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Renaud Rincent,*,†,‡,§ Laurence Moreau,* Hervé Monod,** Estelle Kuhn,** Albrecht E. Melchinger,††
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ABSTRACT Association mapping has permitted the discovery of major QTL in many species. It can be applied to existing populations
and, as a consequence, it is generally necessary to take into account structure and relatedness among individuals in the statistical
model to control false positives. We analytically studied power in association studies by computing noncentrality parameter of the tests
and its relationship with parameters characterizing diversity (genetic differentiation between groups and allele frequencies) and kinship
between individuals. Investigation of three different maize diversity panels genotyped with the 50k SNPs array highlighted contrasted
average power among panels and revealed gaps of power of classical mixed models in regions with high linkage disequilibrium (LD).
These gaps could be related to the fact that markers are used for both testing association and estimating relatedness. We thus
considered two alternative approaches to estimating the kinship matrix to recover power in regions of high LD. In the first one, we
estimated the kinship with all the markers that are not located on the same chromosome than the tested SNP. In the second one,
correlation between markers was taken into account to weight the contribution of each marker to the kinship. Simulations revealed
that these two approaches were efficient to control false positives and were more powerful than classical models.

QUANTITATIVE traits are determined by the polymor-
phism of many genes or genomic regions with small

effects, i.e., quantitative trait loci (QTL). Understanding the
genetic architecture of such traits, which supposes the iden-
tification of these causal loci, is now facilitated by a dramatic

increase in the number of molecular markers available. This
makes it possible to conduct genome-wide association stud-
ies (GWAS), in which phenotypes and genotypes of individ-
uals in highly diverse panels are used to detect QTL (Lynch
and Walsh 1998). Such panels have accumulated numerous
historical recombinations, leading to a low extent of linkage
disequilibrium (LD). Compared to linkage mapping, more
markers are therefore needed to capture causal signals
but with a much higher mapping resolution (Rafalski and
Morgante 2004). Major genes were identified by this ap-
proach in human, animal, and plant genetics (Ozaki et al.
2002; Beló et al. 2007; Jones et al. 2008). However, contrary
to linkage mapping populations, LD in association mapping
panels is not only due to genetic linkage, but can also be
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caused by population structure, relatedness, drift, and selec-
tion (Jannink and Walsh 2002; Flint-Garcia et al. 2003). The
contribution of these factors relative to linkage can be eval-
uated statistically (Mangin et al. 2012) and proved for in-
stance to be substantial in grapevine and maize (Mangin
et al. 2012; Bouchet et al. 2013). This component of LD
due to population structure and relatedness can generate
false positives and thus must be taken into account in asso-
ciation mapping models to control false positives (Ewens
and Spielman 1995; Thornsberry et al. 2001). Once these
effects are correctly modeled, only marker-trait associations
due to linkage should be detected.

Population structure can be estimated with softwares
such as STRUCTURE (Pritchard et al. 2000) and ADMIXTURE
(Alexander et al. 2009) or by principal component analysis
on the genotypic data (Price et al. 2006). These methods
permit the estimation of a structure matrix (Q) attributing
the admixture coefficient of each individual in each group.
Relatedness (K matrix) can be estimated in different ways
including identity by state (IBS), or estimators of identity by
descent (IBD) considering marker allelic frequencies (Van-
raden 2008; Astle and Balding 2009). Yu et al. (2006) pro-
posed a mixed-model approach (Q+ K) to detect QTL in the
context of association mapping. This model has the advan-
tage of controlling false-positive rate by including a fixed
structure effect (through Q) and/or a random polygenic
effect (through K). It was used in many association mapping
studies and permitted the detection of QTL in humans, ani-
mals, and plants (K. Zhao et al. 2007; Huang et al. 2010;
Kang et al. 2010; Price et al. 2010; Zhang et al. 2010; Bouchet
et al. 2013; Romay et al. 2013). However, one of the main
drawbacks of these structure and relatedness corrections is that
it also reduces the number of detectable true positives, partic-
ularly if the trait is correlated to the population structure (Lars-
son et al. 2013). Also, including the tested SNP in the
computation of K is expected to decrease power at this SNP
(Listgarten et al. 2012). To increase the power of GWAS, some
authors therefore proposed using only a subset of SNPs as
covariates or to estimate genetic similarity (Listgarten et al.
2012; Bernardo 2013). Speed et al. (2012) proposed weighting
the contribution of the SNPs in the kinship estimation to in-
crease the accuracy of heritability estimates.

It is particularly important to evaluate the power of
panels and statistical approaches to discover QTL. Power
may be analytically investigated using the noncentrality
parameter of the test statistics. This strategy has first been
applied in linkage mapping, where several authors showed
how power is influenced by the size of the population,
heritability, the effect captured by the marker, and the allelic
frequencies (Soller et al. 1976; Knapp and Bridges 1990;
Rebai and Goffinet 1993; Charcosset and Gallais 1996).
Such an analytical approach has also been applied in asso-
ciation studies in human and animal genetics (Sham et al.
2000; Purcell et al. 2003; Wang 2008; Teyssèdre et al.
2012). Alternatively, the estimation of power has also been
addressed through simulation studies (see, for instance, Yu

et al. 2006; H. Zhao et al. 2007; Stich and Melchinger 2009;
Erbe et al. 2010; MacLeod et al. 2010; Bradbury et al. 2011).
We can retain from these studies that power of association
mapping diminishes with structure and relatedness in addi-
tion to the parameters identified in linkage analysis and that
the way of estimating K has an effect on power (Stich et al.
2008). To our knowledge no study was conducted to com-
pare analytically the power along the genome in different
association mapping designs.

