
 on April 28, 2015http://rsif.royalsocietypublishing.org/Downloaded from brought to you by COREView metadata, citation and similar papers at core.ac.uk

gital.CSIC
rsif.royalsocietypublishing.org
Review
Cite this article: Avena-Koenigsberger A,
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The structure of complex networks has attracted much attention in recent

years. It has been noted that many real-world examples of networked sys-

tems share a set of common architectural features. This raises important

questions about their origin, for example whether such network attributes

reflect common design principles or constraints imposed by selectional

forces that have shaped the evolution of network topology. Is it possible

to place the many patterns and forms of complex networks into a

common space that reveals their relations, and what are the main rules

and driving forces that determine which positions in such a space are occu-

pied by systems that have actually evolved? We suggest that these questions

can be addressed by combining concepts from two currently relatively

unconnected fields. One is theoretical morphology, which has conceptual-

ized the relations between morphological traits defined by mathematical

models of biological form. The second is network science, which provides

numerous quantitative tools to measure and classify different patterns of

local and global network architecture across disparate types of systems.

Here, we explore a new theoretical concept that lies at the intersection

between both fields, the ‘network morphospace’. Defined by axes that rep-

resent specific network traits, each point within such a space represents a

location occupied by networks that share a set of common ‘morphological’

characteristics related to aspects of their connectivity. Mapping a network

morphospace reveals the extent to which the space is filled by existing net-

works, thus allowing a distinction between actual and impossible designs

and highlighting the generative potential of rules and constraints that

pervade the evolution of complex systems.

provided by Di
1. Introduction
A wide range of complex systems, including economic relations, the Internet,

social media, ecological webs, cellular metabolism, gene regulation and brain

connectivity can be represented and modelled as networks of interconnected

elements [1–3]. The structure of these networks is defined by the relations

among elements and interactions (nodes and edges, jointly forming the net-

work’s topology), and network function involves dynamic processes (social

interactions, message traffic, chemical reactions, neuronal signalling) unfolding

within this topology. While much progress has been made in characterizing

features of network topology and classifying network architectures based on

descriptive network metrics [4,5], numerous open questions remain. For

example, it has been noted that a number of aspects of network organization,

including the existence of modules [6] and small-world attributes [7], are

encountered across many different complex systems. However, it remains

unclear whether these commonalities reflect shared constraints on network

function that limit the range over which design parameters of real-world

networks can vary, or whether the space of possible network architectures is

much larger than current instantiations suggest.
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Figure 1. Theoretical morphospaces allow organization of morphological complexity for a given group of organisms (usually focusing on some external, anatomical
traits) within a limited phenotypic space. Here, we show a three-dimensional theoretical foraminiferal morphospace. The potential repertoire of Foraminifera shells is
generated by a three-parameter model of form, whose parameters are: Dw, deviation angle; translation factor, TF; growth factor, GF. Adapted with permission from
reference [21].
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The idea of distinguishing between what exists, what is

possible but does not exist and what is impossible has been

explored in the study of the configuration and shape of bio-

logical forms, and it has helped to shed light on their

evolutionary origins. As François Jacob [8] pointed out, evol-

ution proceeds, to a large extent, through tinkering: it is

obliged to re-use what is available, and this necessity forces

many living structures to evolve by combining or incremen-

tally modifying existing forms and patterns. In this context,

it has been shown that reuse (as it occurs with gene dupli-

cation) can explain some global features exhibited by

different kinds of natural and man-made networks [9,10].

But tinkering is only part of the whole story. Major innovations

can emerge from time to time as the fundamental logic of the

processes involved allows major transitions to occur [11].

Moreover, strong dynamic constraints operate on top of evol-

utionary processes, canalizing the potential paths to be

followed by natural forms [12]. Canalization not only increases

the likelihood of the emergence of some forms over others, but

it also excludes from actual existence a large set of possible

forms. The widespread presence of convergent designs [13]
is strong evidence that the repertoire of possible forms is lim-

ited—examples are patterns of morphological organization

that recur across many different classes of organisms (e.g.

eyes) [14]. Such a view implies that the repertoire of possible

structures [15,16] or even dynamical patterns [17] might be

more limited than we would expect.

Quantifying similarities and regularities among evolving

biological forms would be facilitated with the definition of

a phenotypic space within which different forms can be

placed and related to one another. An important develop-

ment in this regard was the formulation of the concept of

‘theoretical morphospace’ [18]. Through this approach, evol-

utionary biologists have been able to establish mathematical

models of form that describe the entire spectrum of phys-

ically possible forms available for a given taxonomic group.

Classical examples of this approach are David Raup’s studies

of coiled shells [19,20] (figure 1) and Karl Niklas’ studies of

plant evolution [22–24]. Both, Raup and Niklas provided

simple mathematical models that generate the entire spec-

trum of coiled forms and ancient land plant variants,

respectively [25]. Analysis of these mathematically generated
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forms revealed that variants that have existed in nature are

confined to discrete regions within the total spectrum of poss-

ible forms. Additionally, Niklas showed that the number and

occupation of optimal phenotypes increases with biological

complexity, which he defined as the number of tasks an

organism has to perform simultaneously in order to grow,

survive and reproduce [24].

