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ABSTRACT 26 

There is a large generation of meat by-products, not only from slaughtering but also in 27 

the meat industry from trimming and deboning during further processing. This results in 28 

extraordinary volumes of by-products that are primarily used as feeds with low returns 29 

or, more recently, to biodiesel generation. The aim of this work was to review the state 30 

of the art to generate bioactive peptides from meat industry by-products giving them an 31 

added value. Hydrolysis with commercial proteases constitute the typical process and a 32 

variety of peptides result from such extensive proteolysis. This review focuses on the 33 

identification of a large number of peptides derived from the enzymatic hydrolysis of 34 

specific meat by-products and its characterisation for bioactivity.  The potential of some 35 

of the identified peptides to be used as bioactive supplements in foods has also been 36 

considered. 37 

 38 

 39 
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INTRODUCTION 46 

Meat industry annually produces tons of by-products that represent a cost for the meat 47 

processing sector as well as an important environmental problem. The generation of by-48 

products depends on tradition, culture, and religion of the production countries, but 49 

usually includes trimming, bones, blood, and skin (Nollet & Toldrá, 2011). Nowadays, 50 

industries are making a strong effort converting by-products and wastes into useful 51 

sources of both, edible and non-edible products, producing  valuable new products and 52 

functional ingredients with a significant added-value and/or a strong economic potential 53 

(Zhang, Xiao, Samaraweera, Lee & Ahn, 2010; Toldrá, Aristoy, Mora and Toldrá, 54 

2012). Fertilizers as well as biodiesel generation, pharmaceutics, and plastic or energy, 55 

would be the main non-edible use of by-products (Pearl, 2004; Ockerman and Basu, 56 

2004a,b). However, due to its strong technologic and economic potential, the 57 

development and application of edible uses for meat by-products is a current concern in 58 

the research community. In this sense, one of the most studied and promising lines is the 59 

production of protein hydrolysates, that may be used as flavor enhancers, emulsifiers, 60 

enhancers of water bonding capacity or nutrients to be added to foods since they 61 

constitute an excellent source of nutrients like essential amino acids, minerals and 62 

vitamins (Aristoy and Toldrá, 2011, Honikel, 2011, Kim, 2011; García-Llatas, Alegría, 63 

Barberá and Farré, 2011), and functional ingredients like bioactive peptides (Toldrá & 64 

Reig, 2011; Zhang, Xiao, Samaraweera, Lee, & Ahn, 2010).  65 

Science and innovation is helping the meat industry to add value to its meat by-products 66 

reducing the environmental damage but most important, converting them into products 67 

capable of covering all the processing and disposal costs (Toldrá, Mora & Reig, 2012). 68 

A diagram showing the main routes for generation of bioactives from meat by-products 69 
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is shown in Figure 1. This manuscript reviews the latest innovations to generate 70 

bioactive peptides from meat by-products giving them a high added value. 71 

 72 

BY-PRODUCTS TREATMENT THROUGH ENZYMATIC HYDROLYSIS FOR 73 

PEPTIDES GENERATION 74 

 75 

Meat by-products wastes (trimmings and mechanically recovered meat, collagen, blood) 76 

are, in general, very rich in proteins and thus, they constitute a good substrate for 77 

proteolysis. These proteins are subject to hydrolysis with specific commercial proteases 78 

like papain, bromelain, thermolysine, pronase or proteinase K (Vercruysse, Van Camp 79 

& Smagghe, 2005). Other commercial enzymes are Neutrase
®
, a metallo-protease from 80 

Bacillus amyloliquefaciens (4 hours at pH 7.0, 50ºC), Alcalase
®
 , a serine-protease from 81 

Bacillus licheniformis  (4 hours at pH 8.0, 50ºC) or crude enzyme extract from R. 82 

Clavata (4 hours at pH 8.0, 40°C). The hydrolysis reaction is usually carried out either 83 

in batch-fed reactors or in continuous reactors using ultrafiltration membrane. Once the 84 

desired degree of hydrolysis is reached, the product is then submitted to fractionation 85 

and partial purification through filtration and/or chromatographic techniques (Arihara, 86 