In this study we analytically derived the power at each
marker for the classical mixed model involving relatedness
between individuals (Yu et al. 2006). This analytical expres-
sion of power makes it possible to study the effect of differ-
ent parameters on local power along the genome. We first
used it to compare three diversity panels with different di-
versity patterns. We highlighted a loss of power due to the
use of the genotypic information both to test marker effect
and to estimate K, and this was particularly strong in regions
of high LD. We therefore evaluated two alternative estima-
tion strategies of the kinship matrix to increase power in
GWAS. In the first one, we used an estimated K matrix
specific to each chromosome: only the markers that are
physically unlinked to the tested SNP are used to estimate
K. In the second one, we weighted the contribution of each
marker in the estimation of K by taking into account intra-
chromosomic LD. We compared in simulations based on true
genotypes of maize inbreds the efficiency of the different
strategies to detect QTL and to control false positives.

Materials and Methods

Statistical models for association mapping
and power evaluation

Mixed models are now routinely used to control type I error
in GWAS (Yu et al. 2006). Relatedness among individuals is
taken into account by considering that the random polygenic
effects are not independent, with a covariance matrix de-
termined by kinship (K, with as many rows and columns as
individuals, N). As K includes information on both popula-
tion structure and relatedness, it is in general not useful to
consider admixture information as fixed effects covariates
(Astle and Balding 2009). We therefore considered the fol-
lowing statistical model (denoted by MK),

Y ¼ 1mþ Xlbl þ Uþ E  ;
¼ Xbþ Uþ E ; with  X ¼ ½1X l�  and  bT ¼ ðm;blÞ;

where Y is the vector of N phenotypes, m is the intercept, 1
is a vector of N 1, Xl is the vector of N genotypes at the tested
locus (0 and 1 corresponding to homozygotes and 0.5 to
heterozygotes), bl is the additive effect of locus l to be esti-
mated, U � N(0, Ks2

gl) is the vector of random polygenic
effects, s2

gl being the residual polygenic variance, E � N(0,
Is2

e) is the vector of remaining residual effects with variance
s2
e, I is an identity matrix of size equal to the number of

individuals (N), and U and E are independent.

376 R. Rincent et al.



Locus effects in this mixed model can be tested using
Wald statistics (Wald 1943). In the general case, a given
linear combination of fixed effects LTb ¼ 0 (H0 hypothesis)
can be tested against LTb 6¼ 0 (the alternative hypothesis
H1) using

W ¼
�
LTb̂

�T"
LT

�
X T

�
K ŝ2

gl þ I ŝ2
e

�21
X
�21

L

#21�
LTb̂

�
;

where b̂ is a vector of fixed effect estimates, L is a linear
combination, and ŝ2

gl and ŝ2
e are the REML estimates of s2

gl
and s2

e .
In GWAS we test the particular linear combination:

LTb ¼ bl ¼ 0 against LTb ¼ bl 6¼ 0, with L ¼
�
0
1

�
if the

only fixed effects are the intercept and the marker additive
effect. Note that the approach could be extended to more
complex effects such as dominance by adding extra term(s)
in fixed effects. When the variances are known, W follows
a x2 distribution: x2ðn1; NCP ¼ lÞ; where n1 ¼ rankðX lÞ ¼ 1
and l is the noncentrality parameter (NCP). The noncentrality
parameter is equal to

l ¼ bl

"
LT

�
XT

�
Ks2

gl þ Is2
e

�21
X
�21

L

#21

bl:

Under H0, l ¼ 0, whereas under H1, l is positive. Power can
thusbedeterminedas theprobabilityP(x2

½ddl¼n1; NCP¼l� . x2
critÞ,

l being the NCP and x 2
crit ¼ x2

½ddl¼n1; NCP¼0 ; 12a� the value of

the central x2 (1 2 a) quantile, where a corresponds to the
chosen type I error level. The power of the test increases as the
NCP increases.ldependson theQTLeffectbl (themagnitudeof
departure fromH0), themarkergenotypes, and thevarianceand
covariance components. Hence in addition to the number of
individuals, power can be influenced by the marker genotypes,
themarker effect (bl), the heritability (throughs2

gl ands
2
e), and

the relatedness between individuals (K).

Analytical evaluation of the impact of panel
characteristics on power

When genotypic data are available in a given association
mapping panel, it is possible to analytically evaluate power
at each marker thanks to the above formula. Consider
a panel in which N individuals were genotyped atMmarkers
(SNPs). The potential power at a given marker can be in-
vestigated by setting a QTL effect bl, a background genetic
variance s2

gl, and a residual variance s2
e to reach a given

heritability h2. Power at a given marker can then be related
to parameters characterizing the marker in the panel of in-
terest. It is expected first to depend on allele frequencies,
which can be characterized by the minor allele frequency
(MAF). Also, according to the analytical expression of the
NCP, power at a marker in MK can be influenced by its
correlation with the kinship that reflects both the structure
of the panel and the relationships between individuals. It is

thus interesting to relate power at a given marker to its Nei
index of differentiation (Fst) among genetic groups (Nei
1973) and to its correlation with the kinship matrix. Let
us denote by K_Ml the kinship matrix evaluated from the
considered marker l only. To define how power at a given
marker is affected by its correlation to K, one can calculate
the correlation between K_Ml and K at each marker. This
correlation between local and global kinship is further re-
ferred to as CorK. These statistics (Fst, MAF, CorK, and an-
alytical power) can be calculated for each marker in any
association mapping panel.

In this article, we applied this strategy to three maize
panels (see below). We represented the relationship
between MAF, Fst, CorK, and local power with the two
following approaches. In the first one, analytical power
was represented as level plots considering MAF and Fst as
x- and y-axes, with the R function level.plot. The same
procedure was applied to MAF and CorK. In the second
approach, cubic smoothing splines were adjusted along
the genome to the Fst, CorK, and power for the markers
with a MAF above 0.4, using the R function smooth.
spline (Hastie and Tibshirani 1990).

Kinship estimation

In practice the kinship matrix K is unknown and must be
estimated. One classically used estimator was proposed by
Astle and Balding (2009) and is defined as

K�Freq i;j ¼ 1
L

XL
l¼1

�
Gi;l2 pl

��
Gj;l2 pl

�
s2
l

;

where Gi,l and Gj,l are the genotypes of individuals i and j at
marker l (Gi,l = 0 or 1 for homozygotes, 0.5 for heterozy-
gotes), pl is the frequency of the allele coded 1, and s2

l
is the variance of Gi,l, respectively. One problem that might
arise from this formula and other classical estimators as the
identity by state, or the formula of Vanraden (2008), is that
LD between SNPs is not taken into account. As a result more
weight is given in the kinship estimation to the regions of
the genome that carry several markers in strong LD and
power may be lower in these regions.

