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Abstract

Background: Dynamic modelling is one of the cornerstones of systems biology. Many research efforts are currently
being invested in the development and exploitation of large-scale kinetic models. The associated problems of
parameter estimation (model calibration) and optimal experimental design are particularly challenging. The
community has already developed many methods and software packages which aim to facilitate these tasks.
However, there is a lack of suitable benchmark problems which allow a fair and systematic evaluation and comparison
of these contributions.

Results: Here we present BioPreDyn-bench, a set of challenging parameter estimation problems which aspire to
serve as reference test cases in this area. This set comprises six problems including medium and large-scale kinetic
models of the bacterium E. coli, baker’s yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells,
and a generic signal transduction network. The level of description includes metabolism, transcription, signal
transduction, and development. For each problem we provide (i) a basic description and formulation, (ii)
implementations ready-to-run in several formats, (iii) computational results obtained with specific solvers, (iv) a basic
analysis and interpretation.

Conclusions: This suite of benchmark problems can be readily used to evaluate and compare parameter estimation
methods. Further, it can also be used to build test problems for sensitivity and identifiability analysis, model reduction
and optimal experimental design methods. The suite, including codes and documentation, can be freely
downloaded from the BioPreDyn-bench website, https://sites.google.com/site/biopredynbenchmarks/.

Keywords: Dynamic modelling, Model calibration, Parameter estimation, Optimization, Benchmarks, Large-scale,
Metabolism, Transcription, Signal transduction, development

Background
Systems biology aims at understanding the organiza-
tion of complex biological systems with a combination
of mathematical modelling, experiments, and advanced
computational tools. To describe the behaviour of com-
plex systems, models with sufficient level of detail to
provide mechanistic explanations are needed. This leads
to the use of large-scale dynamic models of cellular
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processes [1]. By incorporating kinetic information, the
range of applications of biological models can be widened.
The importance of kinetic models is being increasingly
acknowledged in fields such as bioprocess optimization
[2], metabolic engineering [3], physiology, as well as cell
and developmental biology [4].
Systems identification, or reverse engineering, plays an

important part in the model building process. The dif-
ficult nature of reverse engineering was stressed in [5],
where the different perspectives that coexist in the area
of systems biology were reviewed. Specifically, large-scale
dynamic biological models generally havemany unknown,
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non-measurable parameters. For the models to encapsu-
late as accurately as possible our understanding of the
system (i.e. reproducing the available data and, ideally,
being capable of making predictions), these parameters
have to be estimated. This task, known as parameter
estimation, model calibration, or data fitting [6-10], con-
sists of finding the parameter values that give the best fit
between the model output and a set of experimental data.
This is carried out by optimizing a cost function that mea-
sures the goodness of this fit. In systems biology models
this problem is often multimodal (nonconvex), due to the
nonlinear and constrained nature of the system dynam-
ics. Hence, standard local methods usually fail to obtain
the global optimum. As an alternative, one may choose a
multistart strategy, where a local method is used repeat-
edly, starting from a number of different initial guesses
for the parameters. However, this approach is usually not
efficient for realistic applications, and global optimization
techniques need to be used instead [11,12].
Many methods have been presented for this task, but

less effort has been devoted to their critical evaluation. It
is clear, however, that to make progress in this research
area it is essential to assess performance of the differ-
ent algorithms quantitatively, in order to understand their
weaknesses and strengths. Furthermore, if a new algo-
rithm is to be accepted as a valuable addition to the
state of the art, it must be first rigorously compared
with the existing plethora of methods. This systematic
comparison requires adequate benchmark problems, that
is, reference calibration case studies of realistic size and
nature that can be easily used by the community. Sev-
eral collections of benchmarks – and of methods for
generating them – have already been published [13-19].
An artificial gene network generator, which allows to
choose from different topologies, was presented in [13].
The system, known as A-BIOCHEM, generates pseudo-
experimental noisy data in silico, simulating microarray
experiments. An artificial gene network with ten genes
generated in this way was later used to compare four
reverse-engineeringmethods [15].More recently, a toolkit
called GRENDEL was presented with the same purpose
[17], including several refinements in order to increase
the biological realism of the benchmark. A reverse-
engineering benchmark of a small biochemical network
was presented in [14]. The model describes organism
growth in a bioreactor and the focus was placed on
model discrimination using measurements of some intra-
cellular components. A proposal for minimum require-
ments of problem specifications, along with a collection
of 44 small benchmarks for ODE model identification
of cellular systems, was presented in [16]. The collec-
tion includes parameter estimation problems as well as
combined parameter and structure inference problems.
Another method for generation of dynamical models