These attempts to conceptualize and map morphologi-

cal complexity have so far not made much contact with

efforts to characterize patterns of network complexity. Some

classification schemes based on network structure have been

proposed, capable of identifying inherent structural differen-

ces between distinct networks classes [26–28], such as social

networks, information and technological networks, and bio-

logical networks. In this paper, we review and expand on

recent work that combines the concept of theoretical morpho-

space with emerging concepts from the study of complex

networks. We begin by briefly outlining some fundamental

points about modern approaches to characterize morphological

complexity and to measure structural attributes of networks.

We then introduce the concept of ‘network morphospace’ that

allows not only to build maps of network architectures, but

also to delineate regions within this space that are encountered

in the real world, thus allowing a distinction between designs

that actually exist from others that do not exist, but may be

either possible or impossible alternatives. We briefly describe

the steps necessary to analyse network morphospaces and

discuss the kind of information that such analysis contri-

butes to the understanding of complex networks. Finally, we

turn to a survey of studies that have begun to use the morpho-

space approach in order to identify and classify important

characteristics of network structure.
2. Theoretical foundations of network
morphospace

2.1. Morphological complexity
The work of many comparative anatomists, embryologists and

evolutionists has contributed to the emergence of theoretical

morphology as a discipline that studies the evolution of bio-

logical forms. A crucial concept derived from the work of the

geneticist Sewall Wright [29], who proposed that, in theory, it

is possible to construct a space of all possible genetic combi-

nations associated with living organisms. Wright’s major

insight was that the majority of the possible genetic combi-

nations would not actually exist in nature because they have

zero fitness, whereas only a small fraction of possible combi-

nations have fitness greater than zero and thus, are potentially

present in nature. Wright proposed that these genetic relation-

ships could be expressed as spatial or geometric relationships

by constructing an N-dimensional space, with N 2 1 dimen-

sions corresponding to a set of genetic traits, plus one more

dimension corresponding to fitness. This defines a fitness land-

scape, where the elevation of the terrain represents the degree of

fitness. In this landscape, possible combinations of genetic traits

that are actually observed in nature are located on peaks or elev-

ated slopes (depending on their level of fitness), whereas

possible but non-existent combinations of genetic traits are

found on a flat plane of zero fitness.

Equivalent to the concept of fitness landscape for gene-

tic traits, an adaptive landscape describes the different
possible morphologies that are available in nature. In this

case, N 2 1 dimensions correspond to a set of morphologi-

cal traits and, the Nth dimension indicates the degree of

adaptation. The degree of adaptation of the possible morpho-

logical traits is determined by how well such morphological

traits function in nature [24].

A related concept, the theoretical morphospace, has been

defined by George McGhee [30] as ‘N-dimensional geometric

hyperspaces produced by systematically varying the par-

ameter values of a geometric model of form’. In other

words, the dimensions of a theoretical morphospace are the

parameters of geometric or mathematical models of form,

and different points along each dimension correspond to

values of model parameters that specify specific forms. Then,

an extra dimension can be added to indicate the frequency

of occurrence of the model forms in nature. Hence, within

the morphospace, it is possible to determine which forms

have been produced in nature and which have not. Non-exist-

ing forms are not necessarily non-adaptive or have zero

fitness; it could be that the process of evolution has simply

not produced them. It is worth noting that not having

observed a form in nature is insufficient evidence to assert

that it has never existed.

The most important feature of theoretical morpho-

spaces is that the dimensions are defined independently of

any measurement data of existing form; thus, all possible

forms, existent and non-existent, are represented within this

space by varying the parameter values of a model of form.

Interestingly, the measurement-independence property of

the dimensions of a theoretical morphospace allows for the

addition of arbitrary dimensions (as long as more parameters

can be included in the mathematical model); in particular, the

dimension of ‘degree of adaptation’ could be mapped onto a

theoretical morphospace, thus converging to the adaptive

landscape. This convergence makes theoretical morphospace

analysis a very powerful tool for analysing the functional

significance, the adaptive value or the fitness of existing

and non-existing morphologies.
2.2. Network complexity
Network structure refers to topological properties that are

defined by the way in which network nodes are connected

to each other. The topology of a network with N nodes is com-

pletely defined by an N � N adjacency matrix A, where each

element aij of the matrix is non-zero if nodes i and j are

connected, and zero otherwise. While network topology dis-

counts metric or spatial relations among network elements,

many real-world networks are spatially embedded [31,32].

Examples are brain networks [33,34], transportation networks

[35,36], the internet and electrical circuits [34,37–39], and even

social networks [40,41]. Spatial embedding may place impor-

tant constraints on network topology [31,32]; therefore, the

study of network topological features often takes into account

the spatial relations.

