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Abstract

Cyclic N®-threonylcarbamoyladenosine (‘cyclic t°A’, ct®A) is a non-thiolated hypermodifica-
tion found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and
yeast cells ct®A has been shown to enhance translation fidelity and efficiency of ANN co-
dons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To
further the understanding of ct®A biology we have determined the high-resolution crystal
structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from
Escherichia coli, which catalyzes the ATP-dependent dehydration of t°A to form ct®A. CsdL/
TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly
bound K™ and Na* cations. By using biochemical assays and small-angle X-ray scattering
we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the
proper position and orientation for the cyclization of t*A. Furthermore, we show by nuclear
magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and
CsdE, which, in the latter case, involve catalytically important residues. These short-lived in-
teractions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA
as previously characterized. In summary, the combination of structural, biophysical and bio-
chemical methods applied to CsdL/TcdA has afforded a more thorough understanding of
how the structure of this E1-like enzyme has been fine tuned to accomplish ct®A synthesis
on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally
interact with CsdL/TcdA.
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Introduction

Transfer RNA (tRNA) molecules are targeted by more than 100 different enzymes that intro-
duce a large number of diverse post-transcriptional modifications in tRNA nucleotides. This
variety of modifications range from simple modifications at the base and/or at the 2’-hydroxyl
of the ribose (including, among others, methylation, thiolation, deamination, and base isomeri-
zation) to more complex hypermodifications [1,2]. The functional roles of these modifications
include the stabilization of the tertiary structure of tRNA, controling gene expression, and
modulating the interactions between tRNA and protein factors from e.g., the translational ma-
chinery [3]. Accordingly, tRNA modifications are essential for proper and efficient protein
translation in all domains of life. Modifications in the anticodon loop of tRNA are crucial for
decoding. A well-known example concerns the wobble modifications that occur at the first
codon-anticodon position (U34), which participate in the regulation of cognate and near-cog-
nate tRNA [3,4]. Hypermodified purine bases are frequently found 3’ adjacent to the anticodon
loop, at position 37 (A37) (Fig. 1A). Modifications at A37 have been associated with the stabili-
zation of codon-anticodon interactions through base-stacking at the ribosomal decoding site.
NP-threonylcarbamoyladenosine (t°A; Fig. 1B) is one of the 15 universally conserved essen-
tial modifications found in all three domains of life [2]. With the exception of bacterial initiator
tRNA™e °A occurs at position 37 (t°A37) of the anti-codon stem loop (ASL) of all tRNAs
which recognize ANN anticodons [5,6]. Further modifications of t®A37 have been described;
two tRNA species in E. coli have an N°-methyl derivative of t°A (m°®t°A) and a 2-methylthio de-
rivative of t°A (ms*t°A) is found in mammalian tRNA™® [7]. The breadth of functions fulfilled
by t°A37 in promoting the codon-anticodon interaction and accurate decoding by the ribo-
some spans aminoacylation of tRNAs [8], tRNA binding to the A-site codon [9,10], efficient
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Fig 1. Cyclic N°-threonylcarbamoyladenosine (cyclic t°A, ct°A) hypermodification in tRNA. a
Schematic cloverleaf representation of tRNA~YSUUU showing the location of the ct®A modification at A37. b
TcdA catalyzes the ATP-dependent cyclization of t°A into ct°A in tRNAs with ANN anticodons in bacteria,
yeasts, fungi and plants, which occurs mainly at the A37 position of the anticodon stem loop (ASL) of the
tRNA molecule. (c) Recognition of the AAA codon on mRNA by ASL of tRNA®SUUU involves interactions
between t°A37 and A1 from the AAA codon (PDB 1XMO).

doi:10.1371/journal.pone.0118606.9001
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translocation [11], reading frame maintenance, preventing errors in AUG start codon selection
and read-through of stop codons [12]. Steric hindrance from the bulky structure of t°A im-
pedes U33-A37 base pairing [13] so that the anticodon loop can assume its canonical U-turn
structure [14]. The crystal structure of the codon-anticodon interaction at the A site of the 30S
ribosomal subunit [15] has shown that the extended planar ring structure of t°A37 (formed by
intramolecular hydrogen bonding of the threonine moiety with the adenine ring) allows t°A37
to stack with A38 in the anticodon loop and the first adenine base (A1) of the codon in the
messenger RNA (mRNA) (Fig. 1C and S1 Fig.), thereby stabilizing the codon-anticodon inter-
action at the decoding site.

In bacteria, yeast, protists and plants the well-known t°A modification has been recently
shown to be a chemical hydrolysis artifact generated during the handling and preparation of
tRNA [16]. Extraction of tRNA under extremely mild conditions has led to the identification
of ‘cyclic t°A” (ct°A), a cyclized active ester with an oxazolone ring (Fig. 1B), as the bona fide
hypermodification at position 37 of tRNA for ANN codons in those organisms [16]. The en-
zyme responsible for t°A cyclization in E. coli was identified by comparative genomic ap-
proaches and analysis of LC/MS data sets of genomic deletion strains (ribonucleotide analysis)
[17] as CsdL, subsequently renamed to TcdA, for tRNA threonylcarbamoyladenosine dehydra-
tase A [16]. TcdA is an ubiquitin-activating E1-like protein [18] with detectable homology to
the adenylyltransferases MoeB and ThiF. Previous studies have established that TcdA interacts
with CsdE, a SufE-like sulfur acceptor [19], which in turn interacts with the cysteine desulfur-
ase CsdA [20]. Indeed, ct°A synthesis in vivo seems to depend on the presence of a functional
CsdA-CsdE sulfur relay system since ct®A abundance is drastically reduced in tRNA pools ex-
tracted from AcsdE (2%) or AcsdA (12%) cells [16]. Accordingly, CsdA alone or in concert with
CsdE has been shown to support the enzymatic modification of TcdA by sulfur incorporation
[18]. The relation between TcdA and CsdA-CsdE remains enigmatic, however, because ct®Ais
a non-thiolated modification and the synthesis on a tRNA substrate of ct®A starting from t°A
can be reconstituted in vitro with TcdA and ATP without CsdA or CsdE [16].

To start building a framework to investigate the molecular recognition processes underlying
TcdA binding to ANN recognizing tRNAs and the structural and functional properties of
TcdA responsible for the catalytic dehydration of t°A into ct®A, we set out to determine the
structure of TcdA and its complex with tRNAYS(UUU). Toward this end, we have obtained
high-resolution crystal structures of TcdA in complex with AMP and ATP, which show that
the E1-like enzyme fold of TcdA exhibits a unique architecture that requires K cations rather
than Zn>* for structural integrity (in contrast to most other El-like proteins known) and a
highly coordinated Na™ cation at the dimer interface. Structural characterization by solution
small-angle X-ray scattering (SAXS) of the TcdA complex with tRNA"*(UUU) reveals the po-
sition and relative orientation of the tRNAMS(UUU) substrate bound to TcdA. Finally, we have
also probed into the structural and functional connection of TcdA with the CsdA-CsdE sulfur
relay system using nuclear magnetic resonance (NMR) methods since CsdA and CsdE are es-
sential components for ct®A37 synthesis in vivo [16].

