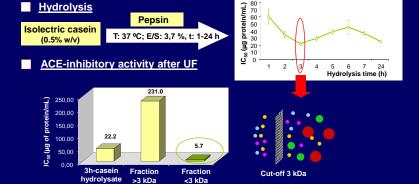


antihypertensive activity

M. M. Contreras¹, B. Gómez-Sala², R. Carrón³, M.A. Sevilla³, M.J. Montero³, L. Amigo¹, M. Ramos¹, I. Recio¹

- ¹ Instituto de Fermentaciones Industriales (CSIC). Juan de la Cierva 3, 28006 Madrid, Spain.
- ² Innaves, S.A. Department of Research and Development. Pasarela, 142, Polígono Industrial, A Granxa, Porriño, Pontevedra, Spain.
- ³ Dpto. de Fisiología y Farmacología. Facultad de Farmacia. Universidad de Salamanca, 37007 Salamanca, Spain.

Introduction

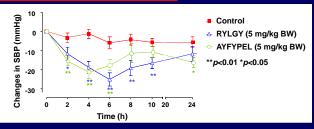

The production of foods with antihypertensive activity has particular interest given the important role of diet in the prevention and treatment of hypertension. Enzymatic hydrolysis using one or a combination of food-grade enzymes can be a cheap and reproducible alternative to fermentation for the production of antihypertensive peptides.

Objective:

To identify active peptides from a enzymatic hydrolysate of bovine casein with the aim of producing a novel food ingredient based on this hydrolysate.

Laboratory-scale

Identification of antihypertensive peptides



Identification of peptides included in the most active fractions by RP-HPLC-MS and MS/MS

Determination of ACE-inhibitory activity and ORAC-FL

Fraction	Casein fragment	Sequence	IC ₅₀	ORAC-FL
			(μM)	(μmol Trolox/ μmol peptide)
F3	α _{S1} -CN f(90-94)	RYLGY	0.71	2.83
	α _{S2} -CN f(89-95)	YQKFPQY	20.08	2.03
F5	α _{S1} -CN f(143-149)	AYFYPEL	6.58	3.22
	α _{S1} -CN f(24-31)	FVAPFPEV	475.89	< 0.03
F6	β-CN f(134-140)	HLPLPLL	34.40	0.06
	α _{S1} -CN f(25-32)	VAPFPEVF	362.50	0.05

Antihypertensive activity

CONCLUSIONS

Casein hydrolysis with pepsin leads to the formation of antihypertensive peptides. Peptide RYLGY is one of the most potent ACE-inhibitors identified from food proteins (IC₅₀, 0,71 μ M).

RYLGY and AYFYPEL had antihypertensive activity in SHR, and was comparable to VPP.

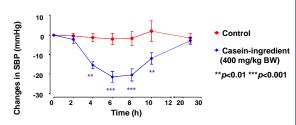
Hydrolysis was successfully scaled-up, and antihypertensive activity of the casein-ingredient was confirmed in SHR.

The casein-ingredient was well incorporated into yogurt, and antihypertensive peptides remained stable in yogurt during storage at 4 °C.

Production at large-scale

Preparation of casein hydrolysate

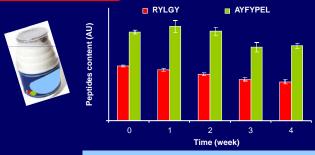
- Casein
- Water
- Enzyme


Tank 140 L-1500 L

Spray- /Freeze-drying

- High content in antihypertensive peptides
- Comparable IC₅₀ value
 Good reproducibility
- The second secon

Antihypertensive activity in SHR



Incorporation into food matrix

Casein-ingredient was incorporated into yogurts and stored at 4 °C for a month.

The peptides content was quantified in WSEs by RP-HPLC-MS.

Shelf life at 4 °C

<u>Clinical studies</u> are being carried out to evaluate the antihypertensive action of casein hydrolysate in humans.

References

- Contreras et al. (2009). Int. Dairy J. 19, 566-573
- Miguel et al. (2009). Food Chem. 112, 211-214

Acknowledgements

AGL2007-65035; AGL2008-01713; CENIT-DEV-MET-FUN; CONSOLIDER INGENIO 2010 FUN-C-FOOD CSD 2007-063; CAM S-0505/AGR/0153