A number of fundamental topological properties, such as

hierarchical and modular organization, heterogeneous degree

distributions or short characteristic path length are common

among most real-world networks [42,43]. Thus, it appears that

the universe of all possible network architectures is much less

diverse than might be expected. The possible causes of the regu-

larities observed across different real-world systems continue to

be a matterof debate. One view isthat there are strong constraints
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on the structure of networks imposed by fundamental laws of a

mathematical nature [44]. That is, the set of attainable structures

within the universe of all possible networks is subjected to

mathematical constraints, and hence real-world networks

occupy a very small subset of this universe. Under such a view,

a number of structural features found in most real-world net-

works, such as network motifs [45,46] and modularity [47–49],

may be viewed as evolutionary ‘spandrels’ [46], that is, they

have not been actively selected for, but instead, they are the by-

product of the underlying generative rules, with little connection

to functional constraints. An alternative view suggests that the

emergence of common features in nature may arise from a com-

bination of growth mechanisms and the interplay of network

dynamics with selection processes [50]. Interestingly, in spite of

the diverse nature of the dynamical processes taking place on

distinct network classes, most of these processes are associated

with the transmission and/or processing of information,

driven by the pairwise interactions among the system’s com-

ponents [51]. Thus, it seems plausible to hypothesize that the

convergence of many networks towards a common set of prop-

erties is driven by optimization processes that favour (directly

or indirectly) the transmission and/or processing of information.

Clearly, beyond the goal of defining classification

schemes for complex networks, there are fundamental ques-

tions that are still unanswered. What are the factors that

shape network structure? How do the structural properties

of a network arise in the course of network growth and evol-

ution, and how do different structural properties interact

with one another? Are common features of complex systems

a result of common selection pressures or do they emerge as a

result of structural/functional constraints? Considering sys-

tems that evolve and whose structure changes with time,

what are the possible organizational changes that such

networks can support?
2.3. Defining network morphospaces
One approach to address these questions is to map networks

to N-dimensional spaces whose axes are defined by specific

network attributes, and then analyse their distribution

within this ‘network theoretical morphospace’ (henceforth

‘morphospace’). However, drawing an analogy between

physical forms and network structure is not straightforward:

while theoretical morphology is able to model the essence of

many physical forms with mathematical or geometrical

relationships between morphological traits, the complex top-

ology of most real-world networks makes it hard to define

mathematical models that completely specify a network’s

structure as a function of a set of independent structural

traits. One way forward builds on the many analytic

measures and tools used to determine the statistical proper-

ties of networks [42,52,53]. We may take a set of network

statistical properties to represent structural traits, and the

combination of these traits can then be associated with

characteristic network topologies. These network measures,

interpreted as structural traits, form the dimensions of a mor-

phospace, where combinations of traits are associated with

distinct ‘network forms’.

One of the most important objectives of morphospace

analysis is to delineate the boundaries that define the

domains of actual, possible and impossible forms (figure 2).

In network morphospaces, these different regions are analo-

gous to those described by McGhee in the context of
biological morphologies (in fact, we use a nomenclature

based on the one proposed by McGhee [30] to refer to these

distinct regions).

The first subdivision of the space is defined by extrin-

sic constraints that are imposed by geometrical laws;

these constraints define the region of geometrically possible

topologies (GPT) and the region of geometrically impossi-

ble topologies (GIT) whose intersection is empty (i.e.

GPT > GIT ¼ �). Examples of GIT are a network with five

nodes, all connected to exactly three neighbours, or a con-

nected network with an average path length of zero. Within

the GPT region, there are two subregions defined by another

class of extrinsic constraints, called functionality constraints,

which separate functional possible topologies (FPT) from

non-functional possible topologies (NPT). Functionality con-

straints are imposed by physical or geometrical laws that

determine whether the system represented by the network

can actually function or not. As an example, consider a mor-

phospace of protein interaction networks. While it is

topologically possible to define a network in which all

nodes (proteins) interact with each other (a clique), the laws

of physics prohibit many of these interactions taking place

in nature; therefore, a fully connected protein interaction net-

work is contained in the NPT region of the protein interaction

morphospace. Note that ‘functionality’ is dependent on the

nature of the physical or biological system under study.

That is not to say that physical laws behave differently for

different systems, but some physical laws are only relevant

for the analysis of certain systems.

Finally, there are intrinsic constraints that are imposed

by the properties of the specific system represented by the

network. For example, consider a morphospace of human

brain networks. A fundamental constraint on human brain net-

works is that they are embedded in space. Spatial embedding

is closely tied to incontrovertible limits on brain volume, con-

duction delays and metabolic energy consumption [33,54].

Global limits on brain volume impose strong constraints on

http://rsif.royalsocietypublishing.org/
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the volume of grey matter (neurons or nodes) and white matter

(connections or edges). Thus, resource limitations impose con-

straints on the density, length and volume of neuronal

connections, hence separating biologically feasible and unfeasi-

ble networks within the morphospace. Note that intrinsic

constraints can be imposed on all regions of the

morphospace, but most importantly, by imposing intrinsic

constraints during the simulation of networks, one can restrict

the space of possible networks within a morphospace to those

that are not only topologically and functionally possible, but

also biologically feasible. This has the advantage of reducing

the search space and guaranteeing that all the simulated net-

works comply with the set of intrinsic constraints that are

required for the system to be generated and maintained.

2.4. Constructing network morphospace
How do we construct a morphospace such that it aids in the

understanding and analysis of actual network structure? Let

us assume that we are interested in characterizing the

common structural properties of a certain type of network

(e.g. protein interaction networks, electrical circuits or social

networks) and, furthermore, that we are interested in study-

ing the possible factors shaping the structure of such

networks. We can conduct a morphospace analysis to address

these questions by following a series of four steps (figure 3).

