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Abstract 12 

Higher alcohols and acetate esters are important flavour and aroma components in the food 13 

industry. In alcoholic beverages these compounds are produced by yeast during fermentation. 14 

Although S. cerevisiae is one of the most extensively used species, other species of the 15 

Saccharomyces genus have become common in fermentation processes. This study analyses 16 

and compares the production of higher alcohols and acetate esters from their amino acidic 17 

precursors in three Saccharomyces species: S. kudriavzevii, S. uvarum and S. cerevisiae.  18 

The global volatile compound analysis revealed that S. kudriavzevii produced large amounts 19 

of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly 20 

from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while 21 

S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. 22 

The present data indicate differences in the amino acid metabolism and subsequent production 23 

of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces 24 

species. This knowledge will prove useful for developing new enhanced processes in 25 

fragrance, flavour, and food industries. 26 

 27 
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1. Introduction 30 

It is widely accepted that the acetate esters and higher alcohols produced during 31 

fermentation by yeast are particularly important for the food industry. Given their desired 32 

fruity and floral aroma, acetate esters significantly contribute to the aroma character of 33 

alcoholic beverages (Lambrechts and Pretorius, 2000; Swiegers et al., 2005). The most 34 

significant esters are ethyl acetate (solvent-like aroma), isobutyl acetate (fruity), isoamyl 35 

acetate (banana), and 2-phenylethyl acetate (flowery, rose-like) (Lambrechts et al., 2000; 36 

Styger et al., 2011). These esters are synthesised by alcohol acetyltransferases from acetyl-37 

CoA and ethanol (ethyl acetate) or aliphatic or aromatic higher alcohols. Aliphatic (also 38 

branched-chain) higher alcohols, which include isobutyl alcohol, active amyl alcohol, and 39 

isoamyl alcohol, are formed as part of the degradation of branched-chain amino acids valine, 40 

isoleucine and leucine, respectively. The major component of aromatic higher alcohols is 2-41 

phenylethanol, which is produced from aromatic amino acid phenylalanine (Dickinson et al., 42 

1997; 1998; 2000; 2003; Nykanen, 1986).  43 

Aroma compounds are synthetized mainly by the Saccharomyces cerevisiae species during 44 

food-related fermentations. However, other related species belonging to the Saccharomyces 45 

genus, such as Saccharomyces kudriavzevii and Saccharomyces uvarum, can potentially be of 46 

interest for aroma production. The phylogenetic similarities between these species and their 47 

closely related S. cerevisiae prompted the formation of natural interspecific hybrids, which 48 

are present in wine and brewing environments (Gonzalez et al., 2007; 2008). In this context, 49 

the fermentative abilities of these two species, and their hybrids, have been recently 50 

investigated (Arroyo-Lopez et al., 2010; Combina et al., 2012; Gonzalez et al., 2006; Lopez-51 

Malo et al., 2013; Naumov et al., 2000; 2001; Oliveira et al., 2014; Sampaio and Goncalves, 52 

2008; Tronchoni et al., 2014). The above-cited studies describe significant differences in the 53 

impact of these two species on the aromatic qualities of alcoholic beverages when compared 54 
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to S. cerevisiae. Specifically, S. kudriavzevii and S. uvarum have interesting oenological 55 

properties which lead, for instance, to greater glycerol production or lower ethanol production 56 

compared to S. cerevisiae (Gamero et al., 2013; Oliveira et al., 2014). The wines produced by 57 

S. uvarum strains also have a stronger aromatic intensity than those produced by S. cerevisiae 58 

(Coloretti et al., 2006; Eglinton et al., 2000).  59 

The present study explores differences in the production of prime aroma-active acetate 60 

esters and higher alcohols by S. kudriavzevii, S. uvarum and S. cerevisiae. As valine, 61 

isoleucine, leucine and phenylalanine are the precursors of these higher alcohols, which 62 

subsequently lead to acetate esters, these four amino acids were used as the sole nitrogen 63 

source for the growth of these species. Next, the production of the corresponding higher 64 

alcohols and esters was analysed. Ammonium and the mixture of those four amino acids were 65 

also used as the nitrogen sources to better obtain a comparison of how the three 66 

Saccharomyces species deal with nitrogen in terms of major flavour-active volatile 67 

compounds formation.  68 
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2. Materials and Methods 69 

