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ABSTRACT: The Tp
Me2

Ir(III) complex 1-OH2 (Tp
Me2

 = hy-
drotris(3,5-dimethylpyrazolyl)borate) that, in addition to a 
labile molecule of water, contains an iridium-bonded alkenyl 
moiety –C(R)=C(R)− (R = CO2Me) as part of a benzo annu-
lated five-membered iridacycle, reacts readily with the con-
jugated dienes butadiene and 2,3-dimethylbutadiene to af-
ford the corresponding Diels-Alder products. Experimental 
and DFT studies are in accordance with an initial [4 + 3] 
cyclometallation reaction between the diene and the five-
coordinated 16-electron organometallic fragment 1 (generat-
ed from 1-OH2 by facile water dissociation). The reaction can 
be extended to a related TpIr(III) complex (Tp = hy-
drotris(pyrazolyl)borate) that feature also a labile ligand (e.g. 
2-THF). 

The Diels-Alder (DA) [4 + 2] cycloaddition, first reported in 
1928,

1
 is arguably one of the cornerstones of Organic Chemis-

try. The existence of different variants has allowed its appli-
cation to a myriad of synthetic processes and has inspired, 
from the early days of its discovery, numerous experimental 
and theoretical studies.

2
 Even if from a mechanistic point of 

view the [4 + 2] cycloaddition seems to be a simple reaction, 
an important breakthrough was the recognition of the accel-
erating effect caused by Lewis acids in hetero-DA reactions, 
as a consequence of their interaction with the heteroatom. 
Interestingly a recent study in this Journal has revealed a 
remarkable acceleration caused by a Li

+
 cation enclosed in a 

fullerene cage, on the reaction of the latter species with cy-
clohexadiene.

3
  

In this contribution, we wish to report on the striking reac-
tivity of butadiene and 2,3-dimethylbutadiene toward an 
iridium-alkenyl terminus, [Ir−C(CO2Me)=C(CO2Me)−], that 
is part of two different, five-membered Ir(III) metallacyclic 

complexes, namely , 1-OH2 

and , 2-THF (Tp
Me2

 = hy-

drotris(3,5-dimethylpyrazolyl)borate; Tp = hi-
drotris(pyrazolyl)borate, Chart 1; R = CO2Me). The outcomes 
of these reactions are DA products, but at variance with 
classical DA [4 + 2] cycloadditions, the success of our ap-
proach depends critically upon the facile generation of a 

vacant coordination site adjacent to the Ir-alkenyl linkage. As 
demonstrated by the experimental and DFT studies herein 
discussed, this allows for a [4 + 3] low-energy metallacy-
cloaddition path

4
 that greatly facilitates the formation of the 

DA adducts.  

Chart 1. Tp-type ligands used in this study. 

 

 

This reactivity clearly differs from other reactions experi-
enced by compound 1-OH2. Thus, recent work from our 
group

5
 dealt with the study of its reactivity toward α-olefins, 

R´CH=CH2 and for instance propene (R´= Me) reacted with 
1-OH2 to form (Scheme 1) the hydride-β-iridanaphthalene 
derivative 3, as a consequence of an iridium promoted pro-
pene-to-propylidene isomerization,

6
 followed by chemo- and 

stereo-selective carbene migratory insertion into the Ir−Caryl 
bond and α-H elimination. 

Scheme 1. Formation of the β-iridanaphthalene 3 
from the reaction of the aquo adduct 1-OH2 and pro-
pene 

  

In contrast with this result, the analogous reaction of 1-OH2 
and butadiene yielded, under similar conditions (Scheme 2), 
not the expected allyl substituted β-iridanaphthalene related 
to 3, but a 7:3 equilibrium mixture of two isomeric species 4 
and 5, which were readily separated by chromatography on 
silica gel. All new compounds reported herein have been 
satisfactorily characterized by the usual techniques which 
included in many cases single-crystal X-ray crystallography 
(see SI). 

Scheme 2. Reaction of complex 1-OH2 with butadiene  
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As represented in Scheme 2, complex 4 is the DA adduct of 
the diene and the alkenyl moiety of the iridacycle 1-OH2, in 
which the newly created C=C double bond has displaced the 
labile water ligand, whereas 5 is a closely related species that 
derives formally from 4 by olefin dissociation and β-H elimi-
nation.  