2006). A typical industrial production is schematised in Figure 2. As the enzymatic 87 

hydrolysis is usually intense, a large number of peptides are generated.  88 

Endogenous proteolytic activity may also contribute to the generation of peptides and 89 

free amino acids through proteolysis mechanisms (Toldrá, 2006). Meat by-products 90 

contain endogenous muscle enzymes like calpains and cathepsins that break proteins 91 

internally followed by the action of peptidylpeptidases that generate small peptides from 92 

the amino and carboxy termini (Arihara, 2006a; Sentandreu & Toldrá, 2007; Mora, 93 

Sentandreu, Koistinen, Fraser, Toldrá & Bramley, 2009).  94 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 

 

Some of the generated peptides are denominated bioactive peptides because they may 95 

be able to exert a determined health benefit to the consumer like antihypertensive 96 

activity (Arihara & Ohata, 2010). 97 

 98 

TYPES OF BIOACTIVITY IN THE GENERATED PEPTIDES 99 

 100 

Bioactive peptides usually contain between 3–20 amino acid residues and their 101 

bioactivities are based on their amino acid composition and location within the 102 

sequence of amino acids that form the peptide (Pihlanto-Leppala, 2001). They are 103 

inactive in the sequences of their parent proteins, but may be released through 104 

enzymatic hydrolysis (Kim et al., 1999; Lahl and Braun, 1994), by proteolytic enzymes 105 

during gastrointestinal digestion (Escudero et al 2010), during fermentations with 106 

generally recognised as safe (GRAS) bacteria such as Lactobacilli (Philanto et al., 2001) 107 

or during food processing (Arihara and Ohata, 2010). In order to exert a positive health 108 

effect, bioactive peptides must survive enzyme degradation in the gastrointestinal tract 109 

following consumption. Once liberated in the human body, bioactive peptides can affect 110 

numerous physiological functions. Depending on their amino acid sequence, they may 111 

be involved in biological functions including prevention of hypertension (ACE-I-112 

inhibitory and antihypertensive peptides), opioid agonists or antagonists, 113 

immunomodulatory, antithrombotic, antioxidant, anti-cancer, or antimicrobial activities.  114 

Bioactive peptides are able to inhibit the angiotensin I-converting enzyme (ACE), an 115 

enzyme that participates in the renin-angiotensin system where angiotensin I is 116 

converted into antiotensin II that constricts the arteries and, as a consequence, increases 117 

the blood pressure. So, the inhibition of ACE constitutes an efficient way to reduce 118 

blood pressure (Ahmed & Mugurama, 2010). This inhibitory activity can be measured 119 
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in vitro and in vivo but its effects may not be similar because bioactive peptides must 120 

reach the cardiovascular system in an intact form. This is not always achieved because 121 

the proteases in the human gastrointestinal tract might hydrolyse some peptides and 122 

reduce them to smaller inactive peptides. Another  drawback to exert its effect is the 123 

difficulty found in its absortion through the intestinal wall into the blood. In general, the 124 

bioactivity intensity is usually inversely correlated to the peptide length (Vermeissen, 125 

Van Camp & Verstraete, 2004). Therefore, it is necessary that peptides can inhibit ACE 126 

in vitro but also exert antihypertensive effect in vivo because then they can be object of 127 

the development of novel functional foods for preventing hypertension.   128 

Other activities of interest are the antioxidant activity, antimicrobial or opioid activity 129 

among others. The antioxidant peptides can be detected through their DPPH radical-130 

scavenging activity and reducing power. It is important  because such antioxidant 131 

activity may reduce the reactive oxygen species (ROS) and other free radicals present in 132 

the food that might produce oxidative damage to DNA, proteins, and other 133 

macromolecules such as lipids (Escudero, Mora, Fraser, Aristoy and Toldrá, 2013). The 134 

opioid peptides received such name because they have an affinity for an opioid receptor 135 

that may exert an effect on the nerve system (Guesdon, Pichon & Tomé, 2005).  The 136 

antimicrobial peptides are able to inhibit the growth of certain pathogen bacteria (Chan 137 