We therefore considered two alternative approaches to limit
this effect. In the first one, the kinship matrix (K_Chr) was
estimated with all the markers other than those located on
the same chromosome as the marker being tested. If the
markers located on the other chromosomes are sufficient to
reliably estimate relatedness, this method is expected to rea-
sonably control the risk of detecting false positives and avoids
considering in the kinship matrix markers linked with the
tested marker

K�Chr i;j;c ¼ 1
L2c

X
l;c

�
Gi;l 2 pl

��
Gj;l 2 pl

�
s2
l

;

where c is the considered chromosome and L2c is the num-
ber of markers not located on chromosome c.
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In the second approach we used all the markers as
estimators of relatedness but we weighted the contribution
of each marker. The kinship estimator K_Freqi,j can be un-
derstood as follows: each marker l yields an estimator
k̂ijl ¼ ½ðGi;l 2 plÞðGj;l 2 plÞ�=s2

l of the true kinship coefficient
kij between individuals i and j, which are then averaged over
all markers to obtain K Freqi;j ¼ ð1=LÞPl k̂ijl: This average
would be optimal if all estimators had the same variance and
were independent. In practice none of these conditions is
satisfied: the error variance of each estimator depends on
the MAF of the marker, and LD between markers generates
correlations between markers. As a consequence, estimators
with poor precision (high error variance) will have the same
weight as estimators with high precision. Moreover, m highly
correlated estimators will accumulate a weight of m/L with-
out providing m independent information; i.e., too much
weight is attributed to highly correlated estimators. Alterna-
tively, one may look for the weighted combination
K�LDi;j ¼

P
l vl k̂ijl; which is the best linear combination

of coefficient k̂ijl, l ¼ 1; . . . ; L to estimate kij without bias.
Define Eijðk̂ijlÞ and Vijðk̂ijlÞ as the mean and variance of esti-
mator k̂ijl over all couples of individuals (i,j) having the same
kinship kij. Note D the covariance matrix between estimators
k̂ijl, i.e., Dll’ ¼ Covijðk̂ijl; k̂ijl’Þ; V ¼ ðv1; . . . ; vLÞT the vec-
tor of weights, and Kij ¼ ðk̂ij1; . . . ; k̂ijLÞT the vector of marker
estimators. Then K�LDi;j satisfies

min VijðK�LDi;jÞ under  constraint EijðK�LDi;jÞ ¼ kij
⇔ min

V VijðVTKijÞ under  constraint EijðVTKijÞ ¼ kij
⇔ min

V VTDV under  constraint VT
EijðKijÞ ¼ kij

In this formulation the optimal weights may be negative; we
added extra constraints to ensure the positivity of the
weights, leading to the following optimization program:

min
V VTDV under constraintVT

EijðKijÞ ¼ kij and vl $ 0,
for all l. (1)

In practice, obtaining the optimal weights requires (i) the
knowledge of matrix D and (ii) solving the optimization
problem (1). The exact expression of matrix D is unknown,
but one can estimate this matrix from the panel data using
the classical moment estimator:dCovij�k̂ijl; k̂ijl’�

¼ nðn2 1Þ
2

X
i

X
j. i

h
k̂ijl2 Êij

�
k̂ijl

�ih
k̂ijl’ 2 Êij

�
k̂ijl’

�i
:

The resulting estimated matrix is then plugged into the
optimization program (1). Then to solve the optimization
program, one should note that (1) is a quadratic problem
with linear constraints and therefore can be solved using
classical optimization techniques (in this article we used the
R package solve.QP, which implements the dual method of
Goldfarb and Idnani 1983).

The main limitation of this strategy lies in step (i): when
estimating the covariance, one actually replaces the expec-

tation over all couples having the same kinship kij by aver-
aging over all couples in the panel—assuming implicitly that
they all have the same kinship. Even if the kinship differs
between couples, this weighting increases the contribution
of markers with a high diversity (leading to a high precision)
and not highly correlated with other markers. It therefore
corrects the two drawbacks of the naive averaged estimator
mentioned earlier.

Let us denote the statistical model for association
mapping described above by MK_Freq, MK_Chr and MK_LD with
K estimated as K_Freq, K_Chr, and K_LD, respectively.

Simulation-based evaluation of the impact of the
estimation of K on false-positive control and power

The closed-form expression of the noncentrality parameter
already revealed that kinship affects power. Comparing the
impact of different kinship estimators on power implies
evaluation of their ability to guarantee the expected nominal
control of false positives under different hypotheses on trait
genetic determinism. To this end, we simulated traits
influenced by L biallelic QTL (SNPs). In a first step, QTL
were sampled randomly among the SNPs located on all the
chromosomes except one. The chromosome without QTL
(further referred to as H0 chromosome) was used to
estimate the false-positive rate. All the H0 markers (the
markers on the H0 chromosome) were tested with the
above-mentioned statistical models for each run of simula-
tion. The efficiency of the different estimations of K to con-
trol false positives was evaluated by comparing expected
and observed quantiles of H0 P-values and histograms of
H0 P-values. In a second step we applied the same proce-
dure, but sampling the QTL among the M SNPs (on all chro-
mosomes). A QTL was declared detected when the P-value
of the corresponding SNP in the genetic model was below
the significance threshold. Power of a given model was com-
puted as the number of QTL that were detected. We also
applied a less restrictive definition of QTL detection, consid-
ering that a QTL could be detected by SNPs located near it.
To do so, another analysis was conducted in which markers
within a given genetic distance of a QTL were considered H1

markers and the others H0 markers. The realized false dis-
covery rate (FDR) found was defined as the proportion of
H0 markers among the markers declared significant. Power
of QTL detection was estimated by considering that a QTL
was detected when at least one of the corresponding H1

markers had a significant P-value. This general method will
be exemplified with parameters specific to three maize pan-
els, described below.