Materials and Methods
Recombinant TcdA production

E. coli TcdA (full length) was expressed in E. coli BL21 (DE3) cells harboring a C-terminal
hexa-histidine tag. TcdA was purified using conventional nickel-chelating affinity chromatog-
raphy (HisTrap, GE Healthcare) coupled to size-exclusion chromatography (Superdex 200
10/300GL, GE Healthcare) in 20 mM sodium/potassium phosphate, pH 7.4, 300 mM NaCl
and 2 mM 2-mercaptoethanol.
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Preparation of tRNA

The gene for E. coli tRNA™S(UUU) was cloned into the pET23a vector under the control of the
strong T7 promoter, and expressed in E. coli BL21(DE3) cells grown for 3 h at 37°C after induc-
tion with 1 mM IPTG. The tRNA pool containing the over-expressed tRNA*(UUU) was ex-
tracted from the cells by resuspending the cell pellet (from 200 ml culture) using acid phenol
(pH 4.3), precipitated with 100% ethanol, and was further purified by size exclusion chromatog-
raphy over a Superdex 75 HR 16/60 column (GE Healthcare) in phosphate buffer saline (PBS),
0.1 mM EDTA, pH 7.4. All buffers used for extraction and purification of tRNA™(UUU) were
twice autoclaved and the tRNA samples were kept at 4°C at all times to minimize the action of
potential RNase contaminants. Agarose gel electrophoresis of the tRNA pool extracted from E.
coli cells showed at least a 10-fold greater concentration upon induction when compared with
non-induction controls, resulting in a tRNA pool highly enriched in recombinantly expressed
tRNAMS(UUD).

Electrophoretic mobility shift assays with tRNA=S(UUU)

Gel retardation assays of TcdA complexed with over-expressed tRNA™*(UUU) or with com-
mercial tRNA"YS(UUU) (Sigma-Aldrich R1753), were performed by electrophoresing pre-incu-
bated complexes and appropriate controls on native 8% polyacrylamide-0.5x Tris-borate-
EDTA (TBE) gels at constant current (12 mA) for 1 h at 4°C. Gel retardation assays with the
two sources of tRNA(UUU) gave identical results. Protein bands were stained with Coomas-
sie Brilliant Blue and tRNA bands with Toluidine Blue.

Analytical ultracentrifugation

Sedimentation velocity (SV) and sedimentation equilibrium (SE) analytical ultracentrifuga-
tion (AUC) experiments were conducted in a Beckman Coulter ProteomeLab XL-I analytical
ultracentrifuge equipped with UV-Vis absorbance and Raleigh interference detection sys-
tems, using the 8-hole Beckman An-50Ti rotor at 20°C. TcdA, tRNAMS(UUU) and TcdA-tR-
NAYS(UUU) in 20 mM HEPES, 100 mM KCl and 50 mM NaCl, pH 7.4, were loaded (320 ul)
into analytical ultracentrifugation cells. SV at 20 000 rpm was monitored by absorbance at
290 nm with scans made at 1 min intervals. Sedimentation coefficient distributions were cal-
culated by least-squares boundary modeling of SV data using the continuous distribution c(s)
Lamm equation model as implemented in SEDFIT 14.1 [21]. Experimental s values were cor-
rected to standard conditions (water, 20°C, and infinite dilution) in SEDNTERP to derive the
corresponding standard s values (s,9.). Short column (90 pl) SE experiments were carried
out at speeds ranging from 8 000 to 12 000 rpm and monitored by absorbance at 280 nm,

290 nm and 295 nm. After the last equilibrium scans, a high-speed centrifugation run

(48 000 rpm) was done to estimate the corresponding baseline offsets. Weight-average buoy-
ant molecular weights of protein and nucleic acid species were determined by fitting a single
species model to the experimental data using the HeteroAnalysis software [22,23] corrected
for solvent composition and temperature with SEDNTERP [24].

TcdA crystallization, structure determination and refinement

Crystals of TcdA (full length, as a C-terminal hexa-histidine fusion) in complex with ATP or as
obtained directly from the cell (AMP) were grown at 5 mg/ml TcdA in presence of 0.05 M po-
tassium phosphate and 10% PEG1000 at basic pH at 20°C. The construct of TcdA and the crys-
tallization conditions used in this study are different to those used in a recent crystallization
report [25]. Two X-ray diffraction data sets were collected from crystals of the ATP complex,
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one to a maximum resolution of 1.77 A at a wavelength of 0.97948 A, and a second data set to
2.35-A resolution at a long wavelength (1.99976 A) for sulfur single anomalous diffraction
(SAD), at the BL13-XALOC beamline (ALBA, Barcelona, Spain). A data set for the AMP com-
plex was collected to 1.89-A resolution at the PROXIMA 2A beamline (Synchrotron SOLEIL,

Table 1. Crystallographic data processing and refinement statistics.

TcdA-ATP TcdA-AMP
PDB code 4D79 4D7A
Data collection
Wavelength (A) 0.9795 0.9801

Resolution range (A)

Space group

Unit cell dimensions
a, b, c (A)

B (), a=y=090°

Total reflections

Unique reflections

Multiplicity

Completeness (%)

Mean //o(/)

Wilson B-factor

R-merge

R-meas?®

CC1/2°

CC*C

Refinement

R-work

R-free

# non-H atoms

# Protein atoms

# Ligand atoms

# Water

Protein residues

RMS(bonds) (A)

RMS(angles) (°)

Ramachandran analysis

Favored/Allowed/Outlier (%)

Clashscore

Average B-factor (A%)
Protein
Ligands
Solvent

41.13-1.77 (1.83-1.77)
P1211

65.3, 96.7, 82.8
90, 111.2, 90
312,887 (11,351)
89,883 (5907)
3.5 (1.9)

95.96 (63.90)
18.97 (3.75)
23.95

0.08388 (0.663)
0.09797

0.995 (0.556)
0.999 (0.846)

0.1416 (0.2994)
0.1833 (0.3236)
8167

7484

172

511

996

0.011

1.430

98.0/2.0/0.0
1.88

34.40

33.60

60.80

38.00

41.14-1.89 (1.96-1.89)
P1211

65.7,97.2, 83.2
90, 111.6, 90
146,386 (14,469)
87219 (78261)
1.9 (2.0)

97.14 (92.68)
18.99 (3.13)
24.01

02326 (0.6354)
0.327

0.878 (0.243)
0.967 (0.625)

0.1396 (0.1839)
0.1768 (0.2350)
8064

7411

46

607

974

0.007

1.01

98.0/2.0/0.0
1.93

32.10
31.50
49.70

37.20

Rmeas = Zpy (n/n-1)”2 % |lihkl)-<I(hkl)>| / £Z; li(hkl); where i is the ith measurement of reflection (hkl)
and <I(hkl)> is the average over symmetry related observations of a unique reflection (hkl).