The stereochemistry of compound 4 is coherent with butadi-
ene attacking the [Ir−C(R)=C(R)−] part of the metallacycle 
along the triangular face of the octahedron opposite to that 
occupied by the ancillary Tp

Me2
 ligand. Hence, an active role 

of the metal center in the reaction requires dissociation of 
the labile molecule of water. Indeed, in favor of such a role is 
the observation that the related carbonyl adduct 1-CO, that 
would be electronically more favorable to undergo a classical 
[4 + 2] cycloaddition, but is reluctant to experience CO dis-
sociation, did not react with butadiene even after prolonged 
heating at 120 ºC in benzene, even if the expected product 
could be prepared by carbonylation of 4 under milder condi-
tions (Scheme 3). 

Scheme 3. Two possible approaches to the synthesis 
of complex 6  

 

As further compelling evidence for the key role of the un-
saturated Ir(III) center in the formation of 4, it should be 
mentioned that the indene compound 7, which contains a 
CH2 group isolobal with the [Tp

Me2
Ir(R)(R´)] fragment of 1, 

undergoes the DA cycloaddition with butadiene
7
 only under 

the much harsher conditions specified in Scheme 4. 

Scheme 4. Formation of the DA adduct 8 by the reac-
tion of the indene 7 with butadiene   

 

To gain further information on the mechanism of the reac-
tion of 1-OH2 with butadiene, a kinetic investigation was 
performed employing an excess of the diene, whose results 
were in agreement with dissociation of H2O being rate de-
termining (CD2Cl2, 30 ºC, see Figure S1, SI). This proposal is 
in accordance with the observation that 1-OH2 reacts with 
propene (Scheme 1) and butadiene (Scheme 2) under very 
similar reaction conditions, as well as with previous studies 
from our group based on related [Tp´Ir(R)(R´)L] complexes 
with labile ligands L, like N2.

8
 

DFT calculations (wB97xD
9
/6-31+G(d,p) and lanl2dz) were 

also carried out using the simplified system shown in Chart 2 
(butadiene + iridacycle 2 without fused benzene, parent Tp 
and unsubstituted butadiene).  

Chart 2. Simplified system used for DFT calculations. 

 

These studies led to the mechanism depicted in Scheme 5, 
with transition state TS-1 connecting 1 and the alkylidene 
intermediate A,

10 
which corresponds to a [4 + 3] cycloaddi-

tion.
11
  

Scheme 5. Proposed mechanism (DFT) for the for-
mation of the equilibrated mixture of complexes 4 
and 5 

 

Detailed calculations with the model system of Chart 2 (Fig-
ure 1), failed to locate a transition state for a [4 + 2] cycload-
dition and energy scans (PES) for such a process suggested 
that the energy barriers would be larger than 40 kcal·mol

-1
. It 

was the examination of the frontier orbitals of the metal 
fragment which led to a [4 + 3] cycloaddition mechanism, 
with participation of Ir, for which a transition state, TS-1, was 
found (Figure 1 and Scheme 5). The energy barrier (Zero-
Point-corrected Energy in the gas phase) associated with the 
formation of A

12
 from 2·η

2
-cis-C4H6 is 19.6 kcal·mol

-1
. An 

electronic description of this step based on localized orbit-
als

13
 can be found in the Supplementary Information.  

 

Figure 1. DFT-calculated Zero Point-Corrected Energy pro-
file for the formation of 5C and 4C. Fragments of relevant 
DFT-optimized structures are also shown. Subscript C indi-



 

cates calculated species without an experimental counter-

part. Energy values are relative to 2·
2
-C4H6. 

Migratory insertion of the electrophilic alkylidene of A into 
the Ir−CH2 bond has a barrier of 14.5 kcal·mol

-1
 and affords 

the tertiary alkyl derivative B, stabilized by a β-agostic C−H 
interaction.

14
 B is the common intermediate from which the 

reaction products arise. In a kinetically controlled, almost 
barrier-less and reversible process, the β-C−H activated bond 
of B completes the transfer of its agostic hydrogen atom to 
iridium with formation of the hydride product 5C (a model 
for experimental species 5 and 10, see below). Notwithstand-
ing, B can also undergo cleavage of the weak agostic interac-
tion concomitant with a torsion of the cyclohexene ring that 
permits the stronger, thermodynamically preferred Ir-olefin 
coordination found in 4C (ΔE

‡
 = 12.2 kcal·mol

-1
 from B). In 

accordance with the experimental data (see below), the last 
step is more or less reversible depending on the nature of the 
organometallic and diene reagents under consideration. 
Thus the energy difference between the thermodynamic and 
kinetic products of the reaction with the smaller system 2 + 
butadiene (4C and 5C) is 11.9 kcal·mol

-1
, whereas the calculat-

ed (see SI) energy difference of the corresponding reaction 
products of the reaction with the real system 1 + butadiene (4 
and 5) is 1.7 kcal·mol

-1
, and the calculated overall barrier for 

the equilibrium 4 ⇌ 5 is 19.8 kcal·mol
-1
 (see Figure S8, SI). 