2.1. Yeast strains 70 

The yeast strains used in this work were S. kudriavzevii IFO 1802 (originally isolated from 71 

decayed leaves in Japan (Kaneko and Banno, 1991)), S. uvarum CECT 12600 (isolated from 72 

sweet wine in Alicante, Spain, obtained from the Spanish Type Culture Collection), and 73 

commercial wine strain S. cerevisiae T73 (originally isolated from wine in Alicante, Spain 74 

(Querol et al., 1992)). 75 

 76 

2.2. Cultivation to study the production of acetate esters and higher alcohols  77 

The cultivations were performed in triplicate using a synthetic medium containing 0.17% 78 

YNB w/o AAs & (NH4)2SO4 (DIFCO, USA) and 2% glucose as the carbon source. Media 79 

were supplemented by different nitrogen sources. The concentration was 5 g/L when 80 

(NH4)2SO4 was used as the nitrogen source, as recommended by the provider. When 81 

individual amino acids were used as the nitrogen source, the concentrations were proportional 82 

to (NH4)2SO4 (to obtain the same nitrogen content), as follows: 10 g/L leucine, 10 g/L 83 

isoleucine, 12.5 g/L phenylalanine, 8.9 g/L valine (Bolat et al., 2013). The mix of these amino 84 

acids was also used as the nitrogen source. In this case the total amino acids concentration 85 

was 10 g/L and the proportional concentrations were 2.5 g/L leucine, 2.5 g/L isoleucine, 3 g/L 86 

phenylalanine and 2 g/L valine.  87 

Starter cultures were prepared by pregrowing yeast in 15-mL tubes containing 4 mL of the 88 

standard complex media. Before the inoculation of the experimental culture, the grown 89 

precultures were washed with water and resuspended in the same synthetic medium (with a 90 

certain nitrogen source), as used in the assay. Cells were resuspended in such a volume to 91 

achieve an OD600 of 1.7. These precultures (100 μL) were used to inoculate 1.6 mL of the 92 

synthetic media. Then the initial OD600 was 0.1. Cultivation was performed in 96-well plates 93 
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with 2mL-deep wells. Wells were covered by a transparent microplate sealer (Greiner bio-94 

one, Germany) to avoid evaporation and loss of volatile flavour compounds. Cultures were 95 

incubated for 5 days at 25°C. The individual 1.7-mL cultures were later transferred to 2-mL 96 

tubes and were stored at -20°C for the analysis.  97 

 98 

2.3. Analysis of yeast growth 99 

Growth of yeast cells was followed using a 96-well plate. Synthetic media were 100 

supplemented with different nitrogen sources (ammonium or amino acids), as described 101 

above. Then 100 μl of media were inoculated in a well with 2 μl of cell suspension with 102 

OD600 = 1. Growth was monitored in a Spectrostar Nano absorbance reader (BMG Labtech, 103 

Germany). 104 

 105 

2.4. Higher alcohols and esters determination 106 

The samples stored in the 2-mL tubes were centrifuged (13000 rpm, 2 min) and 1.5 mL of 107 

the supernatant was transferred to 15-mL vials with 0.35 g of NaCl. The 20-μl volume of 2-108 

heptanone (0.005%) was added as an internal standard. Higher alcohols and esters were 109 

analysed by the headspace solid phase microextraction (HS-SPME) technique using a 100-μm 110 

poly-dimethylsiloxane (PDMS) fibre (Supelco, Sigma-Aldrich, Spain). Solutions were 111 

maintained for 2 h at 25°C to establish the headspace-liquid equilibrium. The fibre was 112 

inserted through a vial septum into the headspace and was held for 7 min. The fibre was then 113 

inserted into the gas chromatograph inlet port for 4 min at 220°C with helium flow (1 114 

mL/min) to desorb analytes. A Thermo Science TRACE GC Ultra gas chromatograph with a 115 

flame ionization detector (FID) was used, equipped with an HP INNOWax 30 m x 0.25 m 116 

capillary column coated with a 0.25-m layer of cross-linked polyethylene glycol (Agilent 117 

Technologies). The oven temperature programme was: 5 min at 35°C, 2°C/min to 150°C, 118 
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20°C/min to 250°C and 2 min at 250°C. The detector temperature was kept constant at 300°C. 119 

