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Abstract

Topological phases have spurred unprecedented abilities for sound, light and matter engineering

and recent progress has shown how waves not only confine at the interfaces between topologically

distinct insulators, but in the form of zero-dimensional non-propagating states bound to defects

or corners. Majorana-like bound states have recently been observed in man-made Kekulé textured

lattices. We show here how the acoustic version of the associated Jackiw-Rossi vortex embodies

a topological pumping process, in which the spectral flow of corner states adiabatically merge

with the said Majorana-like state. Moreover, we argue how the chirality of the Kekulé vortex

additionally maps into a 2D quantum-Hall system comprising spatially separated sonic hotspots.

We foresee that our findings should provide novel exotic tools to enable contemporary control over

sound.
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Bloch bands in man-made crystals not only display forbidden and allowed regions of

wave propagation, but also embody the geometrical topology of eigenstates [1, 2]. More-

over, topological bulk bands manifest in surface and interface related properties through the

notion of the bulk-edge correspondence predicting boundary states via topological invariants.

These prominent attributes are responsible for a wealth of thriving frontier investigations

unveiling exotic defect-immune guiding of sound and mechanical vibrations [3–11]. Most

recently, phononic and photonic higher-order topological insulators (HOTIs) that sustain

zero-dimensional (0D) corner states in 2D and 3D systems, have been proposed as a coun-

terpart to topologically protected systems abiding by the bulk-edge correspondence. Along

this direction, many fascinating HOTI experiments have been constructed [12–18], among

which a deep-suwavelength topological lens was proposed capable of breaking the sonic

diffraction limit [19].

In contrast to HOTIs that support lower-dimensional states at their external bound-

aries, the Jackiw-Rossi vortex has shown capable to bind an exact zero mode within the

lattice-bulk [20–22]. Quantum mechanical systems in particular hold great promise for

these Majorana-zero modes as they appear highly promising for braiding-based topologi-

cal quantum computation [23–25]. Recently, a wealth of experimental efforts has sparked

curiosity among phononic and photonic researchers in the pursuit of a classical analogy [26–

29]. Based on a so-called Kekulé binding mechanism in artificially man-made macroscopic

lattices, equivalent zero modes of vibrations, sound or light have shown intriguing properties

for topological robust single-mode wave control and confinement. Interestingly, it has been

shown that such classical implementations of the Jackiw-Rossi binding mechanism facilitate

particle-hole symmetry counterparts, however, in the absence of the peculiar Majorana

self-conjugation relation.

In this article, we present the acoustic Jackiw-Rossi vortex in the framework of a topo-

logical pumping process. A topological pump is known to generate robust energy transfer

across a finite structure when its system parameters are adiabatically and cyclically varied,

as has been shown in recent exciting wave-based experiments [30–32]. These implemented

topologial pumps typically incorporate adiabatic modulation of the geometrical parameters,

which leads to a smooth crossing of propagating edge states from one boundary to the op-
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posite. Moreover, since corner states can be understood through the vectorial Zak phase,

it is not surprising that a 2D pumping process can push a corner state excitation into the

opposite corner through bulk-mode hybridization [33]. Latest experimental implementa-

tions of the Jackiw-Rossi vortex employ a Kekulé texture to artificially decorated lattices

that embody a winding process [26, 27]. Here, we show that the binding mechanism indeed

can be presented in terms of a pumping process encompassing the polar paramaters of the

Kekulé modulation, which leads to a sonic spectral flow during the adiabatic structural tun-

ing. Surprisingly, we find that the 0D states in finite crystals evolving from the adiabatic

pumping process incorporate corner states that spectrally flow in the form of the coveted

Majorana-like zero modes. Simply put, as opposed to the aforementioned findings reporting

on the spatial crossing of either edge or corner states, our reported evolution deals with the

merging of corner states into a non-propagating state that is bound to a topological defect.

Incorporating fractional and segmentations to the angular phase texture, further corrobo-

rates the pumping origin of our topologically robust sonic state. Finally, we show the ability

to engineer a distinct chirality as one desires, in which the Kekulé angular phase represents

a synthetic dimension of one-way flowing sound. In other words, the topological pumping

process of the Jackiw-Rossi vortex maps into a 2D quantum-Hall system comprising the well

known spatial separation of charges [34], in our case, according to the vortex handedness,

we obtain opposing heart-shaped sonic spots.