& Li-Chan, 2005).     138 

 139 

PEPTIDES GENERATION FROM SPECIFIC BY-PRODUCTS IN THE MEAT 140 

INDUSTRY 141 

 142 

Trimmings and cuttings 143 
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Trimmings are portions of meat remaining after the preparation of primal cuts from the 144 

carcass and include fat, gristles, and meat. They can also include mechanically 145 

recovered meat. Portions of the head meat, internal organs, major tendons, or ligaments, 146 

are not considered as trimmings. They are mainly obtained by removing the last traces 147 

of skeletal muscle meat from animal bones once the primal cuts that have been carved 148 

off manually in the deboning process.  149 

Despite the meat industry make a take care of trimmings and cuttings transforming them 150 

into secondary quality meat products such as hot dogs, these by-products are as good 151 

source for bioactive peptides as the primal cuts. In fact, a wide number of studies based 152 

on the bioactive peptides generation resulting from meat protein hydrolysis have been 153 

described. Antihypertensive activity is by far the most studied biological activity 154 

although antioxidant or antimicrobial peptides derived from muscular proteins have also 155 

been described. A wide variety of enzymes have been tested in these studies. As an 156 

example, porcine skeletal muscle proteins were hydrolysed by using eight proteases and 157 

ACE-inhibitory activity measured (Arihara et al., 2001). Among the digests, 158 

thermolysin showed the best inhibitory activity, and peptides MNPPK and ITTNP were 159 

isolated and identified as ACE-inhibitors with IC50 of 945.5 and 549 M, respectively. 160 

These peptides were tested in spontaneously hypertensive rats administering single oral 161 

doses, proving their in vivo antihypertensive activity (Nakashima et al., 2002). Another 162 

peptide RMLGQTPTK (44–52 position of troponin C) was purified from porcine 163 

skeletal troponin hydrolysed with pepsin and showed ACE-inhibitory activity Katayama 164 

et al (2003). It showed an IC50 of 34 M. Same authors digested myosin light chain 165 

extracted from Japanase domestic pork loin with pepsin enzyme, and measured the 166 

ACE-inhibitory activity of the digest. This study resulted on the isolation and 167 

identification of the octapeptide VKKVLGNP, with an IC50 of 28.5 M (Katayama et 168 
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al., 2007). On the other hand, antioxidant and free radical scavenging activities were 169 

tested in a papain hydrolysate of pork myofibrillar proteins (Saiga et al., 2003). From 170 

the isolated and identified peptides, DAQEKLE sequence showed the highest 171 

antioxidant activity. In another study, peptides DLYA, SLYA, and VW were tested in 172 

vitro and in vivo for their antioxidant activity showing anti-fatigue effect in 173 

spontaneously hypertensive rats (Arihara et al 2006). 174 

The industry of meat products is also an important producer of trimmings that would be 175 

an interesting source of ACE-inhibitory and antioxidant peptides as indicated through 176 

the studies carried out on dry-cured ham during the last decade.  In this sense, 177 

antihypertensive and antioxidant activities have been described in peptide fractions 178 

extracted from Spanish dry-cured ham (Escudero et al., 2012). In this study, fractions 179 

were tested for their antihypertensive activity in vitro and in vivo by measuring changes 180 

in systolic blood pressure (SBP) of spontaneously hypertensive rats as shown in Figure 181 

3, obtaining a decrease of 38.38 mmHg in one of the analysed fractions. Recent studies 182 

focused on the purification and identification of specific peptide sequences extracted 183 

from dry-cured ham pointed the potential of this product as a source of antihypertensive 184 

and antioxidant peptides (Escudero et al., 2013b; Escudero, Mora, Fraser, Aristoy, & 185 

Toldrá, 2013a). 186 

The in vitro simulation of pork meat proteins digestion with gastrointestinal enzymes 187 

such as pepsin, chymotrypsin, and pancreatin, as well as the in vivo test of the identified 188 

peptides, is necessary to know more data about their stability against digestive proteases 189 

as well as their absorption through the intestinal wall. In this respect, the stability of 190 