of gene regulatory networks to be used as benchmarks
is GeneNetWeaver [19], which was used to provide the
international Dialogue for Reverse Engineering Assess-
ments and Methods (DREAM) competition with three
network inference challenges (DREAM3, DREAM4 and
DREAM5) [18]. Subsequent competitions (DREAM6,
DREAM7) included also parameter estimation challenges
of medium-scale models [20]. Similar efforts have been
carried out in related areas, such as in optimization, where
BBOB workshops (Black-Box Optimization Benchmark-
ing, [21]) have been organised since 2009. In this context
it is also worth mentioning the collection of large-scale,
nonlinearly constrained optimization problems from the
physical sciences and engineering (COPS) [22].
Despite these contributions, there is still a lack of suit-

able benchmark problems in systems biology that are at
the same time (i) dynamic, (ii) large-scale, (iii) ready-
to-run, and (iv) available in several common formats.
None of the above mentioned collections possesses all
these features, although each one has a subset of them.
Here we present a collection of medium and large-scale
dynamic systems, with sizes of tens to hundreds of vari-
ables and hundreds to thousands of estimated parameters,
which can be used as benchmarks for reverse-engineering
techniques. The collection includes two Escherichia coli
models [23,24], a genome-wide kinetic model of Saccha-
romyces cerevisiae [25], a metabolic model of Chinese
Hamster Ovary (CHO) cells [26], a signal transduction
model of human cells [27], and a developmental gene
regulatory network of Drosophila melanogaster [28-30].
Ensuring standardisation allows systems biology models

to be reused outside of their original context: in differ-
ent simulators, under different conditions, or as parts of
more complex models [31]. To this end, we have made
five of the six models (the exception is the spatial model
of D. melanogaster) available in Systems Biology Markup
Language (SBML [32]) format, allowing for their simu-
lation in multiple software tools, including AMIGO [33]
and COPASI [34]. Even when defined in a standard for-
mat such as SBML, large models such as the genome-wide
kinetic model of S. cerevisiae may give different results
when simulated in different software environments. The
inherent size and stiffness of genome-scale systems biol-
ogy models create new challenges to be addressed for
their robust simulation by systems biology tools [25]. To
address this problem all the models have been consis-
tently formatted, with their dynamics provided both in C
and in Matlab. Additionally, a benchmark consisting of a
parameter estimation problem has been defined for every
model, for which ready-to-run implementations are pro-
vided in Matlab (optionally with the use of the AMIGO
toolbox [33]) and, in some cases, also in COPASI [34]. The
availability of ready-to-run implementations is a highly
desirable practice in computer science, since it ensures
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reproducibility of the results. Calibration results with state
of the art optimization methods are reported, which can
serve as a reference for comparison with new method-
ologies. Additionally, suggestions on how to compare the
performance of several methods are also given in the
Results and discussion section.

Problem statement
Given a model of a nonlinear dynamic system and
a set of experimental data, the parameter estimation
problem consists of finding the optimal vector of deci-
sion variables p (unknown model parameters). This vec-
tor consists of the set of parameter values that min-
imize a cost function that measures the goodness of
the fit of the model predictions with respect to the
data, subject to a number of constraints. The output
state variables that are measured experimentally are
called observables. The following elements need to be
clearly stated in order to properly define the calibration
problem:

• cost function to optimize (i.e. metrics which reflects
the mismatch between experimental and predicted
values)

• dynamics of the systems (in our benchmark models
they are given by systems of ordinary differential
equations)

• model parameters to be estimated
• initial conditions for the dynamics (possibly

unknown, in which case they are included among the
parameters to be estimated)

• upper and lower bounds for the parameters
• state variables that can be measured (observed)
• values of external stimuli, also known as control

variables
• measurements (over time and/or space) available for

the calibration: number of experiments, stimuli (if
any) for each experiment, data points per experiment,
etc.