PCC1/2 is the Pearson correlation coefficient calculated between two random half data sets.

°CC* is the CC of the full data set against the true intensities, estimated from CC* = [2 CC1/2/(1+CC1/2)]"2.

doi:10.1371/journal.pone.0118606.t001
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Paris, France). All the data sets were integrated with XDS [26] and scaled with Aimless [27]
from the CCP4 suite of programs [28] (Table 1).

The structure of TcdA in complex with ATP was solved at 1.77-A resolution using
MR-SAD by first placing residues 21-199 of MoeB (PDB 1JWA) [29] with PHASER [30] using
the high-resolution data set, and then using the partial model and the anomalous signal of sul-
tur, phosphorus (from ATP) and potassium measured on the long wavelength data set to phase
the full length structure. The complete structure of TcdA could be built into the minimally bi-
ased electron density maps calculated from MR-SAD phases; the only exception is a solvent ex-
posed loop spanning residues 217-236 above the ATP binding pocket. The structure of the
AMP complex was solved by MR using the ATP complex as search model. Both structures
were built, refined and validated with Coot [31], phenix.refine [32] and MolProbity [33].

Accession codes

The atomic coordinates and structure factors for the determined crystal structures are deposit-
ed in the Protein Data Bank (PDB) under accession numbers 4D79 (TcdA-ATP) and 4D7A
(TcdA-AMP).

Fluorescence spectroscopy

The dissociation constant for the TcdA-tRNA™$(UUU) binding interaction was obtained by
following the quenching of the intrinsinc fluorescence of tryptophan (2) and phenylalanine (8)
residues in TcdA upon tRNAYS(UUU) addition. All fluorescence spectroscopy experiments
(100 pl) were conducted in 20 mM sodium/potassium phosphate, pH 7.4, 300 mM NaCl, at
25°C using a Varioskan (Thermo Fisher) instrument, in black 96-well plates, setting the excita-
tion and emission wavelengths to 280 nm and 340 nm, respectively. TcdA variants at 5 uM
were challenged with increasing concentrations of tRNA (0.1-10 uM) in triplicate. Primary
inner-filter effects due to tRNA absorption at the excitation wavelength were corrected for by
standard methods (secondary inner filter effects for tRNA at 340 nm are negligible) and colli-
sional induced quenching (as opposed to binding) was ruled out as the mechanism for the
quenching of TcdA intrinsic fluoresence [34]. The reduction in fluorescence signal that accom-
panied tRNA addition was analyzed by non-linear regression methods in SigmaPlot v12, and
the dissociation constant, Kp, and the Hill coefficient were calculated according to the follow-
ing equation:

F,—F L
F—F K,+1L

where Fj is the intrinsic fluorescence of TcdA in the absence of ligand, F. is the minimal residu-
al fluorescence of the TcdA-tRNAY(UUU) complex and L is the
tRNAYS(UUU) concentration.

NMR experiments

NMR experiments were acquired at 298 K on a Bruker Avance 600 MHz spectrometer
equipped with a cryoprobe for 1D and 2D spectra, and on a Bruker Avance 800 MHz for the
3D. The spectra were processed with TopSpin 2.1 (Bruker), and 2D and 3D spectra were ana-
lyzed with the program CCPN Analysis [35]. 1D '"H-">C and "H-"°N HSQC spectra (5120

and 10240 scans respectively), 2D "H-'>N HSQC spectra (3072 data points in t2, 128 in t1,

96 scans), and 3D spectra (2048 data points in t3, 30 in t2 (**N), and 128 in t1 (**C), 32 scans)
were acquired using standard Bruker pulse sequences. 1D heteronuclear spectra were processed
with a line broadening of 10 Hz and 20 Hz ("H-">C and "H-""N HSQC respectively). 'H-""N
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backbone resonance assignment for CsdE was carried out using HSQC, CBCANH [36] and
CBCA(CO)NH [37] spectra and based on deposited data (BMRB code: 5630) [38].

Samples for the interaction between TcdA and CsdA were prepared as follows: a solution of
100 uM of *C/"N-TcdA (in binding buffer, consisting of 20 mM sodium/potassium phos-
phate, pH 7.4, 300 mM NaCl, 2 mM dithiothreitol) was divided in two parts: 100 pl of one of
them was diluted with 80 pl of binding buffer and 20 ul of D,0, resulting in a 50 uM solution
of free TcdA. To the remaining 100 pl, 80 pl of a 1.3 mM solution of CsdA (unlabeled) and
20 ul of D,O were added, resulting in a 1:10 ratio solution TcdA:CsdA. 1D "H-">C and
"H-">N HSQC spectra were acquired for both samples. 2D "H-""N HSQC spectra were ac-
quired for samples 0.09 mM of *C/"’N-CsdE containing 123 l of binding buffer, and
0.09 mM "*C/"*N-CsdE with 123 pl of 0.6 mM TcdA (ratio 1:4).

Cross-linking experiments

The 7-atom, 8.0-A short spacer arm cross-linking reagent bis(maleimido)ethane (BMOE)
(Pierce 22322) generates non-cleavable cross-links between sulthydryl groups that are in close
proximity. BMOE was used to selectively trap transiently formed CsdE-TcdA complexes. CsdE
and TcdA were mixed at a 1:1 molar ratio (80 uM) in reaction buffer (20 mM sodium/potassi-
um phosphate, 450 mM NaCl, 0.5 mM EDTA, pH 7.4), treated with 1 mM TCEP for 30 min to
break pre-existing unspecific disulfide bridges, and BMOE was then added to 0.2 mM final
concentration and incubated for 1 h at 25°C. Control reactions containing either CsdE or
TcdA were set up and treated identically. The extent and specificity of the BMOE cross-linking
reaction was followed by SDS-PAGE. The cross-linking reaction could be scaled up to obtain
milligram amounts of CsdE-TcdA complex for biochemical and structural analysis (Supple-
mentary Information).