Genetic material and genotyping data

The above-mentioned power analyses (analytical evaluation
of power and simulation based evaluation of alternative
methods) were applied to three diversity panels of maize.
(See File S1, File S2, and File S3.) The first panel (called
C-K) was described in Camus-Kulandaivelu et al. (2006). It
is composed of 375 inbred lines covering American and
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European diversity. It includes Tropical, Dent, and Flint
lines. The second and third panels are the Dent and Flint
panels of the “Cornfed” project (CF-Dent and CF-Flint), de-
scribed in Rincent et al.(2012). They include lines of the C-K
panel and lines derived from recent breeding schemes. Both
are composed of 300 lines. These panels were genotyped
with the 50k SNPs array described in Ganal et al.(2011),
as presented in Bouchet et al. (2013) and Rincent et al.
(2012). Individuals with marker missing rate higher than
0.1 and/or heterozygosity rate higher than 0.05 were elim-
inated. Markers with missing rate higher than 0.2 and/or
average heterozygosity rate higher than 0.15 were elimi-
nated. Markers missing the rate and/or with average het-
erozygosity .0.2 and 0.15, respectively, were eliminated. In
each panel, few individuals were highly related. One indi-
vidual was removed for pairs identical for .98% of the loci.
In total 315, 277, and 267 individuals and 44487, 45434,
and 44255 markers passed the genotyping filter criteria for
the C-K, CF-Dent, and CF-Flint designs, respectively. Missing
genotypes (,2% in all panels) were imputed with the soft-
ware BEAGLE (Browning and Browning 2009). Panels were
all adjusted to 267 individuals to compare power for a same
population size. Individuals removed were chosen at ran-
dom. To avoid the ascertainment bias noted by Ganal
et al. (2011), we used only the markers that were developed
by comparing the sequences of nested association mapping
founder lines (PANZEA SNPs; Gore et al. 2009) in the esti-
mation of admixture and relationship coefficients (29996,
30119, and 29132 markers passed the filter criteria for the
C-K, CF-Dent, and CF-Flint lines respectively).

Admixture in the CF-Dent and CF-Flint panels was
investigated using the SNP data with the software ADMIX-
TURE (Alexander et al. 2009), with a number of groups
equal to four, determined according to the cross-validation
procedure presented in ADMIXTURE. For the C-K panel we
used the admixture in five groups estimated by Camus-
Kulandaivelu et al. (2006) using 55 SSRs chosen for their
broad genome coverage and reproducibility. We estimated
the differentiation index among genetic groups (Fst, Nei 1973)
at each marker using the R package r-hierfstat (Goudet 2005).

Finally, the relationship between LD and power along the
genome can be empirically investigated using two different
measures of LD. Raw LD can be estimated as the squared
correlation between allelic doses at two loci (r2). Linkage
related LD (denoted by r2K) can be estimated using the
algorithm proposed by Mangin et al. (2012), which corrects
r2 by K_Freq. LD within these panels (r2), possibly corrected
by K_Freq (r2K), was estimated within a sample of 4000
markers regularly spaced on the physical map.

Specific parameterization

For analytical investigation of power in the three maize
panels, the total additive genetic variance s2

g was set to
1000, bl was set to 17.9, which corresponds to a QTL
explaining 8% of the total genetic variance if it had a MAF
of 0.5, and s2

e was chosen to obtain a heritability of 0.8.

Under these hypotheses, analytical power was investigated
for an a type I risk equal to 1.25 3 1026, which led to a risk
of 0.05 with a Bonferroni correction on 40,000 tests. We
also considered less-stringent thresholds corresponding to
Bonferroni corrections on 4000 and 400 tests, although
the number of tests was always the same. Power under these
hypotheses was calculated in R 3.0.0 (R Development Core
Team 2006) for each marker.

To estimate kinship with the different formulas presented
above, we considered all the individuals to be inbred and we
estimated s2

l as plð12 plÞ. For comparing the different
methods for kinship estimation, we simulated traits influ-
enced by 50 or 100 biallelic QTL (QTL effects follow a geo-
metric series as in Lande and Thompson 1990, with
parameter a set to 0.96 and 0.98 when 50 or 100 QTL were
simulated, respectively). The sign of allelic effect at a given
locus was assigned randomly. Genotypic values of the indi-
viduals were calculated as the sum of the allelic effects at
these QTL. Phenotypes were obtained by adding a residual
noise following a normal distribution with mean 0 and var-
iance equal to s2

gð1=h2 2 1Þ, where the heritability h2 is set
to 0.8. We performed 100 runs of simulations for each sce-
nario using the R 3.0.0 software (R Development Core Team
2013). Each chromosome was used 10 times as the H0 chro-
mosome. For all simulations, the statistical tests were
performed with EMMAX (Kang et al. 2010) to reduce
computational time and then with ASREML-R (Gilmour
et al. 2006) on the markers that had a P-value ,0.001 with
EMMAX. For P-values .0.001, P-values obtained with
EMMAX and ASREML-R were very close and highly corre-
lated. As investigations of the two criteria for QTL detection
(causal factor only or window around it) led to very com-
parable results with respect to the main focus of our study,
results considering a window around causal factor are pre-
sented as supporting information, Table S1.

Results

Diversity and linkage disequilibrium in maize panels

Diversity and LD were investigated within the different panels
to provide elements on their ability to detect QTL (i.e., their
power) along the genome. On average, the MAF was lower in
the CF-Flint than in the other panels. Differentiation among
genetic groups (Fst) was higher for CF-Dent (0.15) than for C-K
(0.11) and CF-Flint (0.08) (Table 1). The raw LD (r2) and its
correction by kinship (r2K) were variable between and within
panels (Figure 1). LDwas on average higher in the dent panel.
Within each panel, it was higher for centromeric than for telo-
meric regions. High r2 values were observed between physi-
cally linked markers but also unlinked markers. This last
situation occurred mainly between centromeric regions (Fig-
ure 1A, chromosomes 5, 7, and 8 and Figure 1B, chromosome
7). Interchromosomic LD was reduced to a large extent when
considering r2K rather than r2. Taking into account covariance
between individuals (r2K) also reduced intrachromosomic LD,
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in particular between distant blocks with high LD (Figure 1B
chromosome 10). Considering r2K instead of r2 globally had
the strongest impact in the CF-Dent panel.

