 1.4

(Tinghir) 14vs235 48 2.6 1.1 1.5

135vs24 46 2.1 1.1 1.4

ANOVA, different groupings of the internal standards for the ANOVA test (see main text). Values, fold change.
doi:10.1371/journal.pone.0104734.t002

Figure 1. Example images of 2D-DIGE gels representing populations and temperature treatments. a) Spanish population, 4uC treatment,
Cy5; b) Spanish population, 4uC treatment, Cy3; c) Spanish population, 27uC treatment, Cy3 and d) Moroccan population, 27uC treatment, Cy3.
Differences between a) and b) correspond to variation between replicated samples; a) and c) different treatments within the same population; and
c) and d) same treatment between different populations. pI, isoelectric point; MW molecular weight (Kilo Daltons).
doi:10.1371/journal.pone.0104734.g001
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Results and Discussion

Specimens of A. ramblae weighed between 35–75 mg. The

average amount of total protein per specimen was ca. 1500 mg,

with no significant differences between populations (2-tail t-test,

P.0.1; Table 1).

Technical variation
The five images of the internal standards were compared in

both populations to detect the technical variation of the

experimental setup using the single stain option. When the images

were grouped in different combinations, the number of protein

spots with significantly different levels of expression at a statistical

threshold of P,0.05 ranged between 2–4% (Table 2). This rate of

false positives could be considered as technical error in our

experimental setup. The technical variation estimated by com-

parison of the internal standards is in fact an overestimation, as it is

not corrected by the normalization. The maximum value of the

coefficient of variation (CV) between technical replicas was 35%,

within the standard range for 2-DE experiments (20–40%, [27]).

Reverse labelling was used to minimize any possible bias due to

preferential labelling with one of the Cy dyes. When images of

samples belonging to the same group and labelled alternatively

with Cy3 or Cy5 were compared, no significant differences were

observed. This behaviour is consistent with previous reports that

have shown that labelling is only a very minor source of variability

in DIGE experiments [28].

Variation between replicated samples
Differences between individual histories and circumstances are

one of the major sources of variation in expressed physiological

traits [29]. We tried to minimize this variation by including several

specimens per replica [30,31], as we wanted to assess population-

level, not individual responses to thermal stress or other

environmental factors. As noted in the methods, the final number

of specimens per replicated sample was a trade-off between the

availability of specimens and the need for replicas in the 2-DE

experiments.

The distribution of the differences in protein expression between

the replicated samples of the same treatment were very similar in

the two populations (Figures 1, 2). Among the samples of the 4u

Figure 2. Distribution of differences between the three replicated samples of each treatment. Data reflect normalised protein spot
volume. On the right of each graph the quantile box plot reflects the distribution of the variation, with mean (rhomboid) and median. Vertical axis,
fold change.
doi:10.1371/journal.pone.0104734.g002

Population Proteomics of Aquatic Insects

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e104734



and 27uC treatments more than 50% of the protein spots show

differences of expression levels of less than 0.5 fold change,

although the replicas at RT had a higher overall variation, with

the median between 0.5–1 fold for the Moroccan population

(Figure 2, Tables S1, S2). The CV among replicated samples

ranged between 40–60% for the 4uC and 27uC treatments, and

between 75–126% for the replicas at RT, higher than the variation

between technical replicas (see above) [32] but similar to other

reported measures of biological variation [33]. RT samples were

exposed to fluctuating temperatures within a range that can be

considered normal for the species, and therefore the spectrum of

expressed proteins can be expected to be wider than that of

specimens exposed to a constant extreme temperature, with a

more selective protein expression.

A potentially important factor may be the existence of cohorts in

the studied population, which could reduce the inter-individual

variability of specimens collected at the same time in the same

area, but may show increased variability throughout the year or

between different geographical areas. The life cycle of Agabus
ramblae is not known in detail [32], and therefore it is not possible

to predict the population structure at any given time. Although

larvae are more often reported from March to June [34], adults

can be found any time of the year, as usual for lowland species in

the Southern part of the Iberian Peninsula and Morocco. So it

seems likely that a mixture of adults of different origin, age, gender

and physiological state were included in the samples. In any case,

it has been shown that males and females of the same species had

identical values for upper and lower thermal limits [21].

