Identification of Bitter Pit Markers in *Malus domestica*

Michael Krawitzky*, Veronique Monnet, Didier Chevret, Céline Henry, Irene Orera, Rosa Oria, Jesus Val

Bitter Pit

- Apple, pear, and quince disorder.
- Occurs at harvest and during storage.
- Thought to be caused by a lack of calcium.
 - Unable to accurately predict bitter pit incidence (high correlation with no predictive accuracy).

Why Bitter Pit Research is Important

To improve marketable fruit quality

Reduce fruit loss

Reduce financial Loss

Objectives

- To investigate if the disorder bitter pit in apple is exclusively caused by a calcium deficiency.
- Using a proteomic approach, Identify proteins of interest which may serve as markers of bitter pit.

Known Studies

+100 Bitter Pit and foliar application articles

+13,500 Apple and genetics article (+1500 post-genome introduction)

1 Apple and bitter pit and genetics article

+100 Apple and protein articles (cancer, anti-inflamatory, Allergen)

3 Apple and protein articles (MS, Databases, Gels)

1 Bitter pit and protein article

Val, J., Gracia, M.A., Blanco, A., Monge, E., Perez, M. 2006. Polypeptide Pattern of Apple Tissues Affected by Calcium-related Physiopathologies. Food Sci Technol Int, 12(5):417-421.

Project Synopsis

 Personal gel electrophoresis data suggested apple 97.4 samples (bitter pit, healthy, 66.2 and water core) produced a 45.0 18 kDa protein band, a protein result previously 31.0 reported to be found only in bitter pit. 21.5

B.P. W.C. Std. Hea. 14/14 14.4

Val, J., Gracia, M.A., Blanco, A., Monge, E., Perez, M. 2006. Polypeptide Pattern of Apple Tissues Affected by Calcium-related Physiopathologies. Food Sci Technol Int, 12(5):417-421.

Project Synopsis cont.

•2D gels (IPG: 3-10, 4-7) were infused with bitter pit and healthy extracted protein. Results expressed several distinct differences between 17 and 36 kDa.

Project Synopsis cont.

 DIGE gel analysis (16%, IPG:4-7) was peformed, eliminating gel to gel variation seen in 2D.
 Several spots were identified to be of interest.

DIGE Gel Scan at 600 PMT

100-200 spots cut

2 Gels

20-50 µg/Sample

3 Samples/gel

Cy2 - Transmission peak at 520 Cy3 - Transmission peak at 580 Cy5 - Transmission peak at 670

In-gel Digestion (Trypsin)

В

- 20 μL (10 μg) Protein were injected onto wells
- Short Migration gels were cut, digested, then injected into the Q-Exactive
- Proteins were analyzed with the most recent genomic database

Equipment

- Equipment
 - LC-LTQ-Orbitrap
 - Acquired in 2008

- LC-Q-Exactive
 - Acquired in 2010
 - Produces 3 to 4 times more identified protein results than Oritrap

Data Interpretation

- Bioinformatics
 - X!Tandem
 - Protein mass matching
 - Matches the peaks between the observed and theoretical spectra. (produces a score)

Data Interpretation

- De Novo Pipeline
 - Interprets the mass spectra (fragmentation).
 - Produces an amino acid sequence tag.
 - The sequence tags are used to find similarities in a heterologous database.

Database name	Source	# of proteins	Sequence type	Contents of Database
Uniprot_Malus_domestica	Uniprot.org	1,943	Direct Protein (annotated)	Malus domestica +allergens (incomplete)
Uniprot_Rosaceae	Uniprot.org	11,015	Direct Protein (annotated)	Malus, Pyrus, Rubus, Fragaria, Prunus, Rosa, etc.
IASMA (Italian) peptidic database	lasma.it	30,294	Direct Protein	Malus domestica (Complete Genome)
TGI_Malus_domestica	Harvard.ed u	113,316	(t)-EST – Cluster 100	Malus domestica
Uniprot_Superkingom_Eukary ota	Uniprot.org	6,355,736	Direct Protein	All Eukaryota
UniprotKB/TrEMBL	Ebi.ac.uk	23,165,610	Direct	Archaea, Bacteria,

Results Besults

Results

• Gel analysis

- DIGE
 - 46 Spots were software identified as having p<0.05</p>

– 19 Spots (12 unique proteins) were identified utilizing the genomic database (Orbitrap):

- » Major Allergen Mal d 1 (3)
- » Thaumatin-like protein (TLP) (1)
- » PR-8 proteins (2)
- » 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO) (2)
- » UTP-glucose-1-phosphate uridylytransferase (UGPase) (2)
- » Chitinase (1)
- » Metal binding (1)

Results

- Short migration
 - **1543 Proteins identified** using Genome Databse (Q-Exactive)

170 Proteins identifed (p<0.05) – For both Bitter Pit and Healthy

- 32 Healthy Proteins identified with ≥Two-Fold Spectra and P<0.05
 <p>Notable Proteins:
 MDP0000937986/CAP160 repeat (15.5 Fold)
 MDP0000193489/Metabolic Process Protein (7 Fold)
 MDP0000193489/Binding Protein (5 Fold)
- 43 Bitter Pit Proteins identified with ≥Two-Fold Spectra and P<0.05
 <p>Notable Proteins:
 MDP0000287919/catalytic activity/ metabolic process Protein (100 Fold)
 MDP0000137211/Oxidoreductase Protein (78 Fold) 2 proteins
 MDP0000287302/Thaumatin Protein (56 Fold)

Conclusions

 Twelve (12) unique proteins were identified in DIGE, the majority being Pathogenesis-Related (PR) proteins (Plant Defense).

 170 Proteins (p<0.05) were identified as quality markers for bitter pit

Conlusions

- Protein results are in the process of being compared with known genetic data from RosBREED.
- Proteomic data could assist plant breeders in creating bitter pit-free germplasm.

Thánk You!

Questions ?