2.4.1. Step one: defining the dimensions of the morphospace
Constructing a morphospace involves a choice of structural

features to analyse and a mathematical model to measure

them. Of course, these decisions are made with respect to the

hypothesis under consideration; a more detailed characteriz-

ation may require a higher-dimensional morphospace, which

may be difficult to analyse and visualize. There are two ways

in which the dimensions of a morphospace can be defined.

One way is to use a set of structural traits as the morphospace

dimensions, as illustrated in the top left axes of step 1, in figure

3. These traits are defined by the elements of the network’s

adjacency matrix, and a mathematical model is required to

measure them. Examples of structural traits are average

degree, characteristic path length, measures of modularity

and hierarchy, among others. A second way to construct a

morphospace is to use a generative model of network

growth. In this case, the dimensions of the morphospace are

the parameters of the growth model. Examples of such

models are the Barabasi–Albert preferential attachment

model [56] or the spatial-growth model proposed in reference

[55], illustrated in the top right axes of step 1, in figure 3. It is

worth mentioning that network growth models generally are

not deterministic; that is, for a fixed set of parameters, a

growth model can generate different instances of networks.

2.4.2. Step two: generating network topologies
If the morphospace is defined by a model of network growth,

then filling the morphospace involves ‘growing networks’

while systematically varying the model parameters. If the

morphospace is defined by a set of structural traits, then gen-

erating network topologies corresponding to all the possible

values of structural traits is a non-trivial problem. This is

because the structural traits are functions of the elements of

the adjacency matrix, but the relationship between structural

traits and adjacency matrices is not one-to-one—rather the

mapping between traits and networks is degenerate in that
different adjacency matrices can yield the same combination

of structural traits. This degeneracy implies that the mapping

of matrices onto traits cannot be inverted (given a set of struc-

tural traits, one cannot uniquely specify the matrix from which

it originated). Hence, there is no simple procedure that can

generate candidate networks for all possible combinations of

structural parameters. A number of approaches have been pro-

posed to address this problem; most of them consist of the

implementation of optimization techniques that explore the

morphospace by generating candidate networks and evolving

them to attain specific structural trait values.
2.4.3. Step three: placing empirical networks into the
morphospace

Empirical networks are placed within the morphospace by

measuring the pre-selected set of structural traits of interest,

which can be derived either from their adjacency matrix or

http://rsif.royalsocietypublishing.org/
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by determining the parameter values of the network’s growth

model. There is one consideration that requires special atten-

tion: it is well known that graph measures (i.e. structural

traits) depend on the number of nodes and edges (i.e. network

size and density) in a way that is specific for the type of net-

work topology [57]. Thus, a comparison of the structural

traits of networks that vary in size cannot be performed

directly and normalization or scaling of measures is required.

There are various approaches to correct for size dependence,

although some of these approaches may introduce statistical

biases. In general, the comparison of networks of different

size and density is still an open problem [57].
.Soc.Interface
12:20140881
2.4.4. Step four: morphospace analysis
The completion of steps two and three enables the identifi-

cation of the boundaries and regions of a morphospace

where actual, possible and impossible network topologies

are located. Furthermore, the functionality and fitness of all

networks located within the GPT region can be evaluated,

for example, in terms of other structural traits that are rel-

evant for the performance of a given system, in one or

several tasks. Functional analysis aims to address the question

of why real-world networks are located in particular regions

of the morphospace, and not in other regions that are both

possible and feasible. We mentioned previously that it is

possible to add fitness as a dimension of the morphospace,

transforming the morphospace into an adaptive landscape.
3. Studies exploring network morphospaces
In this section, we survey some recent examples of studies that

have examined network morphospaces in different domains.

We focus particularly on describing the different exploratory

strategies that have been proposed in order to sample from

the entire spectrum of possible topologies available within a

morphospace. We start by exemplifying how to extend a net-

work hyperspace into a morphospace analysis, for example

in the context of network evolution. We then turn to explora-

tory strategies within morphospaces whose axes are defined

in terms of structural traits. Finally, we review morphospaces

whose axes are defined by the parameters of a model of

network growth.
3.1. Network evolution and morphospace analysis
There have been several attempts towards characterizing

and classifying complex networks [58,59]. It is not within the

scope of this paper to review these methods, nonetheless, it

is worth pointing out that many network classification

schemes can be extended into the morphospace framework,

providing additional information. For example, one of the

initial attempts to characterize networks is based on the classi-

fication of network motifs [45]. Motifs may be thought to

represent the basic ‘building blocks’ that constitute a network

and thus, the frequency with which they occur may be infor-

mative of which specific connectivity patterns have been

selected for network function. A motif morphospace, where

motif frequencies form the axis of the space, can provide infor-

mation about the functionality of distinct classes of networks,

reflecting which motif distributions are easier to generate and

which are impossible to generate, and possibly identifying
distinct motif frequencies that are correlated in simulated

and/or real-world networks.

Although the formal concept of network morphospace is

only a recent addition to the field, network hyperspaces (or

phase-spaces) have been widely used to characterize and clas-

sify networks, and to study network evolution. For example,

a clustering signature hyperspace has been defined to character-

ize real-world-directed networks in terms of four components

that indicate how nodes are connected to their neighbourhood

[60]. Networks can also be classified by analysing and com-

paring the trajectories followed by evolving networks within

a hyperspace [61], for example, when networks are subjected

to some kind of selection pressure [62–67]. This approach

has been particularly useful to identify connectivity patterns

that optimize a trade-off between two antagonistic structu-

ral properties, such as the trade-off between network cost

and efficiency [63] or the trade-off between network cost and

synchronization [64,65].