We begin the study by briefly revisiting the engineering of a Majorana-like zero mode

in a distorted sonic lattice by means of a multiple scattering theory (MST). In Fig. 1(a)

we depict the acoustic analogue of a Jackiw-Rossi vortex containing a man-made Kekulé

texture. As recently experimentally verified in Ref. 26, such vortex is readily designed by

tuning the acoustically rigid cylinder-radii in a position-dependent fashion, i.e.,

R(r) = R0 + δR(r) cos [K · r + φ(r)] , (1)

where R0 is the undisturbed radius, δR(r) denotes the radius variation, K and φ(r) stand

for the Kekulé wave vector and phase, respectively. The two position-dependent terms read:

δR(r) = ∆ tanh(r/ξ) and φ(r) = nθ, with ξ and n being the vortex radius and winding

number, respectively. This Kekulé texture is indeed a topological winding process that

encompasses the gapless core of the Jackiw-Rossi vortex, at which the triangular lattice
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FIG. 1. A sonic Jackiw-Rossi vortex hosting a Majorana-like zero mode at its core. (a) Schematic

of the Kekulé distorted lattice (n = 1), which illustrates the position dependent crystal variation.

The background color indicates the width of the spatial distribution of the Kekulé induced band

gap, which is exactly zero at the vortex core. The labels S and P indicate the excitation and probe

points, respectively. (b) Comparison between the calculated pressure spectra |P (Ω)| using both

FEM and MST predictions. Frequency ω is normalized to Ω = ωa/2πc, with c being the speed of

sound and a the lattice period. (c) The pressure field of the Majorana-like bound state [see P1 in

panel (b)] as obtained by multiple scattering simulations.

remains undistorted, i.e., δR(0) = 0. However, the targeted coiling φ(r) determines the

angular variation of the width that separates the acoustic valleys at the Γ point of the band

diagram. The coloured angular fingerprints of the bandwidth of this band gap, is clearly

seen in Fig. 1(a). Beyond the man-made winding, the Kekulé texture also encompasses a

radial component δR(r) [Eq. (1)] that is the responsible actor controlling the tightness of the

confined Majorana-like state. We employ a MST in order to predict the complex acoustic

interplay among the rigid cylinders of the Jackiw-Rossi vortex in response to a point source

[35]. In the simulations we selected the following geometrical parameters: R0 = 0.35d,

∆ = 0.15d, ξ = 2a, and n = 1, with the nearest neighbour spacing d = a/
√

3. Fig. 1(b)

depicts the calculated pressure spectra evaluated at point P of the schematic, illustrating

a remarkable agreement with FEM predictions. The winding-induced anisotropy of the

bandgap that we discussed in Fig. 1(a) is further corroborated through the angled pressure

state profile seen in Fig. 1(c), which was also calculated with the MST.

In what follows, we argue that the sonic Kekulé winding indeed embodies an adiabatic

pumping process in dependence of the polar Kekulé phase, in that the Majorana-like zero
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FIG. 2. Topological sound pumping of 0D bound states. Upper panels: The background periodic

lattices depict four uniformly Kekulé modulated structures with φ = π at various values of δR

according to the coloured background-columns (δR/d = 0.06, 0.09, 0.12, and 0.15). Centered at

r = 0 of the red coordinate system, we cut two rhombi that are capable to sustain topological corner

states denoted by C±. The magnifications of the rhombi terminations illustrate the same topology

surrounding the center-cylinder. The cyan border represents a hard-walled interface. Lower panel:

Spectral flow of the in-gap states when the Kekulé phase φ winds a full 2π period for four selected

values of δR, depicting the various manifestations of the bulk-corner correspondence. When δR→ 0

the bound states within the shrinking bandgap approach the Dirac frequency ΩD = 0.88.

mode smoothly evolves from the spectral pumping of corner states. The polar Kekulé

parameters, which include both φ(r) and δR(r), will serve as the corner stone behind the

pumping process. We extract these two parameters from the Jackiw-Rossi vortex, which

means we need to dismantle the actual vortex and its zero mode to elucidate the pumping

origin. The tearing down of the vortex is meant in way that we must gradually fix the radial

component of the Kekulé texture, i.e., δR = constant. Smoothly varying this fixed value

would correspond to several concentric circles, each of constant δR, drawn across the Jackiw-
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Rossi vortex in Fig. 1(a). However, we revive the zero mode by choosing finite rhombi that

will localize this mode at their corners instead. This procedure is indeed best captured by

a number of adiabatic spectral flows, each computed for constant values of δR, but as a

function of frequency and the Kekulé phase φ that is implemented in the rhombi geometry.