Intra-population analysis on the effect of temperature
treatments

Around 40% of all the protein spots had significantly different

expression levels between treatments at P,0.05 (Table 3). The

largest differences were detected between the two extreme

temperature treatments (4uC and 27uC). Of all the protein spots

with significant differences at P,0.05, between 95–99% were

different between these two treatments in both populations

(Table 3). The false discovery rate correction (FDR) reduced the

number of spots with significant differences by 2.6% and 8.1% for

the south Spanish and Moroccan populations respectively, but did

not change the overall pattern. The distribution of the pairwise

differences between treatments was in general bimodal and

approximately symmetrical, especially for the comparisons be-

tween the 4 and 27uC treatments (Figure 3, Tables S1, S2). Only

Figure 3. Distribution of pairwise differences in protein spot volume between temperature treatments in each population. On the
right, distributions in a quantile box plot, including mean (rhomboid) and median. Vertical axis, fold change.
doi:10.1371/journal.pone.0104734.g003
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for the comparison between RT and 27uC of the Spanish

population the distribution was unimodal, with modal values

between 0 and 0.5 fold change (i.e. most protein spots showed little

or no differences) (Figure 3, Tables S1, S2). The range of variation

was similar for all comparisons, with most spots between +/22

fold change, with generally higher values for the comparison

between 4 and 27uC.

In the hierarchical cluster analysis of the two populations, the

protein spots significantly different in expression at both P,0.05

and P,0.01 resulted in a clear grouping of the biological replicas

of the 4uC and 27uC treatments, with these two treatments

showing the split at the deepest level. Differences within treatments

were minimal relative to differences between treatments

(Figures 1, 3, Figure S1). However, the replicas of RT were

inconsistently clustered with the 4uC or the 27uC treatments. At

the P,0.05 level some RT replicas were nested within the

treatments (Figure S1), but at P,0.01 level the replicas of the two

treatments were clustered together to the exclusion of the RT

replicas (Figure 4). At P,0.001 the number of protein spots with

significant differences was not high enough for a meaningful

cluster analyses (Table 3). As already noted, in the RT treatment

specimens were not subjected to a particular stress factor after

their acclimation period, therefore their protein expression may

represent a basic metabolic state with no compensatory reaction,

with a wider range of intra-sample variation. In contrast,

specimens subjected to extreme temperature treatments (4u and

27uC) reflected the influence of these stressful conditions by a

stereotype modification of the protein expression pattern, with ca.

30% of the total number of protein spots significantly varying

between these two treatments at P,0.05 level (Table 3).

The effect of the transport and acclimation period in the

laboratory previous to the experiments and protein extraction

could also have resulted in an artificially higher homogenisation of

intra-experimental variability. All specimens were kept under the

same conditions and fed on a homogeneous diet during one week,

potentially reducing variation due to their individual history

(starvation, consumption of different preys). This homogeneity in

the experimental conditions could have introduced an artefact by

modifying the protein expression in a similar way in all specimens.

That this was not the case, and that the influence of the transport

and acclimation was not reflected in the protein expression

pattern, could be shown by the analysis of the field control of the

Spanish population. The high overlap in the pairwise comparison

of the RT-samples and the field control (Figure S2) indicates that

neither the basic metabolism changed significantly nor the uniform

food and conditions resulted in a higher homogeneity, although,

due to the difficulty in obtaining enough specimens, only one

replicated sample of a field control could be studied.

Table 3. Number of protein spots with a significantly different level of expression.