A chromatographic signal was recorded by the ChromQuest programme. Volatile compounds 120 

were identified by the retention time for reference compounds. Quantification of the volatile 121 

compounds was determined using the calibration graphs of the corresponding standard 122 

volatile compounds. 123 

 124 

2.5. Statistical analysis 125 

The presented values are averages of biological triplicates with standard errors. The 126 

differences between measured volatile compounds were determined by a one-way ANOVA, 127 

followed by Tukey’s HSD test (statistical level of significance was set at P ≤ 0.05). The 128 

analysis was performed using the STATISTICA 7.0 software (StatSoft, Inc., USA). 129 

130 
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3. Results 131 

To determine differences during the production of the major aroma-active higher alcohols 132 

and esters from their corresponding precursors (branched-chain or aromatic amino acids) by 133 

S. cerevisiae T73 strain, S. kudriavzevii IFO 1802 and S. uvarum CECT 12600, yeasts were 134 

cultivated in a synthetic medium with particular nitrogen sources. Such a defined medium, 135 

using a specific amino acid or ammonium as the nitrogen source, allowed us to avoid the 136 

undesirable impact of other non-specific nitrogen sources. Under these conditions, growth 137 

was followed and the final aroma composition was determined. 138 

 139 

3.1. Growth under different nitrogen sources 140 

To test whether yeasts would grow under these specific conditions, the increment of 141 

populations over time was monitored (Figure 1). Although slight differences were observed 142 

among species at the beginning of the exponential phases, as seen when grown with leucine or 143 

valine as the nitrogen source, all the species presented a normal growth pattern, even when 144 

one amino acid was used as the only nitrogen source. 145 

 146 

3.2. Effect of different nitrogen sources on ethyl acetate production 147 

We highlight ethyl acetate production in the analysis of the aroma compounds of the three 148 

species under the above-described conditions. Each species produced approximately the same 149 

amount of ethyl acetate regardless of the amino acid used as the nitrogen source (Figure 2). In 150 

this comparison the lowest concentrations were produced by S. kudriavzevii, while S. uvarum 151 

gave similar amounts to S. cerevisiae. When cultivated with either the mixture of amino acids 152 

or ammonium, S. cerevisiae did not change ethyl acetate production. However, S. kudriavzevii 153 

and S. uvarum produced significantly larger amounts of ethyl acetate when cultivated with the 154 

mixture of amino acids than with individual amino acids. When ammonium was employed as 155 
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the nitrogen source, the ethyl acetate concentration produced by S. kudriavzevii was 3-fold 156 

higher, and 2.5-fold higher with S. uvarum, than S. cerevisiae. 157 

 158 

3.3. Formation of the higher alcohols and esters derived from the corresponding amino 159 

acid 160 

When valine was used as the sole nitrogen source, isobutanol production by S. kudriavzevii 161 

was similar to that of S. cerevisiae, whereas S. uvarum gave much smaller amount 162 

(approximately half) (Figure 3). A similar trend was observed when the mixture of amino 163 

acids was used as the nitrogen source. S. uvarum also produced the smallest amount of 164 

isobutanol when cultivated on ammonium. As expected, the highest isobutanol production 165 

values for the three species were observed when precursor valine was used. Strikingly, no 166 

major differences were observed during isobutyl acetate production for the different nitrogen 167 

sources. In all cases, the values ranged from about 0.025 mg/l to 0.070 mg/l. 168 

The phenylalanine-grown cultures of S. kudriavzevii exhibited the highest 2-phenylethanol 169 

production, but the lowest 2-phenylethyl acetate production. On the contrary, S. uvarum 170 

formed the largest amounts of ester, but smaller (together with S. cerevisiae) amounts of the 171 

higher alcohol. A similar result was obtained when the nitrogen source used was the mixture 172 

of amino acids, which resulted in S. kudriavzevii with the highest 2-phenylethanol level and S. 173 

uvarum with the highest 2-phenylethyl acetate level. When ammonium was the nitrogen 174 

source, 2-phenylethyl acetate was not detected in any species. Negligible concentrations of 2-175 

phenylethanol were found for S. kudriavzevii and S. uvarum, and none were seen for S. 176 

cerevisiae. 177 

When isoleucine was the nitrogen source, S. cerevisiae was the highest producer of both 178 

corresponding compounds (active amyl alcohol and amyl acetate). The amyl acetate level was 179 