Relationship between MAF, Fst, CorK, and power

Above-described parametrization of QTL effects was used to
investigate the influence of MAF, Fst, and the correlation
between local and global covariance matrices (estimated
as CorK_Freq) on power in the three maize panels. Level

plots (Figure 2) showed that the MAF, the Fst, and CorK_Freq
had important effects on power, with very similar graphs in
all the panels. The highest power was achieved when MAF
was high and Fst or CorK_Freq was low. When the MAF was
,0.1, power was close to 0 even if the marker had a low Fst
or low CorK_Freq. Some regions of the level plots were not
covered by the available markers (regions in white on Fig-
ure 2); in particular there was no marker with a CorK_Freq
,0.03. Note that the graphs obtained using K_Chr (or the

Table 1 Average and standard deviation of analytical power and of the parameters related to power

Power
(MK_Freq) CorK_Freqa CorK_Chrb MAFc Fstd

Panel Average SD Average SD Average SD Average SD Average SD

C-K 0.113 0.090 0.087 0.032 0.083 0.029 0.269 0.132 0.112 0.116
CF-Dent 0.090 0.081 0.103 0.033 0.093 0.030 0.260 0.139 0.146 0.118
CF-Flint 0.088 0.086 0.094 0.032 0.088 0.030 0.240 0.147 0.083 0.076

Analytical power of modelMK_Freq was estimated in each panel (reduced to a size of 267 individuals), assuming a heritability of 0.8, a marker effect that would explain 8% of
the background genetic variance if it had a MAF of 0.5 and a type I risk of 0.05 with a Bonferroni correction on 40,000 tests.
a Correlation between the kinship matrix estimated with a single marker (K_Freq_Ml) and the kinship matrix estimated with all the PANZEA markers (K_Freq).
b Correlation between the kinship matrix estimated with a single marker (K_Freq_Ml) and the kinship matrix estimated with all the PANZEA markers except those located on
the same chromosome.

c Minor allele frequency.
d Nei’s differentiation index among genetic groups.

Figure 1 Linkage disequilibrium in the (A) C-K, (B) CF-Dent, and (C) CF-Flint panels estimated with 4000 markers sampled according to their physical
position. Raw squared correlations (r2) are represented below the diagonal, and r2 corrected by kinship (r2K) estimated as K_Freq are presented above
the diagonal. Cells corresponding to LD below 0.05 are in white. Markers were ordered according to their physical position.
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IBS) were similar to those obtained with K_Freq and led to
the same general conclusions (results not shown).

The parameters related to power (MAF, Fst, CorK_Freq)
varied between panels (Table 1, see above). As a conse-
quence of the above-described relationships, the mean
analytical power of statistical model MK_Freq varied be-
tween the three panels (Table 1) and was higher in the

C-K panel (11.3%) than in the CF-Dent and CF-Flint pan-
els (,9.0%).

Variation of analytical power and CorK
along chromosomes

Power scans (analytical power at each marker plotted
against its physical position) of model MK_Freq revealed an

Figure 2 Level plots of power of model MK_Freq in the (A) C-K, (B) CF-Dent, and (C) CF-Flint panels. Each color corresponds to a range of power
described by the right-hand side scale. x-axis corresponds to the MAF. y-axis is the Fst (A1, B1, C1) or the correlation between the kinship matrix
estimated with the considered marker only and the kinship matrix estimated with all the PANZEA markers (A2, B2, C2).
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extreme variability along the genome in the three panels
(Figure 3). In all panels, power at a given location ranged
from zero to a maximal value, which depended on the
position according to a V-shaped curve (Figure 3 and Fig-
ure 4). This maximal value was the lowest near centro-
meres and the highest near telomeres. This global trend
was particularly strong in the CF-Dent panel and less pro-
nounced in the C-K panel, for which the maximum power
was stable for larger segments. The V-shaped curve also
had different local trends for the different chromosomes
for a given panel. For instance in the CF-Flint panel, de-
pletion in power in centromeric region was longer for
chromosome 7 than for chromosome 6 (Figure 3C).

Power of model MK_Freq was in accordance with trends
of CorK_Freq along the genome. Correlation between the
covariance matrix at the marker and the global covari-
ance matrix (K_Freq and K_Chr) was significantly lower
for K_Chr than for K_Freq, and particularly in the peri-
centromeric regions (Figure 4). We observed that peaks
of Fst corresponded generally to peaks of both correla-
tions (CorK_Freq and CorK_Chr) (Figure 4B, chromo-
some 7, and Figure 4, A and C, chromosome 8).
Conversely, pericentromeric regions with low Fst corre-
sponded to a peak of CorK_Freq and a drop of CorK_Chr
(Figure 4B, chromosomes 8 and 10, and Figure 4C chro-
mosome 7). CorK_Freq, CorK_Chr, and the difference be-

tween these two parameters were higher in the CF-Dent
panel than in the two others.

Simulation-based assessment of kinship estimation
on false-positive control and power

Simulating different genetic models using the genotypes of
the three panels allowed the comparison of the efficiency of
the three statistical models to control false positives and to
detect QTL. The efficiency to control false positives
depended on the genetic model (number of QTL), the
panel, and the estimation procedure for K (Table 2). The
distribution of the P-values under H0 revealed that MK_Freq

was conservative (Figure 5A) whereas the alternative mod-
els MK_Chr and MK_LD gave distributions closer to the
expected one (Figure 5, B and C). The observed P-value
quantiles were closer to the expected P-value quantiles with
MK_Chr and MK_LD than with MK_Freq (Table 2). MK_Freq

resulted in fewer than expected small P-values under H0;
for example, in the CF-Dent panel we observed only half of
the P-values that were expected to be ,0.001. Observed
P-value quantiles with MK_Chr and MK_LD were very close
to the expected P-value quantiles, although also most of
the time below it.