• (optional) type and magnitude of errors considered
for the experimental data

• (optional) additional time series for validation of the
calibrated model

• solver used to numerically simulate the systems, and
the relative and absolute error tolerances used

Mathematically, it is formulated as a nonlinear pro-
gramming problem (NLP) with differential-algebraic con-
straints (DAEs), where the goal is to find p to minimize an
objective function. The objective function, or cost func-
tion, is a scalar measure of the distance between data and
model predictions. There are several common choices for
the objective function. The generalized least squares cost
function is given by:

Jlsq =
nε∑

ε=1

nε
o∑

o=1

nε,o
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wε,o
s

(
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where nε is the number of experiments, nε
o is the num-

ber of observables per experiment, and nε,o
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of samples per observable per experiment. The measured
data will be denoted as ymε,o

s and the corresponding
model predictions will be denoted as yε,o

s (p). Finally, wε,o
s

are scaling factors used to balance the contributions of
the observables, according to their magnitudes and/or
the confidence in the measurements. When information
about the experimental error is available, one may use
the maximum (log-)likelihood function to look for the
parameters with the highest probability of generating the
measured data. Assuming independently identically dis-
tributed measurements with normally distributed noise,
the likelihood is defined as:
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For known constant variances the log-likelihood cost
function is similar to the generalized least squares, with
weights chosen as the inverse of the variance, wε,o

s =
1/

(
σε,o
s

)2. This is the case of most of the benchmark prob-
lems presented here (B1, B2, B4, B5). The exceptions are:
problem B3, in which no noise has been added to the
data, and thus the scaling factors wε,o

s are taken as the
squared inverse of the maximum experimental value for
each observable; and problem B6, where the weights are
inversely related to the level of expression. More details
are given in the next section. Note that the cost functions
used in Matlab/AMIGO are not exactly the same as the
ones used in COPASI, since in COPASI the weights are
scaled so that for each experiment the maximal occurring
weight is 1.
The minimization of the objective function is subject to

the following constraints:

ẋ = f (x, p, t) (3)

x(t0) = x0 (4)

y = g(x, p, t) (5)

heq(x, y, p) = 0 (6)

hin(x, y, p) ≤ 0 (7)

pL ≤ p ≤ pU (8)
where g is the observation function, x is the vector of
state variables with initial conditions x0, f is the set of dif-
ferential and algebraic equality constraints describing the
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system dynamics (that is, the nonlinear process model),
heq and hin are equality and inequality constraints that
express additional requirements for the system perfor-
mance, and pL and pU are lower and upper bounds for
the parameter vector p. The problem defined above is the
general formulation of a nonlinear least squares optimiza-
tion subject to dynamic constraints and bounds in the
parameters. The problems included in this collection of
benchmarks do not make use of constraints (6–7).

Remarks on parameter estimation methods
Fitting a large, nonlinear model to experimental (noisy)
data is generally a multimodal problem. In these circum-
stances, the use of local optimization methods, which are
usually gradient-based, entails the risk of converging to
local minima. Hence it is needed to use global optimiza-
tion methods that provide more guarantees of converging
to the globally optimal solution [11,35]. Global optimiza-
tion strategies can be roughly classified as deterministic,
stochastic and hybrid. Deterministic methods can guaran-
tee the location of the global optimum solution; however,
their computational cost makes them unfeasible for large-
scale problems. Stochastic methods, which are based on
probabilistic algorithms, do not provide those guaran-
tees, but are frequently capable of finding optimal or
near-optimal solutions in affordable computation times.
Some of the most efficient stochastic global optimiza-