3.7-fold and 2-fold higher than in S. kudriavzevii and S. uvarum, respectively. 180 
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When cultivated with leucine, the three species produced isoamyl alcohol similar 181 

concentrations, while they exhibited vast differences during isoamyl acetate production. S. 182 

uvarum was the highest producer of this compound. The detected concentration was 1.4-fold 183 

higher compared to S. cerevisiae and 5-fold higher vs. S. kudriavzevii. Similarly, S. uvarum 184 

exceeded the other two during isoamyl acetate production when grown with the amino acids 185 

mixture. S. kudriavzevii dominated during isoamyl alcohol production when the mixture of 186 

amino acids was used as the nitrogen source. 187 

 188 

3.4. Comparison of the total higher alcohols and esters produced in response to different 189 

nitrogen sources 190 

Apart from the major volatiles deriving from the particular amino acid, which was used as 191 

the nitrogen source, other higher alcohols and esters were detected. In this context, we also 192 

analysed the total amounts of the higher alcohols and esters produced by S. kudriavzevii and 193 

S. uvarum cultivated with different nitrogen sources. Then we compared the data to those of 194 

S. cerevisiae. As seen in Figure 4, the highest values of the total fusel alcohols were achieved 195 

by all the species when grown with the mixture of amino acids. This was not unexpected since 196 

each amino acid contributes to the formation of the corresponding higher alcohol. 197 

Nevertheless, the total amount of higher alcohols produced by S. kudriavzevii under these 198 

conditions was interesting as it resulted in a 2-fold larger amount than S. uvarum, and in a 1.7-199 

fold larger one when compared to S. cerevisiae. In general, S. kudriavzevii exhibited the 200 

highest levels of the total fusel alcohol concentrations in four of the six nitrogen sources used 201 

(amino acid mixture, phenylalanine, leucine and valine), although the last two were 202 

comparable with those of S. cerevisiae. 203 

Conversely, S. kudriavzevii did not excel in ester formation, while S. uvarum showed high 204 

levels of total esters, mainly when cultivated on phenylalanine and leucine. Likewise, S. 205 
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uvarum produced a much larger quantity of esters than the other two Saccharomyces species 206 

when the nitrogen source was the amino acids mixture. When the amino acids mixture was 207 

used as the nitrogen source, the trend of the highest total esters values was no longer 208 

observed, as it was in the case of the total higher alcohols.  209 
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4. Discussion 210 

According to previous studies, S. kudriavzevii and S. uvarum show differences in several 211 

oenological traits, including the production of volatile aroma compounds during wine 212 

fermentation (Gamero et al., 2013; 2014). To further examine these differences in detail, we 213 

explored the responses to nitrogen sources compared to higher alcohols and acetate esters 214 

production. Indeed, the cultivation conditions used in our assays differed from typical 215 

fermentation processes. Yet, unlike complex media, the use of defined synthetic media 216 

allowed us to explore more precisely how the three species varied in the formation of the 217 

higher alcohols and acetate esters deriving from the corresponding amino acids and 218 

ammonium. 219 

As the results show, the employment of individual amino acids as the nitrogen source led 220 

to a much higher production of the measured volatiles than with the other two nitrogen 221 

sources (amino acids mixture and ammonium) in all the species. Some exceptions were found 222 

during the production of isoamyl alcohol and isobutyl acetate. The largest amounts of isoamyl 223 

alcohol were obtained when produced from the amino acids mixture (by S. kudriavzevii and S. 224 

cerevisiae). Isobutyl acetate formation did not differ significantly when related to the nitrogen 225 

sources. This is surprising if we consider the significantly higher isobutanol (isobutyl acetate 226 

precursor) production with valine than with the other two nitrogen sources. This result 227 

indicates differences in the metabolism of isobutanol, particularly its subsequent esterification 228 

compared to the other higher alcohols. 229 

The lowest concentrations of volatile compounds (with no particular differences found 230 

among species) were detected when ammonium was the nitrogen source. This result agrees 231 

with the observation published by Vuralhan et al. (2003; 2005), in which no activities of the 232 