In other words, when smoothly varying both the angular and radial component of a Kekulé

texture in a finite geometry, its corner states will adiabatically merge with the Majorana-like

zero mode. This pumping process indeed constitutes a Cartesian representation of our polar

Jackiw-Rossi vortex, which is in stark contrast to waves pumped across a 1D lattice. To

cast this process within the framework of topological corner states and the afore discussed

Majorana-like states, we define the spatial origin of such 0D modes at the center-cylinder

of their triangular lattices. In doing this, we design the same geometrical topology for the

system depicted in Fig. 1(a) and the finite rhombi in Fig. 2. To elaborate on the significance

of this approach, we numerically compute the spectral flow of the 0D in-gap states of finite

rhombi made of the previously discussed triangular lattice of rigid cylinders. The spectral

flow maps the eigenvalues of a sonic rhombus as a function of the Kekulé phase φ. These

computations depict how the 0D modes emerge from the bulk-bands in dependence of the

angular Kekulé winding in the form of two in-gap residing corner states, denoted by C±

as seen in Fig. 2. The ± indicates that that two corner states contain opposing chirality

during the pumping process, which we will elaborate later. The adiabatic pumping process

gathers both Majorana-like and corner states under the same umbrella in that we further

must consider the radial component δR(r) of the cylinder radius modulation. Thanks to its

hyperbolic tangential component, as explained in the former, the radial variation approaches

zero at the cluster core in Fig. 1(a), at which the zero mode is pinned spatially. The spectral

flows of the corner states that are presented in Fig. 2 are computed against δR to underline

the second dimension of the adiabatic geometrical variation. Moving from right to left, i.e.,

when decreasing δR we immediately predict a narrowing of the topological bandgap, which

results in a smooth shift comprising the spectral winding of corner states C± towards the

Dirac frequency ΩD = 0.88, at which the Majorana-like bound state is fixed. In the upper

panel of Fig. 2, for the degenerate spectral flow of corner states (φ = π), we visualize

these 0D states that live at opposite corners, here shown for different values of δR. For

these particular geometrical parameters we depict the uniform triangular lattices in the

background from which the rhombi are cropped out. The vortex core is thus understood as
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an collective formation of corner states C− (C+) that wind in a clockwise (counter-clockwise)

manner with n = −1 (n = 1) through the adiabatic parameter φ(r). Thus the corner states,

as seen in the spectral flows, possess a handedness where the vortex and antivortex come

in pairs. Interestingly, one could consider the Kekulé winding parameter φ as the third

coordinate via a dimensional extension. To this end, the spectral flow maps exactly into the

gapless dispersion relation of chiral hinge states in C2zT invariant 3D topological crystalline

insulators [36, 37]. In other words, one-way polarized confined states along the hinges of

HOTIs find their counterpart in our Kekulé texture that adiabatically pumps the C± states

across the bulk and the bandgap with respect to their chiralities.

To additionally provide evidence that the Jackiw-Rossi vortex constitutes a topological

pumping process, we discuss how an incomplete 2π Kekulé phase φ(r) can suffice while

it still maintains the plenary adiabatic modulation. To address this effect, two groups of

simulations are performed for vortices of fractional winding numbers [see Fig. 3(a)] and

containing N uniform partitions [see Fig. 3(b)]. Except for φ(r), all parameters remain as

in Fig. 1. The fractional vortices in Fig. 3(a) contain a continuous but incomplete Kekulé

phase modulation, which does not span over the entire 2π range. For the fractional vortices,

the response spectra depicted in Fig. 3(a) clearly reveal their connection to the winding

number n. By gradually breaking the integer winding number into fractions, we see that the

bound state at ΩD gradually shrinks down to the critical point at n = 1/2, beyond which

the state ceases to exist. To unravel the significance of this threshold, we must return to

the former study that exemplified how topological pumping depicts an evolution process of

corner states ruled by the spectral flow. These states that confine within the bounds of

the Kekulé phase π/2 ≤ |φ(r)| ≤ π, which are depicted in Fig. 3(a), must self-similarly

reside within a nontrivial phase-zone (pink backgrund) as controlled by the structuring of n.

