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Twisted bilayer graphene develops quasiflat bands at specific “magic” interlayer rotation angles through
an unconventional mechanism connected to carrier chirality. Quasiflat bands are responsible for a wealth of
exotic, correlated-electron phases in the system. In this Letter, we propose a mechanical analog of twisted
bilayer graphene made of two vibrating plates patterned with a honeycomb mesh of masses and coupled
across a continuum elastic medium. We show that flexural waves in the device exhibit vanishing group
velocity and quasiflat bands at magic angles in close correspondence with electrons in graphene models.
The strong similarities of spectral structure and spatial eigenmodes in the two systems demonstrate the
chiral nature of the mechanical flat bands. We derive analytical expressions that quantitatively connect the
mechanical and electronic models, which allow us to predict the parameters required for an experimental
realization of our proposal.
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Classical analogs of quantum electronic systems in acoustic
and mechanical settings offer a new and exciting perspective
on nontrivial electronic phenomena such as topological
insulating phases, topologically protected edge states, Weyl
and Dirac semimetallic phases, or Majorana bound states
[1–9]. An important appeal of these classical analogs is their
easy fabrication and tunability, typically much simpler than
for their electronic counterparts. They often reveal new and
unexpected effects in a classical context and deep connections
between very different physical systems [10].
A remarkable electronic effect that has to date received

little attention in the acoustic and mechanical context is flat-
band formation in twisted bilayer graphene (TBG). TBG is
composed of two graphene monolayers placed in direct
contactwith each other after rotating one of themby a certain
angle θ [11–14]. Each monolayer on its own possesses a
massless Dirac spectrum with a certain group velocity v0
around Dirac wave vectors �K [15,16]. The crystalline
moiré pattern produced by the interlayer rotation, Fig. 1(a),
was shown [11,17] to produce a θ-dependent suppression of
the velocity vðθÞ, even reaching vðθiÞ ¼ 0 at a series of so-
called magic angles θi¼1;2;… [12,13,18,19]. At these twist
angles, the TBGDirac cones collapse into quasiflat bands at
the half-filling Fermi energy. The mechanism behind flat-
band formation in the system is highly unconventional and is
not the result of exponential wave-function localization
(although algebraic localization at AA moiré region does
takes place [20]) but of carrier chirality and effective non-
Abelian gauge fields produced by the modulation of the
interlayer coupling [21,22]. The development of chirality-
driven quasiflat bands produces a rich phase diagram
of correlated electronic phases triggered by many-body

instabilities [23–28], which include Mott-insulating phases
[29,30], nonconventional superconductivity (possibly
related to that of cuprates) [30–33], strange-metal behavior
[34,35], and two-dimensional magnetism [30,31,36–39].
These correlated phases are experimentally found to emerge
at the firstmagic angle and are thus generally understood as a
nontrivial consequence of quasiflat-band formation.

FIG. 1. Mechanical analog of twisted bilayer graphene: two
vibrating plates of thickness h, density ρ, Young modulus E, and
Poisson ratio ν, patterned with a honeycomb lattice of Δm masses
(blue and red) and lattice constant a, and coupled across an elastic
medium of thickness d and YoungmodulusEd. Upon changing the
relative plate rotation angle θ, a moiré pattern of alternating AA/
AB/BA stacking alignments emerges, which modifies the group
velocity of out-of-plane (flexural) modes (W�). At specific
(“magic”) angles θi, the group velocity vanishes, and quasiflat
flexural bands develop. A possible realistic implementation
could use LiNbO3 plates and a rubber spacer, with h ≈ 1 μm,
ρ ≈ 4640 kg=m3, E ≈ 170 GPa, ν ≈ 0.25, Δm ≈ 5.8 ng,
a ≈ 24 μm, d ≈ 5 μm, and Ed ≈ 10 MPa. This yields the dimen-
sionless parameters γ ≈ 2.5, κ ≈ 30, and ΩD ≈ 6.3 (around
20 MHz) [see Eq. (4)] and a first magic angle at θ1 ≈ 1.6°.
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In this Letter, we propose a mechanical analog of TBG
consisting of two elastic plates, supporting flexural (out-of-
plane) vibrations. The plates are homogeneously coupled
across a thin elastic medium, and a honeycomb pattern
of pointlike masses is attached to each (see Fig. 1). We
demonstrate a strong modulation of the flexural wave group
velocity with the interplate rotation angle θ, and the emer-
gence of quasiflat flexural-mode bands at magic angles in
close correspondence with the electronic counterpart. We
showcase these effects by numerically solving the multiple-
scattering problem of flexural modes on the attached masses
as a function of θ. The freezing of flexural vibrations into
quasiflat bands happens at specific magic angles that in turn
depend on mechanical parameters. We also derive approxi-
mate analytical expressions that connect the mechanical
description of our system to the canonical electronic models
used for TBG, establishing a precise connection between the
two. Themapping allows us to directly compare the different
spatial structure of eigenstates in equivalent mechanical and
electronic systems. A realistic experimental implementation
of our proposal is possible, with an example of fabrication
parameters summarized in Fig. 1.
Structured double plates.—Consider flexural waves with