2-oxo-acid decarboxylase involved in the higher alcohol production pathway were detected in 233 
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the cultures grown on ammonium used as the nitrogen source. Correspondingly, no or very 234 

low concentrations of higher alcohols were detected.  235 

Relatively large differences were found among species in terms of concentrations of the 236 

higher alcohols and acetate esters deriving from their precursor. S. uvarum, for instance, 237 

surpassed the other two species for 2-phenylethyl acetate production. This result is consistent 238 

with previously reported conclusions, which indicated that good 2-phenylethyl acetate 239 

production was a typical trait of S. uvarum (Antonelli et al., 1999; Gamero et al., 2013; 240 

Masneuf-Pomarede et al., 2010). 241 

When we summarised and compared the amounts of the total higher alcohols and total 242 

esters produced by the three species, S. uvarum also showed reasonable ester formation, 243 

whereas S. kudriavzevii seemed to prefer the production of higher alcohols under these 244 

conditions. These differences could have been caused by distinct regulation mechanisms, 245 

different gene expression or diverse enzyme activities. For instance, remarkable differences 246 

among these species have been observed in the expression levels of those genes involved in 247 

the production of flavour compounds during winemaking (Gamero et al., 2014). The genes 248 

that codify permeases, transaminases and other enzymes involved in amino acids metabolism 249 

were up-regulated in S. uvarum compared to S. kudriavzevii. S. kudriavzevii showed an up-250 

regulation of ATF2. This gene, together with ATF1, encodes alcohol acetyl transferases, 251 

which catalyse the esterification of higher alcohols by acetyl coenzyme A. It has been 252 

previously shown in S. cerevisiae that Atf2p plays a minor role in esters formation compared 253 

to Atf1p (Verstrepen et al., 2003). In S. kudriavzevii and/or S. uvarum, these data suggest that 254 

the roles of Atf1p and Atf2p, and their substrate specificities, might be distinct from S. 255 

cerevisiae. Similar interspecific differences have also been observed between two 256 

subgenomes (S. cerevisiae-derived and S. eubayanus-derived) in lager-brewing hybrid S. 257 

pastorianus by Bolat and coworkers (Bolat et al., 2013). These authors described different 258 
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roles for two 2-oxo-acid decarboxylase isoenzymes (involved in higher alcohols production), 259 

encoded by these two subgenomes. These different roles were based on distinct enzyme 260 

characteristics. The S. cerevisiae allele was preferentially involved in the production of the 261 

higher alcohols derived from the amino acids contained in wort. In contrast, the allele from 262 

the S. eubayanus subgenome was involved in the formation of the higher alcohols derived 263 

from the amino acids synthesised de novo by the yeast. 264 

It is obvious that the amino acid metabolism is controlled by a complex regulation system. 265 

The comparative analysis performed of three different species grown with distinct nitrogen 266 

sources revealed remarkable differences during the production of aroma-active higher 267 

alcohols and acetate esters. Our results indicate that despite S. kudriavzevii and S. uvarum 268 

being closely related to S. cerevisiae, the amino acid metabolism and subsequent production 269 

of flavour-active higher alcohols and acetate esters differed among these species. This 270 

knowledge can provide new possibilities for yeast-based applications in fragrance, flavour 271 

and food industries.272 
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Fig. 1. Growth of S. cerevisiae T73, S. kudriavzevii IFO 1802, and S. uvarum CECT 12600 372 

with the indicated amino acids (and ammonium) as the nitrogen source (MIX – amino acid 373 

mixture). 374 

 375 

Fig. 2. Ethyl acetate produced by S. cerevisiae T73, S. kudriavzevii IFO 1802, and S. uvarum 376 

CECT 12600 depending on the nitrogen source. The statistically significant differences 377 

among the species were determined independently for each nitrogen source and are indicated 378 

by labels above the columns. 379 

 380 

Fig. 3. Production of the higher alcohols and esters derived from the stated amino acid and a 381 

comparison of these higher alcohol and ester when produced from the amino acids mixture 382 

(MIX) or ammonium sulphate used as the nitrogen source. The statistically significant 383 

differences among the species were determined independently for each nitrogen source and 384 

are indicated by labels beside the columns. 385 

 386 

Fig. 4. Total amount of the higher alcohols (A) and esters (B) produced by S. cerevisiae T73, 387 

S. kudriavzevii IFO 1802, and S. uvarum CECT 12600 depending on the nitrogen source used. 388 

The statistically significant differences among the species were determined independently for 389 

each nitrogen source and are indicated by labels above the columns. 390 

 391 
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