Population P level all PS. comparison PS fold.1.5

SE Spain (Murcia) ,0.05 856 RT vs 4uC 81 64

RT vs 27uC 46 35

4uC vs 27uC 811 514

4uC vs RT vs 27uC 467 291

,0.01 402 RT vs 4uC 15 11

RT vs 27uC 4 0

4uC vs 27uC 385 267

4uC vs RT vs 27uC 84 66

,0.001 79 RT vs 4uC 0 0

RT vs 27uC 0 0

4uC vs 27uC 77 62

4uC vs RT vs 27uC 5 5

C Morocco (Tinghir) ,0.05 755 RT vs 4uC 63 62

RT vs 27uC 63 61

4uC vs 27uC 716 715

4uC vs RT vs 27uC 334 333

,0.01 451 RT vs 4uC 4 4

RT vs 27uC 2 2

4uC vs 27uC 439 439

4uC vs RT vs 27uC 96 96

,0.001 120 RT vs 4uC 0 0

RT vs 27uC 0 0

4uC vs 27uC 119 119

4uC vs RT vs 27uC 6 6

All PS, overall number of protein spots with significant differences; PS, number of protein spots with significant differences in the pairwise comparison between
treatments; fold .1.5, number of protein spots with fold differences above 1.5.
doi:10.1371/journal.pone.0104734.t003
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Comparison of the same treatment between populations
The number of protein spots that showed significant differences

in the pairwise comparison of treatments was very similar for the

two populations at each of the P levels used (Table 3, Figure 1).

Differences between populations were not significant (as measured

with ANOVA, P.0.8, Table 2), while differences for treatments

and for the P-levels used for selecting the protein spots included in

the comparison were highly significant (P,0.001, Table 4).

Despite the geographical distance, the general climatic condi-

tions between Murcia and Tinghir are similar: annual average

maximum temperatures are 30.8uC and 37.0uC respectively, and

minimum temperatures 2.1uC and 1.2uC (WorldClim 2.5 m

database, [35]). Monthly average maximum and minimum

temperatures, for the month in which the specimens were

collected, are 27.0uC and 14.8uC for Murcia (September) and

30.0uC and 15.2uC for Tinghir (May). General climatic conditions

may however not reflect the particular thermal circumstances

which the species are exposed to [36], especially for freshwater

organisms living submerged [37]. In order to identify potential

physiological reaction norms in either of the populations,

preliminary data on the thermal tolerance of the Moroccan

population were obtained by the same methodology as described

in [21]. The average UTL (Upper Thermal Limit) for the Spanish

population was 45uC [21], while the Moroccan population only

reached 43.6uC. The average LTL (Lower Thermal Limit) of the

Moroccan population was 26.8uC, identical to the LTL reported

for the Spanish population [21]. There thus seems to be only slight

differences between the thermal tolerances of both populations,

which were reflected in the similar results of our comparative study

of their response to different temperatures.

Protein identification
We selected 10 spots with significantly different expression levels

between temperature treatments as measured with ANOVA (P,

0.05 with FDR correction, cut-off values of .1.3 fold), and with

the highest discriminant values in the MDA. Of these, three

protein spots were selected for a preliminary analysis. These were

identified as a chaperone (heatshock cognate Hsc70), a structural

protein (alpha actinin) and a protein involved in the energy

metabolism and membrane ion transport (sarco(endo)plasmic

reticulum-type calcium ATPase) (Table 5).

Hsc70. This protein was up-regulated at 27uC in both

populations. The same effect has been reported for the same or

related proteins in several groups of animals (Heteroptera [38],

Tunicata [39], leaf beetles [40]), although there are also reports of

up-regulation at low temperatures (e.g. [41]). It belongs to Hsp70

family, regulating the ATP-dependent folding of proteins [41].

The expression of proteins of the Hsp70 family might be up-

regulated as a response to temperatures routinely experienced in

nature, and is related to thermal tolerance. It is considered to be a

much more sensitive and ecologically relevant indicator of sub-

lethal thermal stress, hence important in establishing the limits of

the distribution of species or populations along environmental

temperature gradients [40]. Experiments using RNAi to suppress

Hsp70 translation prevented completely the recovery from heat

shock, and also affected negatively the repair of chilling injury in

insects [38].