Like network morphospaces, network hyperspaces are N-

dimensional spaces whose axes represent specific network

measures. However, it is worth making a distinction between

a comprehensive morphospace analysis and the more heuris-

tic use of hyperspaces to study networks. A key difference is

that a hyperspace is simply defined by specifying the axes of

the space. Conversely, a full morphospace analysis focuses on

characterizing the extent and distribution of the distinct sub-

regions of the space (i.e. GPT, FPT; figure 2), while associating

specific aspects of network topology with these regions. As

we have argued previously, one of the most powerful ana-

lytic aspects of theoretical morphospaces is their ability to

explore all network topologies available for a particular

system, enabling the identification of functional constraints

or selection forces that disallow their existence.

The observation that most complex networks display

common topological attributes motivated a study [68] to

explore the possibility that such commonalities stem from

the presence of optimization processes. The study used an

optimization algorithm that evolved networks to simul-

taneously optimize two relevant (and antagonistic) aspects

of network performance: the cost of building/maintaining

connections and the communication speed (r) among

nodes. A parameter l (0 � l � 1) controlled the importance

given to cost and communication speed when searching for

optimal networks (by means of the parametric linear

equation F(l) ¼ l(cost) þ (1 2 l)r); providing distinct opti-

mal solutions, depending on the value of l. The results of

this study showed that many aspects observed in complex

networks can emerge from distinct solutions that optimize

a trade-off between two objectives. Viewed from the perspec-

tive of a morphospace analysis, the cost-communication

features of any network define its coordinates within a two-

dimensional morphospace, whose axes are network cost

and communication speed. The optimization algorithm

from [68] operates within this morphospace by implementing

an exploratory strategy: every value of l used in the optimiz-

ation is associated with a trajectory or sequence of evolved

networks. The set of all trajectories corresponding to all

values of l defines the region of morphospace that is accessi-

ble through this exploratory strategy; in this way, the distinct

optimal solutions (topologies) can be associated with differ-

ent regions of the explored morphospace. Interestingly,

locating real-world networks within this morphospace

could possibly allow us to conjecture whether connection
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cost or communication speed have a stronger influence in

driving network architecture.

The previous analysis shows that, in general, the process

of optimizing or evolving a set of network topological or

dynamical features (such as in references [62–67]) can be

approached and extended into a morphospace analysis. A

sequence of evolved networks that lead to an optimal or

nearly optimal network (according to a given performance

measure) represents a trajectory within the GPT region of a

morphospace. The advantage of studying optimality within

the morphospace framework is that it allows us to extract

more information about the accessibility to distinct solutions

(i.e. possible versus impossible solutions, functional versus

non-functional solutions) in addition to studying the behaviour

of the trajectories that lead to optimality. Most important, this

framework can be used to test hypotheses about mechanisms

underlying network organization, such as selection pressures

and functional/structural constraints.
0140881
3.2. Structural constraints on network organization
Understanding the relationship between a network’s topology

and its ability to evolve is fundamental to understanding the

principles that drive network organization; in this respect, it

is particularly interesting to identify the evolutionary con-

straints imposed by a network’s topology and furthermore,

by a network’s function.

It is well known now that in spite of the diverse evolutionary

processes that drive the formation of different systems, they all

converge towards heterogeneous, modular architectures that

show a balance between order and randomness [69]. Solé and

Valverde [44] addressed the question of whether such conver-

gence is the product of selection pressures or the product of

fundamental constraints on the available network topologies.

Two information-based functions were developed to study the

heterogeneity of the node degrees (H, corresponding to the

entropy of the degree distribution), and the correlations between

connected nodes’ degrees (Hc, measured by the entropy of the

conditional probability of observing a node with k connections,

provided that the node at the other end of the chosen connection

has k 0 connections). These measures or structural traits define the

axes of a morphospace in which several real-world and theoreti-

cal model networks were located. Interestingly, all networks

were located extremely close to the identity line Hc ¼ H, a behav-

iour that results when node degrees are statistically

independent; that is, node degrees are not highly correlated, or

at least not more than what would be expected by chance.

Given the mathematical formulation of Hc and H, it is the case

that Hc � H, therefore, the region of the morphospace, where

Hc . H is contained in the GIT region. In order to determine

the principles preventing networks from occupying the region

Hc , H, simulated annealing was used to rewire candidate

random networks with the objective of minimizing the distance

between such networks and randomly sampled points (H,Hc).

The surprising result of this exploration is that the distance is

effectively minimized only for points sampled along the line

H ¼ Hc, which is the same region where real-world and canoni-

cal networks are located. In addition, the optimal networks

found by the algorithm displayed scale-free degree distri-

butions, a feature observed in several real-world networks [42].

These results suggest that there are fundamental con-

straints imposed on network structure that make most of the

morphospace unattainable. Regarding this conjecture, there
are two important considerations to point out. First, results

in reference [44] may be limited owing to the exploratory strat-

egy used. A scenario to consider is that the morphospace

landscape is such that it is very unlikely to find a sequence

of structural changes that transform random topologies into

topologies that do not exhibit heterogeneous degree distri-

butions; we can think of a landscape having a canal that

directs random networks towards the region of morphospace

occupied by networks with heterogeneous degree distri-

butions whose node degrees are statistically independent.