SAXS measurements

SAXS experiments were performed at the BM29 BioSAXS beamline at the ESRF (Grenoble,
France) [39]. SAXS data from purified TcdA were collected using a batch setup at three con-
centrations between 0.5-5 mg/ml, with ten successive time frames and 20 s exposures. For
TcdA-tRNAMS(UUU), SAXS data (1 s per frame) were collected from two identical experi-
ments using an online size-exclusion chromatography (SEC) setup [40] after injecting 100 ul of
8-mg/ml complex on a Superdex 200 Increase column (GE Healthcare). Since the complex was
prepared in presence of a molar excess of the tRNA"YS(UUU) component, this step allowed to
obtain scattering data from both the protein-tRNA complex and the excess tRNA™*(UUU) on
a single experiment. All SAXS measurements were performed at 5°C in 20 mM sodium/potas-
sium phosphate buffer, pH 7.4, 300 mM NaCl, 2 mM B-mercaptoethanol. Data were recorded
using a 1 M PILATUS detector (DECTRIS) at a sample-to-detector distance of 2.7 m and a
wavelength of 1.5 A, covering the range of momentum transfer 0.020 < s < 0.5 A™". Data from
the batch setup (TcdA) or from the two equivalent peaks from the replicated SEC-SAXS mea-
surements [TcdA-tRNA™S(UUU) and tRNA] were averaged, buffer subtracted and merged
using the procedures outlined in Round et al. [40]. The radius of gyration (Ry) was evaluated
using the Guinier approximation [41] and also from the entire scattering curve using Porod’s
law [42], and the pair-distance distribution function P(r) was calculated using GNOM [43].
Guinier plots of all SAXS data support monodispersity of the analyzed samples (S2 Fig.). The
measured scattering curves were compared with the theoretical scattering curves of the macro-
molecular models using CRYSOL [44]. Ab initio shape restoration was performed using 10-20
independent runs of DAMMIF [45] followed by DAMAVER [46] to create the final ab initio
shape. ScAtter was used to calculate the molecular weights of the macromolecules and for the
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Fig 2. X-ray crystallographic structure of the binary complex TcdA at 1.77-A resolution in complex
with ATP. a Ribbon representation of the TcdA homodimer structure in two orientations related by a 90°
rotation depicting each subunit in a different color (green or wheat). Two K* and one Na* cations are shown
as violet and yellow spheres, respectively. The Na* ion is located right at the homodimeric interface and its
coordination sphere comprises amino acid residues from both monomers and water molecules. ATP is bound
in a conserved surface pocket (shown as a space-filling model in CPK colors). b Description of secondary
structural elements of TcdA monomer. Helices are shown in gold (a-helices are labeled H1-H8 and 34¢
helices H3;0a-d), strands in white (B1-B7), and loops in light cyan. ¢ Annotated schematic representation of
TcdA topology. Helices and strands are depicted as in b, except for 349 helices which are indicated with
purple lines and labeled a-d. K* and Na* ions are shown as blue and yellow circles. Dashed lines delimit
regions that interact with K*, and structures involved in TcdA dimerization are marked with dark

blue asterisks.

doi:10.1371/journal.pone.0118606.9002

calculation of the fitting parameter Rgps, the small-angle scattering invariant V and the pa-
rameter Qg [47]. The summary of SAXS statistics is given in S1 Table.

Results and Discussion
Crystal structure of TcdA

The recent functional assignment of TcdA as the dehydratase in the synthesis of ct°A was not
predictable from the primary structure, since it has detectable sequence homology only to the
ubiquitin-activating E1-enzymes MoeB (14%) and ThiF (11%). These enzymes are unknown
to bind tRNA or catalyze post-translation modifications in tRNA substrates. The similarity to
MoeB/ThiF is restricted to the N-terminal domain of TcdA (residues 30-157), which is classi-
fied into the ThiF family (Pfam database PF00899; E-value 6.7 x 107*') [48]. In contrast, the
C-terminal end of TcdA lacks sufficient sequence similarity for functional prediction. To shed
light onto the structural basis for the tRNA binding and ct®A synthetic properties of
TcdA-ATP, we determined the crystal structure of E. coli TcdA (Table 1 and Fig. 2) loaded
with ATP to 1.77 A resolution (R/Rg. values of 0.139/0.176) (Fig. 3A) and AMP to 1.89 A res-
olution (R/Rg. values of 0.141/0.183) (Fig. 3B). The asymmetric unit contained four TcdA
chains arranged in two independent dimers, with a solvent content of 39%. Analysis of the
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macromolecular interactions and potential complexes in the crystalline state with PISA [49] in-
dicates that the TcdA dimers are the most likely assembly in solution. The structure of TcdA in
complex with ATP was solved by molecular replacement-single wavelength anomalous diffrac-
tion (MR-SAD) using as search model residues 21-199 of MoeB (PDB 1JWA) [29] and the
anomalous signal coming from protein sulfur atoms, ATP phosphorus atoms and K* cations
as additional phasing information. The structure of TcdA-AMP was solved by MR using the
tully refined model of the TcdA-ATP complex. Besides localized changes in the active site, the
TcdA-ATP and TcdA-AMP structures are identical (RMSD 0.16 A over 246 Co, atoms).

The tertiary structure of monomeric TcdA consists of seven B-strands in a continuous sheet
surrounded by eight o-helices (Fig. 2). All B-strands are parallel except for the sixth p-strand
(B6) at the end of the sheet (Fig. 2C). As in the MoeB/E1 superfamily, the N-terminal half of
the sheet contains a variation of the Rossman fold whereby the Boof-topology is interrupted
between 2 and 04 by the insertion of two consecutive 314 helices. The first 3, helix (H31a)
contains three residues that are conserved in the MoeB/E1 superfamily, including a strictly
conserved Asn69 that interacts with bound ATP/AMP via water-mediated hydrogen bonds. In
agreement with its ATP hydrolytic activity, the loop between B1 and o3 contains the highly
conserved Gly-X-Gly-Ala/Gly-Leu/Ile-Gly motif (where X denotes any residue, typically Val,
Leu and Ile), akin to the P loop [50]. The C-terminal half of TcdA comprises three parallel -
strands (B4, B5 and B7) hydrogen bonded to the antiparallel 36, two a-helices connecting con-
secutive B-strands (06 and 0.7), and a long a-helix (a8) that runs perpendicular to the TcdA
dimer symmetry axis and sticks out on either side (Fig. 2). Several of the C-terminal motifs in-
cluding 6, 0.7 and B7 and the loops connecting them generate two unique metal binding sites,
a K" binding site per TcdA monomer and the interfacial Na* binding site (Fig. 2).

In the TcdA-ATP complex (Table 1 and Fig. 3A), ATP is bound in a cleft over the C-termi-
nal end of the central sheet. The residues in the P loop form the floor of the nucleotide triphos-
phate moiety, and the adenine ring is inserted into a hydrophobic cavity. Specific interactions
anchor ATP at the active site through its triphosphate moeity and the ribose hydroxyl groups.
A short hydrogen bond between the main-chain carbonyl oxygen from the P-loop Gly40 main-
tains the a-phosphate group firmly bound insite the binding pocket in a kinked conformation.
The conserved Arg72 and Lys85 contact oxygens from the o- and B-phosphates, while Thr68
and the strictly conserved Asn69 in the H3,4a helix anchor the y-phosphate through a water-
mediated hydrogen bond. In the TcdA-AMP complex (Table 1 and Fig. 3B), the nucleotide-
binding residues stabilize AMP in a manner analogous to ATP, with no conformational
changes in the TcdA dimer. In the TcdA-ATP and TcdA-AMP complexes, the region between
B7 and the C-terminal o8 spanning residues 214-236 is fully disordered in electron density
maps. This surface disordered loop, in close proximity to the ATP binding site, corresponds to
the disordered loop regions of MoeB [29] that are thought to play catalytic roles or engage in
protein-protein interactions.