amplitudes Wl in two thin plates l ¼ � of uniform mass
density ρ, thickness h, Young modulus E, Poisson ratio ν,
and bending stiffness D ¼ Eh3=½12ð1 − ν2Þ�. The vibra-
tions of the two layers are elastically coupled locally by a
linear intermediate medium of thickness d and Young
modulus Ed. We structure each plate with a honeycomb
lattice of point masses represented by a mass density
perturbation δρlðrÞ on plate l (see sketch in Fig. 1). The
equation of motion governing flexural waves of small
amplitude W ≪ h in the system can be approximated by
two coupled Germain–Lagrange equations. In the fre-
quency ω domain, these read [40]

X

l0

��
hρω2 −D∇4 −

Ed

d

�
τll

0
0 þ Ed

d
τll

0
x

�
Wl0 ðr;ωÞ

¼ −hω2δρlðrÞWlðr;ωÞ: ð1Þ
Here, the Pauli matrices τx and τ0 act on the “layer” (plate)
index l. The rotation angle between layers enters the mass
density perturbation δρlðrÞ, which we write as

δρlðrÞ ¼
X

α¼A;B

X

rlα

Δm
Ach

δðr − rlαÞ; ð2Þ

where rlA;B ¼ n1al1 þ n2al2 ∓ ðal1 þ al2Þ=6 for integer n1;2
denotes the positions of the point masses Δm in layer
l ¼ �. The point masses form a honeycomb lattice with
Bravais vectors al1;2 ¼ aUðlθ=2Þ½� cosðπ=3Þ; sinðπ=3Þ� on
each layer l, with UðθÞ the relative rotation between
layers and a the honeycomb lattice period. Ac¼

ffiffiffi
3

p
a2=2

stands for the area of the honeycomb unit cell. For
our numerics, we restrict θ to commensurate rotations

θ¼ arccos½ð3m2þ3mþ1=2Þ=ð3m2þ3mþ1Þ� for some
integer m. Under this constraint the moiré pattern resulting
from overlapping the two plates is exactly periodic, with a
period Lm ¼ a=½2 sinðθ=2Þ�.
To compare the double plate system to TBG, it is useful

to recast Eq. (1) into a dimensionless form:
X
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0
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where we have introduced the dimensionless vibration
amplitude w ¼ ðD=a4ÞW and dimensionless constants

Ω2 ¼ a4hρω2

D
κ ¼ a4Ed

Dd
γ ¼ Δm

ρhAc
ð4Þ

Results.—Solving the eigenvalues Ω of Eq. (3) in wave
vector k space in the large angle regime [41], we obtain the
wave dispersions shown in Fig. 2. They are presented along
a cut ΓK−MKþΓ of the moiré Brillouin zone for three
distinct cases. The Kl Dirac wave vectors of the two layers
are located at K� ¼ Uð�θ=2Þð4π=3a; 0Þ. In (a) we show
the solution for a single plate l ¼ −. The dispersion clearly
shows the emergence of a Dirac cone at k ¼ K− (blue lines)
around Ω ¼ ΩD ≈ 6 when the mass lattice is added to the
plate [1,2]. Panel (b) shows the spectrum for two decoupled
plates (κ ¼ 0) with a relative θ rotation. The Dirac cone of
the second l ¼ þ plate (red lines) appears at momentum
k ¼ Kþ and crosses the one from the l ¼ − plate at the M
point. Finally, panel (c) shows the spectrum for the two
plates coupled by a finite plate coupling κ. An anticrossing
between the two Dirac cone emerges, producing a van
Hove singularity in the density of states of the system. This
is exactly the phenomenology predicted [11] and observed
[17] for TBG at not-so-small angles, θ ≳ 3°. Note, however,
that the formulation of the system model is very different
from that of TBG. In contrast to the wave equation Eq. (3),
TBG is usually described using the TBG continuum
Hamiltonian [14], which can be succinctly written as [21]

HðkÞ ¼

0
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Πþ t0ΩD VABðrÞ� VAAðrÞ�
VAAðrÞ VABðrÞ t0ΩD Π†