Perhaps there are alternative topologies that occupy regions

where the landscape is easier to travel in several directions.

The second consideration is regarding the kind of constraints

that make most of the morphospace unattainable. Given that

H is computed as the entropy of the degree distribution, it

must be noted that there is a finite number of degree distri-

butions that a network can attain, given a fixed number of

nodes and connections. As an example, let us consider the

case in which the entropy of the degree distribution takes its

maximum value, that is, when there is a uniform probability

of observing a node with 1,2,3, . . . , n connections. Now, a

hand-made drawing may suffice to show that given a fixed

number of nodes, there are many degree distributions that

are impossible to construct, including the ones that yield the

maximum entropy (to illustrate this, try drawing a five node

network, with a degree probability distribution that is uni-

form). Thus, the entropy values that can be associated with a

network are restricted; as a consequence of these extrinsic con-

straints imposed on all network architectures, the domain of

the GIT region spans the majority of the morphospace.

A recent study [70] employed a morphospace approach to

examine the hierarchical features of complex networks and

understand the forces that shape hierarchical directed net-

works. To characterize and quantify network hierarchy, three

measures were defined: (i) treeness, a measure of how pyrami-

dal the structure is; (ii) feed-forwardness, a measure of the impact

of cyclic modules on the structure of a network, based on their

position within the pyramidal structure; (iii) orderability, a

measure of how orderable the network is, based on the fraction

of nodes that does not belong to a cycle. Within the three-

dimensional morphospace defined by these measures, an

ensemble of random networks with homogeneous and hetero-

geneous degree distributions and 125 real-world networks of

natural and artificial systems were located (figure 4). Surpris-

ingly, in spite that four clusters of real-world networks with

particular hierarchical features are distinguishable, almost all

networks were found to occupy the same region occupied by

the random ensemble. Because random networks are not con-

sidered to be optimally designed towards any structural trait, it

is assumed that no selection pressures have restricted their

occupation within the morphospace. Thus, the fact that real-

world networks and random networks are located within the

same region suggests that hierarchical order may be a by-pro-

duct of random fluctuations that possibly emerge from

selection for other structural traits, such as cost minimization

or robustness against node and/or connection failure.

In order to inquire whether the regions unoccupied by real-

world and random networks are constrained by evolutionary

selection pressures or belong to the GIT region, an explora-

tory strategy similar to the one used in reference [44] was

employed: a set of random networks were evolved to mini-

mize the distance between them and a set of target point

taken from a gridded partition of the morphospace. The results
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indicate that regions occupied by random and real-world

networks are easily accessed, that is, most trajectories followed

by evolved networks end up in this highly occupied region.

However, other regions of the morphospace are not accessible

by means of this exploratory strategy. These results are in

agreement with the hypothesis that the hierarchical features

of most networks are not selected for, but actually emerge

spontaneously, driven by a (constrained) trend for networks

to evolve towards a specific region of the morphospace.
3.3. Trade-offs and selection pressures in network
evolution

Trade-off situations are commonly encountered in theories of

natural selection. Organisms that perform a range of tasks

cannot be optimal at all tasks; therefore, the interplay

between multiple traits that contribute to the fitness of an

organism face fundamental trade-offs that restrict the range

of possible trait values that organisms can adopt. Models

that implement network evolution through selection pro-

cesses may optimize a fitness (or energy) function F(s) that

combines a set of desirable traits s. In this way, weights can

be associated with each trait, determining how important

such traits are with respect to each other. However, there

are some limitations to this approach. First, one has to

define the form of the fitness function and determine how

the different traits (or objectives) interact with each other.

For example, the weights associated with each trait can be

varied in order to find distinct optimal solutions for the

different trade-off combinations. Second, to define the fitness

function, one has to know whether the objectives are antag-

onistic or not. Third, the problem becomes more difficult as

the number of objectives increases because of all the possible

combinations in which traits can interact with each other. In a
recent study, Shoval et al. [71] applied the concept of Pareto-

optimality within trait space (as opposed to performance

space, in which it is usually applied), bypassing these limit-

ations and interestingly, showed that when organisms need

to perform different tasks, the best trade-off solutions

occupy low dimensional regions within the morphospace.

Indeed, as suggested long ago by Wright [29], and later

by McGhee [30], the morphospace regions that are, or have

been, occupied by existing morphologies (topologies) are

very sparse; in other words, most empirical morphospaces

are mostly empty. The challenge now is to explore the

entire set of geometrically and functionally viable mor-

phologies (topologies) available for a given system, and

understand why only a subset have been observed in

nature. Two recent studies attempted to address this question

from the perspective of communication efficiency in complex

networks [72] and subsequently within the domain of

anatomical brain networks [73].