One K" binding pocket is found deeply buried in each TcdA monomer, as supported by
anomalous Fourier maps of the K" ions contoured at 7 o (Fig. 3C). The geometry of the coordi-
nation sphere of K" is distorted tetrahedral, and the ligand residues include main-chain car-
bonyl oxygens (GIn174, Ser206 and Glu208) and the side chain of GIn158, with an average
metal-oxygen distance of 2.7 A, and a water molecule at 2.6-3.1 A. The K* binding site is creat-
ed by structural elements in the C-terminal half of TcdA comprising the loop $6-0.7, B7 and
loop-P7. This unique surface pocket is absent in other members of the MoeB/E1 superfamily
and could have functional roles specific to tRNA binding and/or modification.

A second metal binding site specific for Na* is found at the dimer interface in an octahedral
coordination (Fig. 3D). The Na™ cation is axially liganded by the carbonyl oxygens of two sym-
metric Thr162 residues that lie in a short 31, helix segment (H3;,c) from opposite monomers,
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Fig 3. X-ray electron density maps of the ATP- and AMP-binding pocket and metal coordination
spheres. a Detailed view of the ATP-binding site of TcdA. Residues that interact with ATP are labeled and
shown as sticks and atom colors (C atoms are in subunit colors, as in Fig. 1). 2mF,-DF electron density map
is depicted around the ATP substrate at 1.5 o contour level. b Detailed view of AMP bound in the active site.
Representation and electron density map as in (a). ¢, d Metal coordination spheres of K* (¢) and Na+ (d)
cations. Interacting residues are labeled and shown as sticks in atom colors (C atoms are in subunit colors),
and coordinating water molecules are shown as red spheres. Metals and their coordination spheres are
shown in 2mF,-DF electron density (grey). The anomalous Fourier map calculated from a long wavelength
(1.89 A) dataset at 2.4-A resolution is shown for K* (c) in purple; in contrast, Na* has no anomalous signal at
that wavelength, enabling the accurate discrimination between K* and Na* cations in the structure.

doi:10.1371/journal.pone.0118606.9003

with four water molecules occupying the equatorial positions. The identity of this sodium ion
was unambiguous owing to the conspicuous coordination sphere of sodium, with average coor-
dination distances of 2.35 A between the metal and the carbonyl oxygens, and 2.50 A with the
water oxygens, and the total absence of anomalous signal at 1.999 A, which ruled out a K.

Dimeric structure of TcdA

The overall architecture of TcdA consists in a symmetric dimer, consistent with the observed
elution volume of TcdA in analytical gel filtration (not shown) and solution SAXS scattering
data (S1 and S2 Tables). The TcdA dimer is maintained by Na*, which mediates monomer-
monomer contacts through the dimer interface, and by K* ions, which play a structural role in
shaping the monomer fold. The dimer interface buries approximately 2250 A* solvent accessi-
ble surface area (ASA), or 20% of the total ASA per monomer, engaging >25% of TcdA resi-
dues along an elongated surface patch (Fig. 4A). According to PISA [49], the TcdA dimer is
chemically stable as its free Gibbs energy of dissociation is 21.5 kcal/mol. This surface patch
comprises four helices (a1, 0.3, a4 and the long C-terminal helix a8) from each monomer, the
310 helical regions H3;4a and H3c that shape the nucleotide-binding site and the Na* binding
site, respectively, and the loops B5-p6 and B7-a8. In addition to many hydrophobic interac-
tions, several strong hydrogen bonds stabilize the dimer structure, engaging interfacial arginine
residues from helices o1 (Argl2), o3 (Arg51), Hyob (Arg78) and a4 (Arg92) (Fig. 4B,C). Two
symmetric interactions further contribute to the dimer stability, the antiparallel interaction
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Fig 4. TcdA dimerization interface. Molecular surface representation of a TcdA dimer in two orientations (a)
related by a 90° rotation around a horizontal axis. The location of the ATP binding pocket and the interfacial
Na* ion are labeled. Amino acid residues that contribute to the extended, flat dimer interface are mapped onto
the molecular surface in green and labeled. b Close-up of the symmetric helical bundle (H3-H4). Key
hydrogen bonding and charge interactions are shown as dashed lines. ¢ Helix H1 participates in the dimer
interface through hydrogen bonding and van der Waals interactions with H3 from the same chain and H30a
from the opposite monomer.

doi:10.1371/journal.pone.0118606.9004

between helices 08 and the Na*-bridged interaction held by Thr162 main-chain oxygens
(Fig. 3D).

Comparison with MoeB/E1 superfamily

There is significant structural similarity between the 180-amino-acid N-terminal half of TcdA
and the catalytic domain of MoeB/ThiF, which can be superimposed with RMSD of 1.57 A
(181 Coatoms) and 1.42 A (177 Co. atoms), respectively (Fig. 5). The MoeB/E1 superfamily en-
zymes E. coli MccB and human UBA5, which share the same fold structure than MoeB/ThiF,
also display a considerable degree of structural similarity to TcdA, with RMSD of 1.74 A (173
Co atoms) and 1.85 A (146 Ca atoms), respectively (Fig. 5). The nucleotide-binding pocket
and a significant part of the helices that in TcdA participate in the dimer interface are among
the most conserved structures between TcdA and MoeB/ThiF. In particular, the P loop and the
residues that contact ATP/AMP are nearly strictly conserved across all structural homologs.

In contrast to the conservation displayed by the nucleotide-binding site and adjacent re-
gions, the C-terminal half of TcdA adopts a unique structure that is distinct from those present
in MoeB/ThiF. Firstly, the C-terminal extension of TcdA is stabilized by a structural K* cation
and not by Zn*, which is consistent with the absence in TcdA of the Cys4 motif responsible
for Zn>* binding in MoeB/ThiF. Of the four cysteine residues used by MoeB/ThiF to chelate
Zn**, TcdA has retained only the last cysteine (Cys220), while the first two cysteine residues
fall in a sequence stretch absent in TcdA and the third cysteine is a threonine in TcdA
(Thr218). Cys220 is situated in the beginning of the disordered loop and therefore could have a
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Fig 5. Structural comparison of TcdA with the homologous E1-like activating enzymes. a Ribbon
representation of TcdA structural homologs found with PDBeFold [51] with structural similarity Q-scores
higher than 0.28 (the highest Q-scores are 0.49 with MoeB and 0.46 with ThiF). All structures were
superimposed onto TcdA and are shown in similar orientations for comparison: MoeB (PDB 1JWB), ThiF
(PDB 1ZFN), MccB (PDB 3H9J) and UBA5 (PDB 3H8V). E1-like core domain is shown in grey; the long o-
helix that is structurally equivalent to TcdA a8 is in orange; metal binding sites are in protein-specific colors;
K*ions are in purple, Na* ions in yellow, and Zn* in grey. b Schematic representation of the domain
architecture of the E1-like enzymes superimposed in (a), with equivalent color coding; bs, binding site; the
sequence position corresponding with disordered loops is indicated by dashed lines and marked with start
and end residues. The C-terminal a8 helix in TcdA is structurally equivalent to the a-helix immediately
following the E1-like domain in the other enzymes. ¢ Structure-guided multiple sequence alignment of the
E1-like domain with overlaid secondary structure from TcdA. Functionally important residues and motifs are
annotated as follows: bold underline, P-loop residues; black asterisks, residues in direct contact with ATP;
and blue asterisks, residues from helix H3;oa that make water-mediated contacts with the nucleotide.
Conserved residues are shown in shaded colors.