−

VBAðrÞ VAAðrÞ Π− t0ΩD

1
CCCA

Π� ¼ ðkx þ iky ∓ iΔK=2Þv0
ΔK ¼ jKþ − K−j ¼

4π

3a
2 sin

θ

2
¼ 4π

3Lm

Vα ¼
t⊥
3
½1þ eiG1ðr−rαÞ þ eiG2ðr−rαÞ�

rAAðrÞ ¼ 0; rAB ¼ −rBA ¼
�
Lmffiffiffi
3

p ; 0

�
: ð5Þ
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The TBG band structure ϵðkÞ≡ t0ΩðkÞ and the corre-
sponding eigenstates ψðkÞ are obtained from the eigenvalue
equation HðkÞψðkÞ ¼ ϵðkÞψðkÞ. The model exhibits the
explicit 4 × 4 pseudospin-layer structure of a bilayer
Dirac system, unlike the plate equation Eq. (3). The
parameters specific to this model are the energy scale
t0 ≈ 2.7 eV (intralayer hopping amplitude, or one third
of the monolayer bandwidth), the twist angle θ or period
Lm [which enters through the moiré momenta G1;2 ¼
ð2π=LmÞ½�ð1= ffiffiffi

3
p Þ; 1�], the Dirac velocity v0 of the

decoupled layers, the Fermi energy at half-filling t0ΩD,
and the interlayer hopping t⊥ [whose moiré-induced
modulation in the plane is captured by the VαðrÞ functions].
t⊥ plays a role analogous to κ in the coupled plates,
although in the latter the coupling is spatially uniform. The
above TBG model neglects any particle-hole asymmetries
in the decoupled layers around the Dirac point, which
would arise in particular from finite next-nearest-neighbor
hoppings in plane. It also assumes negligible layer strains
and identical Vα coefficients. Both conditions are some-
times relaxed in more elaborate versions of the model.
We can formally connect the mechanical and electronic

models analytically. The resulting mapping is valid to
second order in the effective plate coupling κ=jaKj4. The
starting point is a projection of the plane wave basis into a
“tight-binding” basis of flexural modes spatially localized
at the point masses on each layer. By carefully integrating
out the remaining plate vibrations between scatterers in
Eq. (3), the continuum TBG model of Eq. (5) emerges for
frequencies close to the Dirac point and small couplings κ.
The detailed derivation is presented in full in the
Supplemental Material [41]. Here we present only the final

result connecting the plate parameters in Eq. (4) to the
equivalent TBG parameters in Eq. (5),
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a2jKj2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3γ
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ð7Þ

t⊥ ≈ t0
κ

2jaKj2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3γ

p : ð8Þ

This mapping can be used to obtain a TBG model
equivalent to a given double-plate model. The green lines
in Fig. 2 show the precision of the mapping at large angles.
Deviations between the two are attributed to Oðκ2Þ and
particle-hole asymmetry corrections.
We now demonstrate that, as suggested by the above

mapping, the structured double plates indeed develop flat
bands as the angle θ is reduced, just like TBG. Figure 3(a)
shows the moiré superlattice and normalized band structure
of the double plate and corresponding TBG systems, as the
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FIG. 2. Band structure of vibrating plates. Dirac cones in the
normalized band structure ΩðkÞ of a single patterned plate (a), two
decoupled (κ ¼ 0) but rotated (m ¼ 5, θ ≈ 6°) plates (b), and two
coupled (κ ¼ 20) and rotated plates (c). Red and blue denote
eigenvalues mostly concentrated on the top and bottom layers,
whose respective Dirac points are located at K�. The anticrossing
at the M point forms a van Hove singularity. In green is the
normalized band structure of the equivalent graphene counterparts.
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FIG. 3. Flat bands at magic angles in vibrating plates. (a) Flat-
band formation as the angle is decreased toward the first magic
angle for a double plate system with γ ¼ 2.5 and κ ¼ 30 (blue),
and the equivalent TBG system (green). (b) Evolution of group
velocity v at the Dirac point with twist angle θ, normalized to the
Dirac velocity v0 of decoupled layers. The angles with vanishing
velocity define so-called magic angles θn. For the chosen
parameters, θ1 ¼ 1.61°.
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angle θ decreases from θ ¼ 7.34° (commensurate index
m ¼ 4) to θ ¼ 1.61° (m ¼ 20). The latter corresponds
approximately to the first magic angle θ1 for plates with
κ ¼ 30, γ ¼ 2.5, which corresponds to a TBG with t⊥ ¼
0.79 eV (quite larger than in real TBG, which has t⊥ ≈
0.48 eV and a first magic angle at m ≈ 31; θ ≈ 1.05°.) As θ
approaches θ1, theM-point band anticrossing grows, flattens
the Dirac cones, and reduces the Dirac-point group velocity
vðθÞ. At precisely θ ¼ θ1 [rightmost panel in Fig. 3(a)] the
Dirac cones collapse into a quasiflat band with exactly zero
group velocity. Reducing the angle further leads to repeated
reemergences and collapses of theDirac cones at subsequent,
higher-order magic angles θi. The corresponding non-
monotonous vðθÞ is shown in Fig. 3(b), both for the double
plate (blue) and TBG (green). Both results are very similar,
with deviations again attributed to higher-order coupling
corrections and particle-hole asymmetries.
We finally compare the spatial profile of the correspond-