In [72], a two-dimensional communication-efficiency

morphospace was defined in order to study and characterize

specific aspects of network structure that favour efficient

communication within a network. Two kinds of communi-

cation schemes were considered in this study: routing
communication (originally defined in reference [74]), which

takes place through the shortest paths between nodes, requir-

ing global knowledge of the network structure in order to

find such path; diffusion communication, which is a diffusion-

like process through which information can propagate (as a

random walk) in the absence of global knowledge about

the network structure. Two structural measures, Erout and

Ediff quantify a network’s efficiency to communicate through

routing and diffusion processes respectively [72] and define

the axes of a morphospace (figure 5). A multi-objective

http://rsif.royalsocietypublishing.org/


1.29 0.44

0.78

initial population
randomization
latticization
Pareto-front networks
evolved networks

front 4

front 2

front 8

front 7

front 5
front 3

front 1

front 6

1.13
1.14

Ediff

C
N

Erout

0.99
0.38

0.82

1.25

Figure 6. Efficiency-complexity morphospace of brain networks. Grey and
orange points indicate the regions of the morphospace that have been
explored by evolving a population of 500 brain networks. Networks are
evolved employing a multi-objective optimization algorithm with eight dis-
tinct objective functions that drive networks towards eight quadrants of the
morphospace. All objective functions impose distinct selective pressures over
an evolving population of brain-like networks, resulting in eight final popu-
lations (orange points), called fronts, with distinctive structural properties. The
greyscale assigned to each network indicates the epoch in which it was cre-
ated, with light grey corresponding to early epochs and darker grey to later
epochs. Blue and red points show the average trajectory of a randomized and
latticized brain network, respectively, which are not subjected to any selective
pressures. The spatial distribution of explored regions indicates that the acces-
sibility of the morphospace is severely restricted: there are no networks found
in the region Ediff , 1. Adapted with permission from reference [73].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20140881

9

 on April 28, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
optimization algorithm was implemented as an exploratory

strategy that drives a population of networks towards four

quadrants of the two-dimensional space. However, instead

of defining a single global objective function (such as in refer-

ences [44,68,70]), network selection was carried out according

to Pareto-optimality. In general, a solution is said to be

Pareto-optimal if an improvement of any single objective

cannot be achieved without making some other objective

worse [75]. In the context of a population of networks that

are evaluated by multiple objective functions, a network G

belongs to the Pareto-front set if and only if (i) G is not

worse than any other network within the population, with

respect to all objectives and (ii) G is strictly better than any

other network in the population, with respect to at least one

objective [76]. The exploration of the efficiency-communi-

cation morphospace (figure 5) reveals that the GPT region is

severely restricted, thus it is not possible to generate networks

with arbitrary values of Erout and Ediff. While most networks

are located near the line Erout ¼ Edif, it is possible to identify

characteristic topologies that deviate from this behaviour or

that favour one communication scheme over the other. None-

theless, the strong linear dependency between Ediff and Erout

suggests a trade-off situation, where selection pressures

might drive systems to occupy a low dimensional region

(a line) within the communication-efficiency morphospace.

An exploratory strategy similar to the one used in [72]

was employed to perform a local exploration of a three-

dimensional efficiency-complexity morphospace surrounding

empirical brain networks (figure 6) [73]. The morphospace
axes were defined by Ediff and Erout (as defined in references

[72]), and neural complexity (CN) [77], a measure of dynamic

complexity that captures the coexistence of functional segre-

gation and functional integration in neural systems. The

exploration of this morphospace consisted of evolving a

population of empirical brain networks towards eight octants

of the three-dimensional morphospace. The exploration strat-

egy was designed to take into account the limits in spatial

volume and metabolic energy consumption that the brain is

subjected to as a result of being a spatially embedded

system (i.e. intrinsic constraints). Therefore, to ensure that

all brain-like networks generated during the exploration

belong to the FPT region and are biologically feasible, func-

tionality and intrinsic constraints were imposed through a

rewiring algorithm that preserves the total wiring volume

of the network connections, the degree sequence and the con-

nectedness of the networks. The explored morphospace of

brain-like networks indicates that the accessibility to distinct

regions is severely restricted; in fact, empirical brain networks

are located at a minimum of Ediff, where a boundary between

possible and impossible brain-like topologies is defined.

While the tools to perform a deeper functional analysis of

brain network morphospaces are still being developed, it is

this kind of analysis that may open a door into the under-

standing of the underlying rules and constraints pervading

the organization of brain networks. It is worth mentioning

that the exploratory strategies used in [72,73] are not exhaus-

tive; furthermore, we must emphasize that the accessibility

of the morphospace is dependent on the region in which

the exploration is initialized. Nonetheless, using Pareto-

optimality as a selection criterion facilitates morphospace

exploration, broadening the search directions and imposing

fewer constraints on the search process. Its power to explore

the morphospace resides in that it does not enforce network

evolution to approximate a particular point within the mor-

phospace nor does it require the definition of a global

objective function. Pareto-optimality is domain-independent

because it does not combine multiple objective functions

into a single global metric; instead, it determines whether a

solution can improve any of the objectives or not, regardless

of the metric used for each objective. Hence, the multi-

objective optimization is parameter-free and explores all

possible trade-offs between objectives [76].
3.4. Network growth models
Defining morphospace axes as the parameters of a network

growth model vastly simplifies the exploration of the space.