doi:10.1371/journal.pone.0118606.9005

functional role during catalysis. Cys234 in TcdA is also conserved in MoeB/ThiF, and it is
found in the disordered loop. In contrast, an additional Cys66 without an equivalent residue in
MoeB/ThiF is located near the active site (53 Fig.). Since functional thiol transfer from
CsdA-CsdE appears to be essential for TcdA function in vivo [16], and thiolation of TcdA has
been shown to occur in vitro [18], it seems likely that Cys66, Cys220 or Cys234 may be suscep-
tible to be the recipient of the activated sulfur atom.

As aresult of the structural differences in the C terminus of TcdA and MoeB/ThiF, the sol-
vent-exposed surface motifs that allow the MoeB/MoeD and ThiF/ThiS complexes to form are
blocked in TcdA by an extended segment containing residues 170-189, which is part of the K*
binding site. This motif is the only structural element that has no counterpart in MoeB and
ThiF, raising the possibility that it is involved in TcdA specific functional roles absent in other
E1-like enzymes. In addition, structure superposition of TcdA with MoeB, ThiF, MccB and
UBAS5 (Fig. 5 and S4 Fig.) shows a difference in domain organization consisting in a swap be-
tween the long helix (orange) and the metal binding sites. In TcdA, in contrast to all other
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structural homologs, the metal binding site occupies a central position between the E1-like do-
main and the C-terminal a8.

TcdA can establish transient interactions with CsdE and CsdA

Previous studies have established that TcdA can be persulfurated by the cysteine desulfurase
CsdA, either directly or indirectly through the SufE-like sulfur acceptor CsdE [18], and that the
csdA and csdE genes are essential to support the function of TcdA in ct®A biosynthesis in vivo
but not in an in vitro reconstituted system [16]. To shed light into the proposed interaction be-
tween TcdA and CsdA-CsdE we set out to characterize their complex. We were not able to
identify a stable CsdA-TcdA or CsdE-TcdA complex by gel filtration or pull-down experiments
(data not shown) even though a CsdE-TcdA complex had been previously isolated using over-
expressed TAP-tagged CsdE [18]. To investigate whether a short-lived complex of TcdA with
either CsdE or CsdA could form in vitro, we resorted to 1D and 2D HSQC NMR techniques
that can detect fast exchanging transient protein interactions with high sensitivity.

To probe the hypothetical interaction between CsdA and TcdA, which would result in a
148-kDa heterotetramer (assuming one TcdA monomer bound per subunit of CsdA homodi-
mer), we acquired 1D "H-">C and '"H-""N HSQC spectra of 50 uM B3C,1°N-TedA (20% D,0)
upon addition of unlabeled CsdA at a 10-fold excess molar ratio. Comparison of the resultant
spectrum with a blank experiment recorded for only free isotope-labeled TcdA permitted to
detect a decrease in the signal intensity of the TcdA resonances in the presence of ten-fold
CsdA (data not shown). This decrease in intensity suggests the existence of a very weak interac-
tion between CsdA and TcdA, consistent with published data reporting a catalytic interaction
for sulfur transfer between TcdA and CsdA and the absence of a stable CsdA-TcdA complex
by a yeast two-hybrid analysis [18].

In contrast to the CsdA-TcdA complex, the smaller size of CsdE and the availability of its
solution structure by NMR (bmr5630, PDB code 1NI7) [38] afforded the opportunity to fur-
ther characterize the region of its putative interaction with TcdA. In this case, regular "H-">N
2D-HSQC experiments (Fig. 6A) using 13C,ISN-doubly labeled CsdE and native TcdA were
performed. In these experiments, the "H-'>N HSQC spectra of free '>C,'N-CsdE (90 uM) and
of a similar sample with 4-fold molar excess of unlabeled TcdA were acquired. The comparison
of these spectra showed that several CsdE crosspeaks suffered chemical shift perturbations in
the presence of TcdA, while most of them remained unperturbed. These evidences demonstrate
the existence of a transient physical interaction between CsdE and TcdA. Given the observed
chemical shift perturbations, the molecular recognition process is in fast exchange in the NMR
chemical shift time scale, with an estimated Kp, in the mM to high ¢M range. Under the low ex-
cess ratio conditions (1:4) between the components, only a small fraction of CsdE is probably
bound in the CsdE-TcdA complex. Thus, the existence of a fast exchange process permits ex-
plaining the absence of complete signal decay. The assignment of the crosspeaks that were per-
turbed by TcdA allowed mapping the CsdE surface in contact with TcdA (Fig. 6B,C). In fact,
the most perturbed region was located at residues 70-81, corresponding to the antiparallel
hairpin that follows Cys61, the persulfurated Cys in CsdE, allowing its identification as the
most crucial for TcdA interaction (Fig. 6C). This region has been characterized as being rather
dynamic, as shown by both the CsdE and CsdA-CsdE crystal structures [38,52]. Very probably,
the elongated structure of CsdE can facilitate further intermolecular interactions with the sur-
face-exposed cysteine residues in TcdA.

To seek further support for a transient CsdE-TcdA complex, we performed cross-linking ex-
periments with bis(maleimido)ethane (BMOE), a compound that cross-links sulfhydryls group
that are in close proximity. The short 7-atom spacer arm of BMOE spans an 8.0-A distance
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Fig 6. TcdA interacts transiently with the sulfur-acceptor SufE-like protein CsdE. a NMR 'H-'°N
NOESY spectrum of doubly labeled 'C,"®N-CsdE in presence (blue) or absence (black) of unlabeled TcdA.
Significant shifts in the position of specific NOESY resonance peaks for CsdE residues are labeled. b The
position of the affected amino acid residues is mapped onto the NMR structure of CsdE (PDB 1NI7) in ribbon
(left) and surface (right) representations. ¢ Average chemical shift (A8) of 'C,'®N-CsdE upon binding to
TcdA as measured from the NOESY spectrum in a plotted against the CsdE amino acid sequence.

doi:10.1371/journal.pone.0118606.9006

between the two cross-linked thiol groups, therefore enabling the capture of specific protein
complexes. Our cross-linking experiments demonstrated the selective cross-linking of CsdE
and TcdA in SDS-PAGE, with no cross-linked species being detected for CsdE or TcdA alone.
The cross-linked CsdE-TcdA complex was stable against incubation with DTT and could be
separated from excess components by gel filtration. The analysis of the cross-linked complex
by SAXS revealed conformational flexibility that could be interpreted in terms of two indepen-
dent CsdE molecules covalently attached to TcdA in pseudo-symmetrical positions (SI Text
and S5 Fig.).

