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Abstract:  Intense emission peaking at 2.18 µm was successfully obtained from erbium upon 
carefully designed engineering of its glass host both thermally and spectroscopically. Highly 
localized crystallization of erbium sites is verified by micro Raman and micro-PL along with TEM 
characterizations. 
OCIS codes: 250.5230   Photoluminescence; (160.5690) Rare-earth-doped materials; 160.2750 amorphous materials 

 

Promising bio based applications such as bloodless surgery, non-invasive blood constituents monitoring or high 
sensitivity tracing of green house gases [1] could be designed starting form optically active materials working within 
the 2.0-2.3 µm wavelength window. For this purpose, room temperature operated high power devices are entering 
the market of which rare-earth (RE) doped devices hold a prominent place. But such devices are based today on 
rare-earth doping of thulium and holmium. Though Er3+ has an active 2.0 µm transition to achieve broad emission 
bandwidth, it is usually quenched in an amorphous matrix and hence rarely reported in glasses or any other 
amorphous matrices [2]. However, the use of Er3+ as the active ion backbone would leverage efforts and investments 
done in the telecom industry to non-telecom applications which would allow a quick progression. This work 
successfully reports the engineering of the base glass matrix to produce the key 2.0 µm emission. This was obtained 
by specific selection of precursors and custom-designed heat treatment of an Er3+ doped fluorotellurite glass.  

Glass preparation which is solely based on thermal treatment cycle can affect the transparency of the glass 
matrix due to strong segregation and delocalized crystallization. But if a perfect balance of nucleation rate and 
growth of nucleus is ensured and maintained, highly localized but well dispersed nanocrystals are formed without 
degrading the optical transparency which is an ideal situation for photonic applications. RE fluorides are well known 
to act as nucleation agents in a glassy matrix. The excess addition of erbium fluoride (ErF3) could even induce a 
scenario to avoid synthesizing a fully amorphous glass phase [3]. Hence the selection of  ErF3 as a precursor was 
one of the key element for the administered crystallization of the amorphous matrix that was chosen to be a 
fluorotellurite glass with a maximum phonon energy of ~ 850 cm-1 and a optical transparency up to ~ 6 µm[4].  
The precursor fluorotellurite glass (74.6TeO2–8.8ZnO–16.6ZnF2 mol% doped with 1 wt% ErF3) was prepared by 
conventional melt quenching. After quenching, a two step heat treatment was carried out to nucleate a glass-ceramic 
(GC) phase. The first treatment was done at a temperature close to the glass transition temperature (Tg≈ 293 ºC) for 
10 hours, followed by a 3 hours treatment at a temperature slightly below that of the onset of crystallization. Highly 
transparent glass ceramic samples were obtained after the heat treatment (figure 1).  

 
 

Figure 1 Absorption spectra of glass and glass ceramic sample. 
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environment.  The population of 4F9/2 level by energy transfer in the GC is in fact the basis of the generation of the 
2.0 µm emission from the amorphous matrix without leading to fluorescence quenching. 4F9/2�

4I11/2 emission from 
the GC is shown in figure 3d whereas figure 3c shows the quenching of the same emission in the glass matrix.  

The 2.18 µm emission from the GC is a potential candidate for high power laser applications and owing to the 
importance of the wavelength, it could be used to develop photonic devices working in the 2.0-2.3 µm wavelength 
window which has high applicability for biomedical, biochemical, biotechnological applications. In conclusion, we 
have successfully engineered a 2.18 µm emission from an amorphous matrix by site-specific nucleation technique. 
Er3+ sites were crystallized to form ErF3 nanocrystals, this triggered the population of 4F9/2 level leading to intense 
4F9/2�

4I11/2 emission peaking at 2.18 µm. 
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