However, there are a couple of considerations that must be

taken into account during the morphospace analysis. First, as

it was pointed out previously, for every set of parameter

values, it is necessary to generate several instances of the

model (unless the model is deterministic). Then, the question

is, how to assign a representative topology to every point in

the morphospace, given that there are several different net-

works associated with each point in the space. The answer to

this question depends on the degeneracy of the parameters;

that is, how much variability exists in an ensemble of networks

generated by the same set of parameter values. On the one

hand, if a set of parameter values are highly degenerate, it

might be more appropriate to consider the distribution of a

set of structural measures, evaluated over the ensemble of

networks. On the other hand, if there are no significant
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degeneracies in the parameters, then one can either average

over all networks or choose a representative network such

that its similarity to all other networks is maximal.

A second question that comes up when using growth

models is how to locate real-world networks within the mor-

phospace. In other words, given a growth model, how does

one determine the parameter values that correspond to an

empirical network? Vértes et al. [78] used simulated anneal-

ing in various two-dimensional morphospaces in order to

estimate model parameters that best capture the topological

features observed in anatomically embedded brain networks.

Three different models were suggested to determine the

probability Pij of a functional connection between pairs of

cortical regions. The best fitting model consisted of two com-

peting terms, one penalizing costly connections, and a second

term favouring nodes that share nearest neighbours; each

term was associated with a parameter that regulates its

importance in determining the probabilities Pij. Simulated

annealing was used on an energy function that measures

the similarity between a network generated by the model

and empirical brain networks (figure 7).

In general, to estimate the parameters that best fit an

empirical network, any optimization process over an energy

(similarity) function may be used. Similar to parameter degen-

eracies, the energy landscapes can also suffer from such

degeneracies when two or more networks have equal energy

values (i.e. they are equally similar to the empirical network),

but exhibit significantly different topologies. However, the

use of generative models for morphospace analysis has the

power to shed light on the processes driving network
formation. Furthermore, an interesting and more informative

approach might be to use growth models in combination

with morphospaces whose axes are defined independently

by structural traits. Esteve-Altava et al. [79,80] have given a

first step in this direction by modelling tetrapod skulls as

networks of bones connected by sutures. In reference [80],

four skull network morphospaces are defined by two structu-

ral (morphological) traits, namely number of nodes (bones)

and number of connections (sutures). The four morphospaces

were explored independently, according to four growth

models that were used to generate networks in each morpho-

space. Each growth model generated networks in distinctive

regions of the morphospace, depending on the parameter

values of the model. For instance, parameter values that

produce disconnected networks, loops (self-connections) or

redundant connections define a restricted region of functionally

unviable skull topologies. Finally, by mapping a set of empiri-

cal skull networks onto the morphospaces the authors show

that a proximal constraint model [81] can better fit the empirical

data. Therefore, the authors conclude that this model is able

to explain the possible developmental processes underlying

the formation and evolution of tetrapod skull, in which

bones establish suture connections according to their pairwise

geometric distances.

The methodology used in reference [80] is interesting in

that (i) it provides a systematic mechanism to explore a mor-

phospace whose axes are defined by structural traits; (ii) the

exploratory processes highlight biologically plausible regions

(within the FPT regions), and enable the authors to test differ-

ent hypothesis about the underlying evolutionary and

developmental processes driving skull formation. Regarding

the analysis provided by this paper, there are two observations

worth noting. First, the proximity constraint model that pro-

vides the better fit of the empirical data is also, among the

four models tested, the only one that takes geometrical and

spatial considerations into account. Both these features are cru-

cial in the organization of any spatially embedded network,

such as skull networks. Therefore, it is not surprising that this

model yields a closer fit. Second, while the proximity constraint
model generates networks within a narrow, constrained

region of the morphospace that includes all empirical networks,

it should be noted that this assessment is only based on two

structural traits (number of nodes and connections) and that

other topological characteristics of the generated networks

have not been investigated and compared with the empiri-

cal networks. Hence, a more detailed investigation of the

morphospaces is required in order to assess the viability of a

generative model as a hypothesis for evolutionary and/or

developmental processes.

Using growth models in combination with optimization

methods to explore morphospaces whose axes are defined

by structural traits could be a more exhaustive method to

uncover distinct morphospace regions. As far as we know,

this kind of work has not been done previously, but

could be a promising future direction to apply network

morphospace analysis to the study of real-world networks.
4. Concluding remarks
This paper reviews the theoretical foundations and a number

of recent applications of the concept of ‘network morpho-

space’, based on ideas that were derived from the concept
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of theoretical morphospace used in the study of the evolution

of organismic morphology. Network theoretical morphos-

paces are a useful tool for classifying and mapping network

architectures according to a set of structural characteristics.

While there are a number of different approaches to try to

identify and classify key features of network structure, we

have seen that some of these approaches can be reformula-

ted in terms of a morphospace analysis. In addition, such

morphospace analysis does not only lead to a network classi-

fication, but it also provides information about the possible

factors driving the organization of network structure, how

certain structural features emerge and how such features

interact with each other.
It is worth noting that network morphospaces provide an

operational framework to study the evolution of interactions

in complex systems in a computational setting, through the

application of selection pressures that push systems along

one or several competing directions. In this way, in addition

to finding the place of our systems within the morphospace,

we are able to test how likely their presence is in particular

domains and ultimately how evolvable they are. Finally, the

most important application of morphospaces is that they

offer a framework to analyse real-world networks and try

to answer one of the most difficult questions of evolution

[82]: ‘why do networks look the way they do and not any

other way’?
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