ACE-inhibitory activity of dry-cured ham peptides during processing and after in vitro 191 

digestion has been recently investigated (Escudero et al., 2014). Results indicate that 192 
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peptides preserve almost the same ACE inhibitory activity before and after applying 193 

diverse heating and time conditions, as well as simulated in vitro digestion with 194 

gastrointestinal proteases. 195 

 196 

Bones (Horn) 197 

Bones, horns, and hooves resulting from meat industry are mainly used as feed material, 198 

organic fertilisers, or soil. Very few studies have described the purification and 199 

identification of bioactive peptides from these by-products. In this respect, the 200 

antioxidant peptides QYDQGV, YEDCTDCGN, and AADNANELFPPN, have been 201 

identified from an aqueous extract of water buffalo horn, commonly used in Chinese 202 

medicine. Results showed that these peptides could reduce the DPPH radical and protect 203 

rat cerebral microvascular endothelial cells against H2O2-induced injury (Liu et al., 204 

2010).  205 

However, in the sector of marine by-products, backbones hydrolysed using different 206 

enzymes have been widely studied as a source of bioactive peptides, promoting human 207 

health and preventing chronic disease (Šližytė et al, 2009; Ravallec et al, 2001; and Kim 208 

et al., 2000). As an example, the antioxidant peptide VKAGFAWTANQQLS was 209 

purified and identified in a study where tuna backbone was hydrolysed using various 210 

proteases such as alcalase, a-chymotrypsin, neutrase, papain, pepsin, and trypsin (Je et 211 

al., 2007).  212 

Bones constitute one of the most important sources to obtain collagen and gelatin, 213 

which have been described as proteins containing biologically active peptides on their 214 

sequences, with promising health benefits for humans. 215 

 216 

 217 
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Collagen 218 

Collagen is the most abundant protein in vertebrates as it is the main fibrous protein 219 

constituent in bones, cartilages, and skin (Gómez-Guillén et al., 2011). Collagen is one 220 

of the most useful proteins used in pharmaceutical companies as it has been proved that 221 

orally administered collagen peptides have beneficial effects on bone metabolism. 222 

Regarding this, ingested collagen hydrolysates obtained from chicken legs have been 223 

described to improve bone mineral density in rat finding that exerts a beneficial effect 224 

on osteoporosis by increasing the organic substance content of bone (Watanabe-225 

Kamiyana et al., 2010). On the other hand, chicken bone collagen hydrolysates 226 

treatment might help to prevent atherosclerosis through their lipid-lowering effects as 227 

well as inhibiting expression of inflammatory cytokines (Zhang et al., 2010).  228 

Despite the nutritional value of collagen is very low because it is specially rich in non-229 

essential amino acids (Gly, Pro, and Hyp), it results a very important protein in food 230 

industry as a source of bioactive peptides. During the last years, many studies have been 231 

focused on the bioactive properties of collagen enzymatic hydrolysis prepared using 232 

different by-product sources and different enzymes. Typically, collagen hydrolysate 233 

peptides were produced from pig or bovine by-products, however, due to the incidence 234 

of mad cow disease, an increase in results coming from marine processing waste 235 

sources such as skin collagen has occurred (Alemán et al., 2013).  236 

Most of the studies about collagen peptides that are focused on their bioactive properties 237 

have dealt in their antioxidant and ACE-inhibitory activity. Thus, four antioxidant 238 

peptides were identified from hydrolysed porcine skin collagen obtained using different 239 

protease treatments. One of the antioxidative peptides, Gln-Gly-Ala-Arg, was 240 

synthesized and the antioxidant confirmed in vitro (Li et al., 2007). On the other hand, 241 

four peptides showing good in vitro and in vivo ACE- inhibitory activity against 242 
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spontaneous hypertensive rats were reported from chicken skin collagen hydrolysate 243 

obtained by treatment with an Aspergillus species derived enzyme (Saiga, et al, 2008). 244 