Hence, for n < 1/2 the adiabatic winding does not acquire a sufficiently large angular phase

accumulation to enter the spectral flow of corner states, which strongly corroborates that the

Majorana-like state originates from a topological pumping process. Next, as shown in Fig.

3(b), we conduct an additional study where the angular variation of φ(r) is segmented into

N (= 3, 4, 6) uniform partitions of equal phase intervals 2π/N . Instead of fractioning the

winding as we did in the former case, the present analysis constitutes a nonsmooth winding

(n = 1) with respect to the said rough segmentations. Intuitively, one would expect poor
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FIG. 3. Modulation of the angular Kekulé pumping parameter φ(r). (a) Computed pressure spectra

|P (Ω)| within the topological bandgap for vortices of fractional winding n. The division of the 2π

Kekulé cycle of the spectral flows is indicated by the shaded pink background. (b) Same as before,

now the vortex is segmented by N uniform partitions of equal Kekulé phase increments for n = 1,

as illustrated by the pie charts. An additional spectrum is computed comprising cylinder-radii

perturbations with δR = 0 within a defect zone of radius RD = 3d.

binding of topological vortices of few segments, but not only do we predict the usual bound

state at ΩD down to N = 3, it is further seen in Fig. 3(b) that symmetry-preserving defects

have close to no influence on the topologically protected pressure peak |P (Ω)|. Conclusively,

apart from multiple additional features appearing in the spectrum when defects are added

[Fig. 3(b)], once more it is confirmed that the Majorana-like states originate from a rather

versatile winding implementation.
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FIG. 4. Chiral engineering: we coalesce two semi-clusters each hosting a vortex of particular

handedness. Specifically, we combine two vortices of right-handed (n = 2 = 1 + 1) and left-handed

(n = −2 = −1 − 1) chirality. In addition, we construct a cluster constituting a combined vortex

and antivortex. (a) Plots depict the corresponding pressure spectra |P (Ω)|. As indicated by the

arrows in the insets, the symbols “−” and “+” label, respectively, a clockwise and counter-clockwise

2π phase winding in the corresponding semi-clusters. (b) The spatial pressure maps of the two

clusters of opposite vortex handedness display a spatial separation of the bound states in the form

of opposing heart-shaped hotspots, when excited at ΩD.

The adiabatic evolution of the spectrally flowing corner states as we discussed earlier,

projects the otherwise time-reversal symmetrical angular Kekulé texture φ(r) along the third

coordinate of HOTIs. Put differently, the handedness of our man-made Jackiw-Rossi vortices

finds it imminent counterpart in topologically protected one-way hinge states flowing along

the kz axis in momentum space. To shed more light on this similarity, we distinctively engi-

neer some vortices to enable the synthetic dimensional extension in question. As rendered
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in Fig. 4(a) we coalesce two semi-clusters with each having a full 2π winding. If a vortex

and an antivortex are combined, they cancel each other out as seen in the lower panel of this

figure and a bound state cannot be formed. From the chiral pumping process discussed in

Fig. 2, the spectral flows of two non-propagating corner states were characterized by their

respective vortex handedness. In order to probe them individually via the Majorana-like

state, we now consider a collective Kekulé winding among the two semi-clusters, i.e., n = 2

or n = −2, which in turn display identical pressure spectra as computed in Fig. 4(a).

Interestingly, we find that our man-made vortices bear a striking resemblance to the edge

states of a 2D Chern insulator where counterflowing chiral edge states are separated into

opposing ”lanes”, in that heart-shaped sonic hotspots are formed that orient with respect

to the chirality of the Kekulé winding as seen in Fig. 4(b).

In this article, we have gathered sonic zero-dimensional corner states and Majorana-like

bound states within the same framework of a topological pump. By imposing a so-called

Kekulé texture to artificial sonic lattices to craft a topological Jackiw-Rossi vortex, we un-

ravel its binding mechanism of a bound state through spectrally flowing corner states. The

chiral nature of the topological pumping process has been further enlightened by incorporat-

ing fractional and segmented winding and by arguing how spatially distinct acoustic hotspots

are formed, akin to the unidirectional characteristics of a 2D quantum-Hall insulator.
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