To study the scope of the newly discovered transition metal-
mediated reactions that lead to DA products, other related 
systems were investigated. The bulkier and more electron 
rich substituted diene 2,3-dimethylbutadiene, that usually 
undergoes faster DA cycloadditions than butadiene, reacted 
less cleanly with complex 1-OH2 to give the corresponding 
adduct 9 (Scheme 6a) in yields of ca. 60%. An isomeric hy-
dride related to 5 was not detected. Similarly, O´Connor’s 
complex, , 2-THF,

15
 which 

contains the less bulky, unsubstituted Tp ligand and a labile 
molecule of THF, reacted also with an excess of 2,3-
dimethylbutadiene to generate quantitatively (by 

1
H NMR) 

the corresponding hydride 10 and DA 11 products (Scheme 
6b), in sequential, well-differentiated chemical events (60 ºC, 
1 h and 20 h reaction times, respectively). Once again in 
agreement with rate-determining ligand dissociation (THF), 
the formation of complex 10 was clearly disfavored when 
THF was utilized as the reaction solvent (no reaction after 2 
h at 60 ºC). 

Scheme 6. Reaction of the complexes 1-OH2 (a) and 2-
THF (b) with 2,3-dimethylbutadiene  

 
a
The reaction was cleaner at 120 ºC. 

Compound 2-THF reacted with excess of butadiene under 
similar conditions (C6H6, 60 ºC), but the reaction yielded the 
butadiene adducts 2-η

2
-trans-C4H6 (Scheme 7) in the form of 

a 3:1 kinetic mixture of two diastereomers with both featur-
ing η

2
 coordination of a molecule of trans-C4H6 (NOESY 

evidence). Prolonged heating of this mixture at 100 ºC con-
verted these species into the desired DA adduct 12 (t1/2 = 20 
h), but no evidence for a hydride related to 5 could be ob-
tained.  

Scheme 7. Reaction of complex 2-THF with butadiene 
at different temperatures 

 

A final piece of information pertinent to the unprecedented 
reactivity reported in this paper concerns with the outcome 
of the reaction of complex 1-OH2 and cyclopentadiene, the 
diene par excellence in classical DA cycloadditions. Under 
experimental conditions identical to those of the butadiene 
and 2,3-dimethylbutadiene reactions, complex 1-OH2 com-
bined with C5H6 but generated the carbene complex 13 in-
stead of the corresponding DA adduct (Scheme 8a). There-
fore, C5H6 behaved as an olefin rather than as a diene and 
this result is of interest in its own right, as it represents a 
most notable example of a rarely observed olefin-to-
alkylidene rearrangement.

16
 In fact we have often proposed 

this type of isomerization to take place as an intermediate 
step in different reactions

17
 (see for instance Scheme 1 for the 

reaction of 1-OH2 with propene) but the alkylidene interme-
diate normally was not seen. The result reported in Scheme 
8a is probably due to steric hindrance, a hypothesis that is 
supported by DFT calculations.

18
 The same explanation could 

account for the lack of reactivity of complex 13 toward car-
bene migratory insertion even at high temperatures (120 ºC). 
A similar outcome was observed with the symmetrical relat-

ed iridacyclopentadiene , 

14-OH2,
19

 (R = CO2Me) (Scheme 8b). 

Scheme 8. Reaction of complexes 1-OH2 and 14-OH2 
with cyclopentadiene  

 

In conclusion, we have demonstrated that two different five-
membered Tp´Ir(III) metallacycles (Tp´ = symbolizes an 
anionic ligand of the tris(pyrazolyl)borate family), both con-
taining an [Ir−C(R)=C(R)−] (R = CO2Me) functionality and a 
labile co-ligand (H2O or THF), react with butadiene and 2,3-
dimethylbutadiene to give the corresponding Diels-Alder 
(DA) adducts as the main products. Experimental data and 
DFT calculations are in accordance with a [4 + 3] cyclometal-
lation process as the key step in the reaction path that leads 
to these products. 
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