More recently, two ACE-I inhibitory peptides with sequences 245 

AKGANGAPGIAGAPGFPGARGPSGPQGPSGPP and 246 

PAGNPGADGQPGAKGANGAP, have been identified from bovine Achilles tendon 247 

collagen. Bacterial collagenase was used to hydrolyze the collagen and it was described 248 

that peptides retained 80% of ACE-I inhibitory activity after in vitro simulation of 249 

gastrointestinal tract (Banerjee & Shanti, 2012). 250 

 251 

Blood 252 

Blood is a body fluid that constitutes a rich protein by-product. It is composed of blood 253 

cells suspended in blood plasma, being the cellular elements red blood cells (also called 254 

erythrocytes) and white blood cells, including leukocytes and platelets. Plasma contains 255 

proteins such as fibrinogen, globulins and albumins (Bah et al., 2013). Albumin is the 256 

main protein in plasma, and is a key element in the regulation of fluid distribution, 257 

colloidal osmotic pressure and the transport of small metabolites in blood (Rondeau & 258 

Bourdon, 2011). Red blood cells are the most abundant cells in vertebrate blood and 259 

contain hemoglobin, an iron-containing protein. This protein facilitates the reversibly 260 

binding of oxygen increasing its solubility and transportation in blood. 261 

Blood represents up to 4% of animal weight and could become a problematic by-262 

product in meat industry due to the tons of blood generated and its high pollutant 263 

characteristics for the environment. The interest in searching new blood uses exists 264 

since the beginning of slaughterhouses. In fact, its high content in proteins makes blood 265 

useful in food industry to increase the final nutritional value of some foods, enhance 266 

water binding, and because of its emulsifying capacity (Ofori and Hsieh, 2011). 267 

http://en.wikipedia.org/wiki/Blood_cells
http://en.wikipedia.org/wiki/Blood_cells
http://en.wikipedia.org/wiki/Blood_plasma
http://en.wikipedia.org/wiki/Red_blood_cell
http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Platelet
http://en.wikipedia.org/wiki/Albumin
http://en.wikipedia.org/wiki/Hemoglobin
http://en.wikipedia.org/wiki/Iron
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 268 

Blood is mostly obtained from bovine and porcine sources and studies related with its 269 

value as generator of bioactive peptides used to be focused on the cellular fraction, 270 

specially hemoglobin cells, and the plasma fraction. 271 

Hemoglobin and plasma hydrolysates have been described to mainly exert 272 

antihypertensive, antioxidant, antimicrobial, and opioid activity. Some peptidic 273 

sequences showing these activities have been isolated and characterized using modern 274 

proteomic techniques. In this sense, peptides GFPTTKTYFPHF and VVYPWT, 275 

corresponding to the 34–46 fragment of the -chain and the 34–39 fragment of the 276 

chain of porcine hemoglobin, and obtained from a hydrolysate with pepsin enzyme, 277 

resulted to be ACE-inhibitory peptides, showing IC50 values of 4.92 and 6.02 M, 278 

respectively (Yu et al., 2006). Antimicrobial activity of peptides derived from 279 

hemoglobin chain is, by far, the most studied. Peptides 280 

TKAVEHLDDLPGALSELSDLHAHKLRVDPVNFKLLSHSLL, 281 

LDDLPGALSELSDLHAHKLRVDPVNFKLLSHSL, KLLSHSL, and LLSHSL, 282 

obtained from the hydrolysis of bovine-chain hemoglobin with pepsin, presented 283 

antibacterial activity against Kocuria luteus, Listeria innocua, Escherichia coli, and 284 

Staphylococcus aureus, as well as showed ACE inhibitory activity in an IC50 range from 285 

42.55 to 1,095 M (Adje et al, 2011). Catiau et al. (2011a) studied the minimal peptide 286 

sequence necessary to show antimicrobial activity when a digestion of bovine-chain 287 

hemoglobin with pepsin was done. Results showed that KYR, which was studied 288 

against five bacterial strains including Escherichia coli and Salmonella enteritidis as 289 

Gram-negative bacteria and Listeria innocua, Micrococcus luteus and Staphylococcus 290 

aureus as Gram-positive bacteria, was contained in all active peptides showing 291 

antimicrobial activity. Same authors did a similar work but studying bovine-chain 292 

javascript:void(0);
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hemoglobin and concluded with the sequence RYH as the minimal antimicrobial 293 

sequence of this protein (Catiau et al., 2011b). In previous studies, Daoud et al. (2005) 294 

isolated and purified an antimicrobial peptide with sequence 295 

VTLASHLPSDFTPAVHASLDKFLANVSTVL from -chain bovine hemoglobin by 296 

hydrolysis with pepsin. The peptide displayed antimicrobial activity against M. luteus 297 