Highly specific cross-linking of CsdE and TcdA with BMOE lends further support to the
notion that CsdE and TcdA might engage in a complex. These weak, fast exchanging interac-
tions may be functionally important for TcdA function provided that TcdA post-translational
modification by persulfuration are required for proper function in ct®A biosynthesis.

TcdA forms a complex with tRNAMYS

The proposed role for TcdA in the transformation of t°A37 into its cyclic analogue, ct®A37, at
position 37 of tRNA*NN, requires that TcdA engage in a productive binding interaction with
its cognate tRNAs. Since no previous evidence for such a complex was available, we conducted
electrophoretic mobility shift assays (EMSA) with purified TcdA and tRNA™$(UUU) in the
presence of the co-substrate Mg**-ATP (Fig. 7C). These assays revealed the formation of a
TcdA-tRNAS(UUU) complex that migrated as a distinct band when compared with TcdA
alone (which did not enter the gel owing to its basic pI of 8.8) or isolated tRNAS(UUU),
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doi:10.1371/journal.pone.0118606.9007

which migrated at a lower apparent molecular size. At the highest concentration of TcdA (15 uM),
additional higher molecular weight bands become discernable, which may represent higher-order
complexes. Although the physiologic quaternary structure of the TcdA-tRNA™*(UUU) complex
remains unknown, the dimeric structure of TcdA suggests that the fastest migrating complex re-
tardation band may contain two tRNA"*(UUU) molecules in a 2:2 stoichiometric complex

(Fig. 7C, arrow) while the next slower migrating band might contain one tRNA"* molecule in a
2:1 substoichiometric complex with TcdA (Fig. 7C, *). The Kp, for the TcdA-tRNAYS(UUU) com-
plex was determined as 3 uM by using the fact that the tryptophan fluorescence of TcdA is
quenched by tRNA.

We further characterized the size and stability of the TcdA-tRNA™*(UUU) complex by per-
forming sedimentation velocity (SV) and sedimentation equilibrium (SE) analytical ultracen-
trifugation (AUC) experiments using complexes assembled in presence of a molar excess of the
tRNA*(UUU) component. SV-AUC profiles for the complex was consistent with the forma-
tion of a high-molecular weight protein-tRNA complex that sedimented with a sedimentation
coefficient of 8.2 S, compared with the isolated components (3.8 S for TcdA and 2.4 S for the
tRNA) and with remaining free TcdA in the complex experiment (3.8 S) (Fig. 7A). Using the
same experimental conditions for the previous experiments, we then ran SE-AUC for the
TcdA-tRNAMS(UUU) complex to measure the buoyant mass of the complex and assess the co-
existence of excess individual components (Fig. 7B). The calculated molecular masses for the
sedimenting species are within experimental error to the theoretical masses for all components:
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Fig 8. Solution structure of TcdA-tRNA"YS(UUU). a SAXS data for TcdA-tRNAYS was measured using an
online HPLC setup to separate complex from excess free tRNA. The graph shows a plot of the SAXS
intensity at zero angle, 1(0) (left axis, curve represented as a solid black line), and of the radius of gyration, Rq
(on the right axis), versus data-collection frames. Frames 253-263 (green line) were merged and used for
shape restoration of the TcdA-tRNAYYS(UUU), and frames 304-310 were used for the control reconstruction
of the tRNA™S(UUU) shape. b Best model calculated for the TcdA-tRNAS(UUU) complex overlayed by the
ab initio SAXS shape calculated with DAMMIF. The crystal structure of TcdA-ATP is represented in green
cartoon and the tRNA is depicted with its main chain as a gold ribbon and the bases as ladders. The fit (red
line) to the experimental SAXS data (blue points), calculated with CRYSOL, %2 and residuals are shown. ¢
Like in (b), for free tRNA®S(UUU). In this case, the model is a rigid-body fit of the tRNA structure into the ab
initio SAXS envelope.

doi:10.1371/journal.pone.0118606.9008

63,531 + 840 Da (TcdA dimer, 57.9 kDa), 26,066 + 156 Da (tRNA, 23.4 kDa), and
114,297 + 824 Da [TcdA-tRNAYS(UUU), 104.8 kDa] (S2 Table).

SAXS reconstruction of TcdA-tRNA™Y® complex

In the absence of a crystallographic structure for the TcdA-tRNA™*(UUU) complex, and in
view of the dynamic nature of the complex as inferred from gel filtration and AUC experi-
ments, we resorted to shape restoration by SAXS to elucidate the three-dimensional structure
of the TcdA-tRNA™*(UUU) complex. To collect X-ray scattering data from a monodisperse,
homogenous solution of the complex, and circumvent the dynamic dissociation of the complex
into its constituents, we subjected pre-incubated complex formed from purified components to
on-line HPLC coupled with SAXS. The setup allowed us to collect useful solution scattering
data from both the complex and from the excess tRNAY*(UUU) (Fig. 8A).

Seven to fifteen successive frames across the non-overlapping peaks from a duplicated ex-
periment containing TcdA-tRNA™S(UUU) or free tRNAYS(UUU) were processed and merged
together on the basis of a coherent experimental R, (R, complex: 33.4 A [Guinier points 24-53;
sR; 0.471-0.930; Fidelity 0.706]; R, free tRNA: 23.0 A [Guinier points 5-72; sR, 0.139-0.892;
Fidelity 0.979]). SAXS invariants were calculated for these species (reported in S1 Table).
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Fig 9. TcdA-tRNA interface. a Electrostatic potential molecular surface calculated with APBS (Adaptive
Poisson-Boltzmann Solver) [55] and rendered with PyMOL (www.pymol.org) [56]. Two views are shown that
are related by a 90° rotation around a horizontal axis. The interfacial Na* cation is depicted as a yellow
sphere. b tRNA is modeled on the basis of the SAXS data for the TcdA-tRNAYS(UUU) complex bound to the
two outer rims of TcdA (represented as in a), where most of the positively charged surface is found. The two
tRNA molecules bind to spatially separated and independent surface patches in a symmetric arrangement.
The modified ct®?A37 nucleotide is shown in cyan. ¢ Detailed view of the TcdA-tRNA binding mode. TcdA is
represented as in (a), with Cys66 sulfur atom shown as a green sphere. The tRNA molecule on the front
inserts its anticodon-stem loop into the ATP-binding pocket (in spheres and CPK colors), with ct®A37 (cyan)
facing the catalytic site.

doi:10.1371/journal.pone.0118606.9009

Furthermore, the estimation of the molecular weight using either the SAXS data (MWguxs) or
the AUC (MW ,yc) data supports that the TcdA-tRNA™S(UUU) complex contains a TcdA
dimer and two tRNA molecules in solution (MWgaxs: 90.0 kDa; MW s yc: 114 kDa; compare
with the theoretical MW for a 2:2 complex of 104 kDa) (S2 Table). In addition, SAXS data were
collected also for TcdA, validating the crystallographic structure and permitting a more direct
comparison of the complex to its components (S1 and S2 Tables).