Alpha actinin. This protein was also up-regulated at 27uC, as

reported in other studies (e.g. [39]). The alpha actinins belong to

the spectrin gene super-family that represents a diverse group of

cytoskeletal proteins. Alpha actinin is an actin-binding protein

with multiple roles in different cell types.

Sarco(endo)plasmic reticulum-type calcium ATPase

(SERCA). The SERCA protein was found to be down-regulated

at 4 uC. It is a protein involved in removing calcium from the

cytoplasm to maintain the low concentration necessary for cell

signalling, known to be temperature dependent in insects [42–43].

The differences in expression in Agabus ramblae may suggest that

this species may show cold hardening, something that would

require experimental data to confirm.

Concluding remarks
In this work we show that it is possible to conduct proteomic

studies on wild populations of non-model organisms to obtain

physiologically relevant data with relatively less noise. The

reproducibility and uniformity of the results presented here for

two distinct populations of a species of water beetle (Agabus
ramblae) suggest that the experimental setup allowed the detection

of a common stress-related response to temperatures at the

extremes of the range they experience in their natural environ-

ment. We selected and identified some example proteins, and

found that, in agreement with previous work [39,41], up-regulated

proteins at higher temperatures were involved in structural

protection, and down-regulated proteins at low temperatures in

the reduction of metabolic activity and energy expenditure. Our

work opens the possibility of a wider use of comparative

population proteomics in wild populations of non-model organ-

isms, with a vast potential to address a whole range of basic

questions in ecology and evolutionary biology. The use of wild

populations not only allows the study of species for which common

garden experiments are not feasible, but also the study of the

interaction with local conditions. If differences in the reaction

norm of local populations were due to environmental imprinting,

common garden experiments may mask phenotypic variability

that could be potentially important to explain evolutionary

processes at the edge of the geographical range of species [44–46].

Figure 4. Cluster analysis of the number of significantly differently expressed protein spots. The analysis includes the proteins with
significantly different expression for each replicated sample, as measured with ANOVA at P,0.01 (see Tables 3, 4). r1 to r3, replicated samples.
doi:10.1371/journal.pone.0104734.g004

Table 4. Results of the ANOVA comparison between populations.

Factor DF Sum of squares F Ratio Sig.

population 1 737 0.05 .0.8

P level 2 363344 11.10 ,0.0001

treatment 3 644782 13.13 ,0.001

See Table 3 for the number of protein spots with significant differences between treatments at each P level.
doi:10.1371/journal.pone.0104734.t004
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Supporting Information

Figure S1 Cluster analysis of the number of significant-
ly differently expressed protein spots (P,0.05). The

analysis includes the proteins with significantly different expression

for each replicated sample, as measured with ANOVA at P,0.05

(see Tables 3, 4).

(EPS)

Figure S2 Cluster analysis of the number of significant-
ly differently expressed protein spots including the field
control (FC). The analysis includes the proteins with significantly

different expression for each replicated sample plus the field

control (FC) as measured with ANOVA at P,0.01 (see Tables 3,

4) of the Spanish population.

(EPS)

Table S1 Normalised volume of the spots detected in
the Spanish population. Included, whether the spot had

significant differences for any of the ANOVA comparisons and

was included in the subsequent analyses (Yes) or not (No) (all spots

were included in the histogram in Fig. 2); SPA (Spain); 4, RT and

27, temperature treatments (4uC, room temperature and 27uC
respectively); 1, 2 and 3, biological replicas.

(XLSX)

Table S2 Normalised volume of the spots detected in
the Moroccan population. Included, whether the spot had

significant differences for any of the ANOVA comparisons and

was included in the subsequent analyses (Yes) or not (No) (all spots

were included in the histogram in Fig. 2); MOR (Morocco); 4, RT

and 27, temperature treatments (4uC, room temperature and 27uC
respectively); 1, 2 and 3, biological replicas.

(XLSX)
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