A270, Listeria innocua, Enterococcus faecalis, Bacillus cereus, Staphylococcus 298 

saprophyticus and Staphylococcus simulans. In fact, a MIC of 38 M was reported 299 

against L. innocua and 76 M for the other bacterial species (Daoud et al., 2005). 300 

Nedjar-Arroume et al. (2006) identified three peptides corresponding to positions 107–301 

141, 137–141, and 133–141 fragments of -chain bovine hemoglobin, and 126–145 302 

from -chain, all of them showing antibacterial activity against Micrococcus luteus 303 

A270, Listeria innocua, Escherichia coli, and Salmonella enteritidis (Nedjar-Arroume 304 

et al., 2006). Same authors identified in another study with pepsin enzyme a total of 305 

thirty antibacterial peptides, and twenty-four and six of them derived from - and -306 

chains of hemoglobin, respectively (Nedjar-Arroume et al., 2008). More recently, Hu et 307 

al. (2011) identified a novel antimicrobial peptide derived from α-chain bovine 308 

hemoglobin sequenced as VNFKLLSHSLLVTLASHL. The peptide showed 309 

antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida 310 

albicans when assessed using the radial-diffusion plate assay (Hu et al., 2011). 311 

Many of the studies related to opioid peptides from meat-derived sources are based on 312 

blood hydrolysates. In fact, originally, hemorphins were isolated from enzymatically 313 

treated bovine blood. Brantl et al. (1986) isolated and determined the sequence of an 314 

opioid active tetrapeptide (YPWT) from bovine blood hydrolysed with gastrointestinal 315 

enzymes. During the past decades, a number of opioid active peptides containing this 316 

sequence have been reported such as LVVYPWT, LVVYPWTQR, and 317 
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LVVYPWTQRF, which were found to be relatively stable and are believed to interact 318 

with opioid receptors in the brain and cardiovascular system (Nyberg, Carlsson, & 319 

Hallberg, 2013; Collinder, Nyberg, Sanderson-Nydahl, Gottlieb-Vedi, & Lindholm, 320 

2005).  321 

Some studies about the antioxidant properties of porcine plasma protein hydrolysate 322 

have been published during the last decade, but no sequences of the responsible 323 

peptides have been described (Liu et al., 2009 and 2010; Xu et al., 2009; and Wang et 324 

al., 2008). 325 

 326 

FUTURE TRENDS 327 

There is a large variety of applications of meat by-products. Traditional applications are 328 

primarily human and animal foods. Other applications consist of rendered fat for 329 

cosmetics and chemicals and hides for leather. More recent innovations are related to 330 

the use of proteins taking profit of its technological properties or for improved 331 

nutritional properties, and the hydrolysis of proteins for the generation of peptides with 332 

biological activity. So, it is still necessary to analyze by-products for nutritional 333 

properties, in order to search for key active molecules in food and nutrition. This is 334 

basic when considering innovative value-addition for such meat by-products. 335 
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 668 

 Legends for the figures 669 

 670 

Figure 1.- Flow diagram of main routes for value-addition to meat by-products  671 

 672 

Figure 2.- Flow diagram for the generation of bioactive peptides through the enzymatic 673 

hydrolysis of edible meat by-products. 674 

 675 

Figure 3. - Fractionation of dry-cured ham extract on a Sephadex G-25 gel filtration 676 

column. Fractions were collected and assayed for in vitro ACE-inhibitory activity. For 677 

antihypertensive in vivo assay in the present study, fractions corresponding to an elution 678 

volume from 200 mL to 320 mL were pooled and named sample 1 (S1). The same 679 

procedure was followed for fractions corresponding to elution volumes from 325 mL to 680 

450 mL (S2) and those from 505 mL to 625 mL (S3). Reprinted from Escudero et al 681 

Meat Science, 2012, 91. 306-311 with permission from Elsevier.  682 
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