Ab initio shape restoration from the SAXS scattering data was then used to generate the mo-
lecular envelope for the complex (Fig. 8B) and the free tRNA (Fig. 8C) with DAMMIF [45] and
MONSA [53,54]. MONSA performs multiphase bead modeling for complexes with different
contrasts but requires that the component structures do not undergo conformational changes
in the complex. Preliminary analysis of the restored shapes suggested that conformational
changes in TcdA were likely to be necessary for productive binding, therefore we used DAM-
MIF for all subsequent analysis. Since the TcdA-tRNA"*(UUU) is two-fold symmetric, we
generated bead models imposing either P1 or P2 symmetry. In both cases the resultant models
were similar, but the shapes obtained with P2 symmetry reproduced better the symmetry
known to be present in TcdA homodimer and were kept for further analysis. The overall shape
of the TcdA-tRNA™*(UUU) retrieved by SAXS contains a central body accounting for about
75% of the volume and two symmetric protrusions that extend to either side normal to the
symmetry axis that we identified as tRNA™*(UUU) (Fig. 8B).

To gain insight into the structure of TcdA-tRNA"*(UUU) we attempted to model the com-
plex into the SAXS envelope, using the structure of TcdA-ATP and a representative structure
of tRNA (PDB 4JXX). The shape and volume of the SAXS envelope indicates that TcdA could
occupy a central location in the complex with two tRNA molecules symmetrically bound on
either side of the complex (Fig. 8B), involving extensive contacts with the positively charged
surface of TcdA (Fig. 9). Sequential or simultaneous rigid body fitting of TcdA-ATP and
tRNA was possible with minimal intermolecular clashes, achieving a good description of the
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Fig 10. Interaction network for ct®A37-tRNA“NN modification. TcdA (surface representation, monomer
chains in green and wheat colors) interacts transiently but specifically with the sulfur acceptor CsdE (in grey,
with TcdA-binding surface patches in blue and Cys61 in yellow), linking with the CsdA-CsdE cysteine
desulfurase system and sulfur trafficking, which are known to be required for ct’A37 synthesis in vivo [16].
The CsdE-TcdA transient interaction is represented by a grey double-headed arrow. TcdA interacts with
tRNAANN (K in the pM range) in a 2:2 complex that harbors ATP-dependent t°A37 dehydratase activity. The
ct®A37 hypermodification is important for decoding efficiency and translation fidelity.

doi:10.1371/journal.pone.0118606.9010

data (% 2.3; Rsas 0.001) (Fig. 8B). The SAXS-based model of TcdA-tRNA complex that
emerges (Fig. 8 and 9) reveals how the flat surface beneath the dimer interface and the surface
motifs involved in organizing the K* binding site, which have been extensively modified from
the E1-like enzyme primitive fold, play crucial roles in binding tRNA. This flattened interface
provides an ideal docking platform for the flat side of the tRNA molecules while guiding the
stem loop to position A37 in close proximity to the TcdA active site, and its electrostatic prop-
erties, complementary to those of tRNA, provide substantial binding stabilization. The large
and symmetric electropositive surface patches on the TcdA structure located at the outer rims
of the complex, which extend up and including the ATP binding site, provide an extensive pos-
itively charge surface for tRNA binding. Projecting the electrostatic potential surface derived
from the crystallographic structures onto the shapes restored by SAXS further confirms that
the TcdA surfaces involve in tRNA binding are also the most electropositive surface patches in
the complex. It is then conceivable that a ternary TcdA-tRNANN
termediate toward ct®A37 modification from which ATP hydrolysis and t°A37 cyclization
steps may take place subsequently.

Although accurate modeling of the tRNA modification reaction within the TcdA-tRNA
complex is impeded by the lack of high-resolution structures for the complex, the SAXS-based
model of the complex is compatible with the known biological function of TcdA, whereby the
modified t°A37 nucleotide in the ASL would fit snugly in the active site groove of TcdA
(Fig. 9C), in close proximity to active-site residues and ATP. Although very little is known
about how TcdA cyclizes t°A37, it is safe to assume that the N°-threonylcarbamoyl side chain
of t°A37 will have to reach inside the ATP-binding pocket for the reaction to proceed, since
ATP hydrolysis has been shown to occur concomitantly with reaction turnover. Further re-
search will be necessary to elucidate the mechanistic details of the interaction, including the rel-
ative positions of the TcdA catalytic residues, the ATP substrate, and the t°A37 side chain.

complex may form as an in-
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Interestingly, the TcdA loop that is not defined in our crystal structures (residues 214-236)
and that extends out of the K* binding pocket right underneath the ATP binding site, would be
well placed to interact with the tRNA molecules. It is currently unknown whether this loop will
play a predominantly stabilizing, catalytic, or an intermediate, role. Since the loop sequence
contains several positively charged residues and two potentially catalytic cysteine residues
(Cys220 and Cys234), it could perform complex tasks both securing tRNA binding in a pro-
ductive orientation and, perhaps, collaborating in the cyclization of t°A37. More extensive con-
formational changes at the TcdA-tRNA interface cannot be ruled out. For example, the largest
crystallographic B-factors pertain to residues in helix a7 and the flap-like loop between a7-p7,
facing toward the hypothetical tRNA interface. Those motifs could rearrange upon binding to
a conformation where helix a6 and neighboring motifs could present shape and electrostatic
properties resulting in an even more complementary binding surface for tRNA. A crystal struc-
ture of the TcdA-tRNA complex would shed light on these questions thereby allowing a more
precise modeling of the catalytic mechanism for the TcdA-mediated biosynthesis of ct®A.

Conclusions

The crystal structures of MoeB/E1-like TcdA in complex with ATP and AMP and the SAXS-
based bead models of the TcdA-tRNA™*(UUU) reveal the basis for the association between
TcdA and tRNA*N, The TcdA-tRNA™*(UUU) is a 2:2 complex in which two tRNA mole-
cules bind independently to positively charged surfaces encompassing both TcdA chains. In
addition, TcdA can interact transiently with the sulfur-acceptor CsdE through a speficic sur-
face patch in the vicinity to the catalytic Cys61. These results provide a molecular basis for un-
derstanding the tRNA hypermodification function of TcdA that ensures decoding efficiency
and translation fidelity of tRNA*™N by the ribosome, and its connection with the sulfur traf-
ficking systems that support TcdA function in vivo (Fig. 10).
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