The second step of the simulations revealed the ability of
the different statistical models to detect QTL in the different
panels. With the usual Bonferroni correction, only few QTL

Figure 3 Power scan of statistical modelMK_Freq in the (A) C-K, (B) CF-Dent, and (C) CF-Flint panels. Power at each marker is plotted against its physical
position. Markers with a MAF .0.4 and ,0.1 are represented by green and red dots, respectively. Red curve displays local Fst. Purple and light blue
vertical lines indicate the chromosome and the centromere limits, respectively.
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were detected (Table 3). In each scenario MK_Chr and MK_LD

were more powerful than MK_Freq. For example, they respec-
tively permitted the detection of 2.1, 1.3, and 1.2 QTL (SNP
considered as QTL) on average in the CF-Dent panel when 50
QTL were segregating. The difference of power (proportion of
SNP considered as QTL detected) between the different mod-
els was more important for less stringent significance thresh-
old. The difference of power between MK_Chr and MK_Freq was
the highest in the CF-Dent panel. More QTL were found in the
scenario with 50 QTL than in the scenario with 100 QTL. This
was expected, QTL having a lower effect on the trait in the 100
than in the 50-QTL scenario.

Discussion and Conclusions

Analytical investigation of potential power along the
genome with usual model (MK_Freq)

Power is a key parameter in association mapping, because it
indicates how likely the discovery of a QTL is. We presented

a general method based on noncentrality parameter to
derive analytically theoretical power at each marker locus
in a given panel of individuals. It was applied to three
different association mapping panels. While being adjusted
to the same population size, these different panels had
different average power. They also displayed different local
patterns of power along the genome.

Power could be related to three parameters characteriz-
ing each marker: its MAF, its differentiation index among
genetic groups (Fst), and the correlation between its individ-
ual kinship matrix with that estimated with all the markers
(CorK_Freq when K_Freq is considered). Power at a marker
with a low MAF is limited, even if this marker is orthogonal
to structure and kinship (Figure 2 and Figure 3). This effect
was highlighted already for linkage studies (Soller et al.
1976; Charcosset and Gallais 1996) and GWAS (Lonsdale
et al. 2013) and can be explained by the fact that when one
of the two alleles is rare, the marker cannot contribute much
to the genetic variation. The correlation between kinship at

Figure 4 Scan of parameters related to power along the genome in (A) C-K, (B) CF-Dent, and (C) CF-Flint panels. Fst is Nei’s index of differentiation among
population groups. CorK_Freq is the correlation between the kinship matrix estimated with the considered marker only (K_Freq_Ml) and the kinship matrix
estimated with all the PANZEA markers (K_Freq). CorK_Chr is the correlation between the kinship matrix estimated with the considered marker only (K_Freq_Ml)
and the kinship matrix estimated with all the PANZEA markers except those located on the same chromosome as the tested marker (K_Chr). For each parameter
a smoothing spline was used along the genome. The orange curve was adjusted to the analytical power at markers with a MAF .0.4.
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single markers and the global kinship had a strong negative
effect on power (Figure 2). The Fst among the admixture
group also had an important effect on local power (Figure 2
and Figure 3). This confirmed that admixture is reflected by
the kinship matrix, because differentiated regions had a low
power although we used a model with relatedness but no
admixture (MK_Freq). The level plots showing analytical
power at different MAF and CorK_Freq were very similar
in the three panels (Figure 2, A2, B2, C2), but those showing
power at different MAF and Fst differed (Figure 2, A1, B1
and C1). This suggests that group differentiation has differ-
ent relative contribution to local kinship variation in the

different panels. At a given pair of MAF and Fst values,
power was lower in the CF-Dent and CF-Flint panels than
in the C-K panel, whereas five groups were used in this panel
instead of four in the two others. The C-K panel is composed
of highly diverse groups (Tropical, Dent, and Flint lines) and
so the admixture matrix captured ancestral population
structure but only a small part of kinship. On the opposite,
the CF-Dent and CF-Flint panels are composed of less het-
erogeneous material and so the admixture matrix captured
more relatedness. Finally, the shape of the level plots (Figure
2) also suggested that the effect of the different parameters

Table 2 Quantiles of the P-values under H0 in each panel with the
three statistical models and considering two different genetic
models (50 or 100 QTL)

1‰ quantile 1% quantile

Panel
Nb

QTL Approach
Average

(‰)
SD
(‰)

Average
(%)

SD
(%)

C-K 50 MK_Freq 0.8 0.7 0.81 0.28
C-K 50 MK_Chr 1.0 0.9 0.98 0.35
C-K 50 MK_LD 0.9 0.9 0.94 0.32
C-K 100 MK_Freq 0.8 0.6 0.89 0.25
C-K 100 MK_Chr 1.1 0.8 1.08 0.34
C-K 100 MK_LD 1.0 0.8 1.07 0.34
CF-Dent 50 MK_Freq 0.5 0.5 0.61 0.23
CF-Dent 50 MK_Chr 0.8 1.0 0.94 0.53
CF-Dent 50 MK_LD 0.7 0.8 0.85 0.34
CF-Dent 100 MK_Freq 0.4 0.5 0.63 0.30
CF-Dent 100 MK_Chr 0.8 0.9 1.02 0.65
CF-Dent 100 MK_LD 0.9 1.6 0.94 0.42
CF-Flint 50 MK_Freq 0.6 0.7 0.74 0.25
CF-Flint 50 MK_Chr 0.9 0.9 0.99 0.39
CF-Flint 50 MK_LD 1.2 1.1 1.09 0.47
CF-Flint 100 MK_Freq 0.5 0.5 0.73 0.25
CF-Flint 100 MK_Chr 0.7 0.6 0.92 0.39
CF-Flint 100 MK_LD 1.0 0.7 1.06 0.39

We estimated the average and the standard deviation of the 0.001 and 0.01
quantiles over the 100 runs of simulation.