ing plate modes to their electron eigenstate counterparts. In
magic-angle TBG, the wave function of flat-band electrons
is predicted to be algebraically localized around AA for all
momenta away from the Γ point [20]. The fact that the
states are not exponentially localized is a remarkable
feature that highlights the nontrivial chirality-driven nature
of the flat-band mechanism in this system. In Fig. 4, we
compare the spatial profile of eigenmodes in twisted double
plates and TBG.

At twist angles above the first magic angle, the graphene
eigenstates exhibit the first hints of AA-region localization.
Fig. 4(a) shows an enlargement of the bands at θ ¼ 3.15°
(m ¼ 10) in TBG. On their right, we show a selection of
eigenstate top-layer densities summed over sublattices for
the wave vectors marked with colored circles. States at the
K and M points (yellow and purple dots, respectively)
exhibit maxima at the AA regions (center of the hexagonal
unit cell). At the Γ point, however, the states have a
different character. If we select a single Γ state belonging to
the red subband (red dot), it exhibits a minimum at AA.
However, in the simplest version of the continuum model
used here, Γ-point states are triply degenerate. If we plot the
total spatial density from the three states (blue dot), the AA
minimum is washed out.
The corresponding behavior of WþðrÞ in the double-

plate system, Fig. 4(b), is very similar. The main
difference is a lack of energy symmetry around the
Dirac point and, notably, a much richer spatial structure
present in the eigenmodes, which, unlike for graphene, is
well defined throughout the honeycomb unit cell (not
only at tight-binding atomic sites). This results in
an intricate fast modulation in the moiré supercell
that reveals the chiral character of some states (e.g.,
red dot). The slow envelope of the different eigen-
modes, however, quantitatively replicates their graphene
counterparts.

(a) (c)

(d)(b)

FIG. 4. Low energy (frequency) bands and spatial profile of selected eigenmodes (colored dots) for TBG (a),(c) and the analogous
vibrating plate system (b),(d). Twist angles are taken at m ¼ 10 (a),(b) and at the first magic angle m ¼ 20 (c),(d). Dimensionless
parameters are κ ¼ 40 and γ ¼ 2.5.
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At the first magic angle in graphene (m ¼ 20 here), the
AA localization within the flat part of the band becomes
fully developed [see yellow and purple states in Fig. 4(c)]. Γ
states (red and blue) are still far less localized and remain
triply degenerate. This is markedly different in the plate
system. A true gap opens asymmetrically around the flat
band, which no longer connects with higher-frequency bands
at Γ. All states away from Γ are again algebraically localized
at AA (blue dot). At Γ there are several nondegenerate states
close in frequency, exhibiting varying forms of spatial
structure, including AA localization (green dot).
Conclusion.—Our results demonstrate that the chirality-

driven flat-band formation mechanism of TBG can be
realized in a classical system of patterned vibrating plates
(see Fig. 1). We derived a quantitatively precise mapping
between the graphene-based and mechanical systems and
demonstrated a very similar modulation of group velocity
with twist angles and spatial eigenmode profiles in both.
The differences in spectral properties are mostly due to
(a) the increased number of spatial degrees of freedom in
the plate as compared to the tight-binding graphene models,
and (b) the simplified form of the graphene model, which
here does not incorporate perturbations that break particle-
hole symmetry and Γ-point degeneracies. The exploration
of the magic angle sequence and velocity modulation of
TBG using the mechanical double-plate analog would
allow far easier parameter uniformity and control than in
TBG. Mechanical analogs could not only help shed light on
the rich TBG physics but would also enable ultrasonic
devices for slow-sound operations and rf signal buffering.
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Note added.—While this paper was being finalized for
publication, a preprint of another work [43] was posted
online, with a study of flat bands and magic angles in
acoustic analogs of twisted bilayer graphene.
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