Figure 5 Histograms of P-values of the markers on the
H0 chromosome using (A) MK_Freq, (B) MK_Chr, and (C)
MK_LD. This was obtained when simulating 100 QTL in
the CF-Dent panel.

Table 3 Number of QTL detected with the three statistical models
in each panel at different thresholds assuming different genetic
models (50 or 100 QTL)

Ta 10 3 T 100 3 T

Panel Nb QTL Approach Average SD Average SD Average SD

C-K 50 MK_Freq 1.4 1.0 2.5 1.2 4.2 1.6
C-K 50 MK_Chr 1.7 1.1 3.2 1.5 4.9 1.7
C-K 50 MK_LD 1.6 1.1 2.6 1.3 4.3 1.7
C-K 100 MK_Freq 0.3 0.5 0.9 0.8 2.1 1.2
C-K 100 MK_Chr 0.5 0.7 1.3 1.0 2.8 1.5
C-K 100 MK_LD 0.4 0.6 1.1 0.9 2.3 1.4
CF-Dent 50 MK_Freq 1.2 1.0 2.2 1.3 3.6 1.3
CF-Dent 50 MK_Chr 2.1 1.4 3.4 1.5 5.3 1.6
CF-Dent 50 MK_LD 1.3 1.1 2.5 1.3 4.1 1.4
CF-Dent 100 MK_Freq 0.3 0.6 0.9 0.9 2.0 1.4
CF-Dent 100 MK_Chr 0.8 1.0 1.7 1.3 3.4 1.7
CF-Dent 100 MK_LD 0.5 0.7 1.0 1.1 2.4 1.4
CF-Flint 50 MK_Freq 1.4 1.0 2.4 1.1 3.7 1.2
CF-Flint 50 MK_Chr 1.8 1.2 3.0 1.0 4.5 1.3
CF-Flint 50 MK_LD 1.4 0.9 2.4 1.1 4.0 1.3
CF-Flint 100 MK_Freq 0.3 0.6 0.8 0.9 1.9 1.1
CF-Flint 100 MK_Chr 0.6 0.8 1.4 1.2 2.8 1.4
CF-Flint 100 MK_LD 0.4 0.7 1.0 1.1 2.1 1.3

We computed the average and the standard deviation of the number of QTL
detected in the 100 runs of simulation.
a Significance threshold T was set considering a type I risk of 5% with a Bonferroni
correction assuming 40 000 tests.

384 R. Rincent et al.



affecting power was not additive. For example Fst and
CorK_Freq had a stronger effect on power for markers with
higher MAF, and MAF had a stronger effect on power for
less differentiated markers. These results show that control-
ling false positives using the K_Freq model also implies re-
ducing power at differentiated markers (Larsson et al.
2013). It is interesting to note that no marker had
a CorK_Freq ,0.03 (Figure 2). To investigate the maximum
power that could be reached theoretically, we generated for
each panel a vector of zeros and ones simulating a marker
genotype and applied a simple exchange algorithm until
analytical power reached a maximum. These virtual markers
(one for each panel) had analytical power much higher
(.0.8) than the maximal analytical power of the existing
SNPs (,0.44 in each panel). They had a MAF of 0.5 and
a CorK_Freq value ,0.017. This difference illustrates that
the maximum power is strongly constrained by the evolution
process that led to the panels.

Both Fst and CorK_Freq appeared highly variable along
the genome in each panel. High differentiation (Fst) was
observed in particular in pericentromeric regions (Figure
3, A and C, chromosome 8, and Figure 3B, chromosome
7). Pericentromeric regions are known to be more structured
than telomeric regions (Carneiro et al. 2009; Franchini et al.
2010) because of lower recombination rates. CorK_Freq was
also higher in regions of high LD (mostly pericentromeric
regions; see Figure 1 and Figure 4). Beyond the effect of
group differentiation, markers in regions of high LD are in-
deed correlated to many other SNPs that all contribute to
the estimation of K_Freq. These LD and Fst features led to
the observed V-shape analytical power curve along the chro-
mosome, particularly in the CF-Dent panel in which LD was
more extended (Figure 1 and Figure 3). This is in good
agreement with published manhattan plots of GWAS results,
which showed a reduced number of low P-values in the
centromeric regions (Bouchet et al. 2013; Larsson et al.
2013). In our three panels, we observed that this problem
also arose with other classical estimators of relatedness
(results not shown) such as the IBS estimator or the first
estimator provided in Vanraden (2008, p. 4416)

As MAF, Fst, LD extent, and consequently CorK_Freq were
different in the three panels (Table 1), average power was
highly variable among the three panels (adjusted for the
same population size). Among the three diversity panels,
the C-K panel appeared to be the most powerful on average
due to its higher MAF, lesser LD extent, and its lower re-
latedness. It should be noted that this analytical study
assumed that the variance components were known. It
was therefore necessary to confirm these results with
simulations.

Simulation-based comparison of type I risk and power
of statistical models associated with different
estimations of K

Removing the markers on the same chromosome than the
one tested (MK_Chr) permitted the decrease of the correlation

between the kinship at the tested SNP and the global co-
variance (CorK_Chr in Figure 4). CorK_Chr remained never-
theless high in structured regions (high Fst), i.e., regions
with important differentiation between genetic groups (Fig-
ure 4, A and C, chromosome 8), which suggests that K_Chr
was efficient to estimate covariance between individuals.

To evaluate models involving different kinship estimators
for their ability (i) to control false positives at nominal levels
and (ii) to detect QTL, we conducted simulations based on
the genotypes of the diversity panels. Using all the markers
to estimate the kinship matrix (MK_Freq) led to an overcor-
rection of the H0–P-values (Table 2 and Figure 5). This was
particularly the case in the panel with the highest level of LD
(CF-Dent). Under H0, the P-value distributions of the two
alternative models were much closer to the expected distri-
bution and revealed that these approaches were also effi-
cient to control false positives (Figure 5). Results obtained
with MK_Chr showed that molecular information carried by 9
of the 10 chromosomes was sufficient to reliably estimate
covariance between individuals to control for false positives.

Knowing that the three estimations of the kinship matrix
(K_Freq, K_Chr, and K_LD) were efficient to control false
positives, we could compare their power in a second step of
simulations. QTL were sampled from the 10 chromosomes,
and the power of MK_Freq, MK_Chr, and MK_LD at different
thresholds was evaluated at the SNPs/QTL. The alternative
models were more powerful than the usual model MK_Freq

(Table 3). In particular, estimating the covariance matrix
using the markers on the nontested chromosome (MK_Chr)
resulted in higher power in each scenario in each panel. As
expected the gain of power was higher in the panel with
more extended LD (CF-Dent). The gain of power was lower
with MK_LD, but we suppose that this approach could be
improved by taking into account gene density along the
genome, or a priori information on genetic architecture,
and by using a better estimate of the covariance between
the marker-based estimators when computing optimal
marker weights. Note that further research on the K_LD
estimator should also consider its scalability when applied
to very-high-dimensional data sets.

To check the stability of these results, when considering
that a QTL could be detected by SNPs located near it, we
used another simulation approach, in which SNPs within
a genetic window around the QTL positions were considered
as H1 markers and the others as H0 markers. The results
(Table S1) confirmed that at a given realized FDR, the al-
ternative models and in particular MK_Chr were more power-
ful than the traditional model (MK_Freq). Considering that
true discoveries were within 5 cM of the QTL, MK_Freq had
a power to detect QTL of 11%, MK_Chr of 26% and MK_LD of
19% at a realized FDR of 10%, when 100 QTL were simu-
lated in the CF-Dent panel.

In conclusion, the derivation of analytical power permit-
ted highlighting which parameters are linked to power in
Association Mapping. In particular the kinship between
individuals (K) clearly influenced the noncentrality parameter.
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Analytical power scan in three diversity panels also confirmed
that the way of estimating K can affect power. In particular, the
usual model (MK_Freq) has a low power in regions of high LD.
We considered two alternative approaches to recover this gap
of power, and we could show with simulations based on true
genotypes that they were more powerful than the usual mod-
els at given type I risks.
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Another simulation approach was used to compare the ability of the different models to detect QTLs. The genetic model 
was simulated as in the second step of simulations presented in the paper (the QTLs were sampled among all the PANZEA 
SNPs) but considering now that markers within a given genetic distance of a QTL were under H1 and the others under H0. 
We considered genetic distances of 1, 2, 3, 5 and 10 cM. For each genetic model (50 or 100 QTLs) and each panel, 200 runs 
were used to estimate the proportion of QTLs (PowerQTL), and the proportion of H1‐markers (Power) declared significant 
at a realized FDR of 0.1. The realized false discovery rate (FDR) was defined as the proportion of markers under H0 among 
the markers declared significant. To estimate PowerQTL, we considered that a QTL was detected when at least one of the 
corresponding H1‐markers had a significant Pvalue.  

Table  S1      Power  of  the QTL  detections with MK_Freq, MK_Chr, and MK_LD at  a  realized  FDR  of  0.1.  PowerQTL  is  the 
proportion of QTL discovered, Power is the proportion of H1‐markers discovered. 

 PowerQTL Power 

 Nb QTLs Window (cM) MK_Freq MK_Chr MK_LD MK_Freq MK_Chr MK_LD 

C-K 

50 1 0.08 0.11 0.10 0.0012 0.0028 0.0025 

50 2 0.11 0.14 0.13 0.0010 0.0024 0.0021 

50 3 0.12 0.16 0.15 0.0009 0.0021 0.0019 

50 5 0.15 0.21 0.19 0.0008 0.0019 0.0017 

50 10 0.24 0.32 0.29 0.0008 0.0019 0.0016 

100 1 0.03 0.05 0.04 0.0004 0.0011 0.0008 

100 2 0.05 0.07 0.06 0.0004 0.0010 0.0008 

100 3 0.06 0.10 0.08 0.0004 0.0010 0.0008 

100 5 0.09 0.15 0.13 0.0004 0.0011 0.0009 

100 10 0.21 0.32 0.27 0.0006 0.0017 0.0013 

50 1 0.09 0.12 0.11 0.0019 0.0052 0.0041 

CF-Dent 

50 2 0.11 0.17 0.15 0.0015 0.0052 0.0038 

50 3 0.13 0.21 0.19 0.0014 0.0054 0.0038 

50 5 0.17 0.28 0.26 0.0013 0.0053 0.0036 

50 10 0.26 0.46 0.40 0.0014 0.0065 0.0037 

100 1 0.04 0.07 0.06 0.0007 0.0030 0.0020 

100 2 0.05 0.12 0.09 0.0006 0.0032 0.0019 

100 3 0.07 0.17 0.12 0.0006 0.0036 0.0019 

100 5 0.11 0.26 0.19 0.0007 0.0045 0.0022 

100 10 0.24 0.54 0.42 0.0011 0.0081 0.0039 

50 1 0.09 0.10 0.09 0.0014 0.0026 0.0023 

CF-Flint 

50 2 0.11 0.14 0.12 0.0012 0.0023 0.0019 

50 3 0.13 0.17 0.15 0.0010 0.0022 0.0018 

50 5 0.16 0.22 0.19 0.0010 0.0022 0.0017 

50 10 0.25 0.35 0.30 0.0010 0.0024 0.0016 

100 1 0.03 0.05 0.04 0.0005 0.0013 0.0010 

100 2 0.05 0.08 0.06 0.0004 0.0013 0.0010 

100 3 0.06 0.10 0.08 0.0004 0.0013 0.0009 

100 5 0.09 0.16 0.13 0.0005 0.0015 0.0010 

100 10 0.18 0.34 0.27 0.0006 0.0023 0.0014 
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