tion methods are the metaheuristic approaches. A heuris-
tic is an algorithm originated not from formal analysis,
but from an expert knowledge of the task to be solved. A
metaheuristic can be seen as a general-purpose heuristic
method designed to guide an underlying problem-specific
heuristic. It is therefore a method that can be applied
to different optimization problems with few modifica-
tions. Hybrid methods which combine metaheuristics for
global optimization and local methods for accelerating
convergence in the vicinity of local minima can be partic-
ularly efficient. One such method is the enhanced Scatter
Search algorithm, eSS [36], and its parallel cooperative
version, CeSS [37]. Matlab and R implementations are
publicly available as part of the MEIGO toolbox [38]. The
eSS method is available as a Matlab toolbox and is also
included in AMIGO; this latter version is the one used in
this work. It should be noted that AMIGO offers more
than a dozen optimization solvers, including local and
global methods, and the possibility of combining them to
form user-defined sequential hybrid methods. In COPASI
[34] it is possible to choose among thirteen different opti-
mization methods for parameter estimation, including
deterministic and stochastic: Evolutionary Programming,
Evolutionary Strategy (SRES), Genetic Algorithm, Hooke
and Jeeves, Levenberg–Marquardt, Nelder–Mead, Parti-
cle Swarm, Praxis, Random Search, Simulated Annealing,
Scatter Search, Steepest Descent, and Truncated Newton.

Remarks on comparing optimization methods
Although the objective of this paper is to present a set
of ready-to-run benchmarks, we list below several guide-
lines on how to compare different optimizers with these
problems.
Many optimization methods require an initial point

and/or bounds on the decision variables. For ensuring
a fair comparison between different methods, the same
bounds and initial points should be set. Obviously, the
nominal solution can not be used as an initial point
(note that in this work we use the term “nominal” to
refer to the “true” or “reference” parameter values, i.e.
for problems that use pseudo-experimental data the nom-
inal solution is the parameter vector that was used to
generate the data). Special emphasis should be laid on
ensuring full reproducibility. This entails providing all
source codes and binary files used in computations,
as well as specifying all implementation details, such
as software and hardware environment (including com-
piler versions and options, if any). If some aspects of
a method can be tuned, these settings must be clearly
indicated.
Many different criteria may be used for comparing the

performance of optimizationmethods. It can be expressed
as a function of CPU time, number of function eval-
uations, or iteration counts. When considering several
problems, a solver’s average or cumulative performance
metric can be chosen. If an algorithm fails to converge a
penalty can be used, in which case an additional decision
is required to fix its value. An alternative is to use ranks
instead of numerical values, although this option hides
themagnitudes of the performancemetric. All approaches
have advantages and drawbacks, and their use requires
making choices that are subjective to some extent. In an
attempt to combine the best features of different crite-
ria, Dolan andMoré [39] proposed to compare algorithms
based on their performance profiles, which are cumulative
distribution functions for a performance metric. Perfor-
mance profiles basically rely on calculations of the ratio
of the solver resource time versus the best time of all the
solvers. It should be noted that, for complex large-scale
problems where identifiability is an issue, different meth-
ods often arrive at different solutions. In that case the
use of performance profiles requires choosing a tolerance
to define acceptable solutions. Performance profiles are
a convenient way of summarizing results when there are
many methods to be compared and many problems on
which to test them. When this is not the case, however,
more information can be provided by using convergence
curves. Convergence curves plot the evolution of the
objective function, as defined in Equation (1), as a func-
tion of the number of evaluations or the computation time
(since the overhead is different for each method). They
provide information not only about the final value reached



Villaverde et al. BMC Systems Biology  (2015) 9:8 Page 5 of 15

by an algorithm, but also about the speed of progression
towards that value.
When comparing different optimization methods, the

best result (cost) and the mean (or median) for N runs
should be reported in a table. Similar statistics for compu-
tation and number of evaluations should apply to all the
methods. However, since the final values can be greatly
misleading, convergence curves should be provided in
addition to this table.
Note that, in order to make a fair comparison of conver-

gence curves obtained with different software tools and/or
hardware environments, it is a good practice to report
any speedup due to parallelism. This can happen in non-
obvious situations. For example, COPASI can make use
of several threads in multi-core PCs due to its use of the
Intel MKL library. In summary, fair comparisons should
be made taking into account the real overall computa-
tional effort used by each method/implementation. As a
general rule, only methods running in the same platform
should be compared.

Remarks on identifiability
Parameter estimation is just one aspect of what is known
as the inverse problem. This larger problem also includes
identifiability analysis, which determines whether the
unknown parameter values can be uniquely estimated
[40,41]. Lack of identifiability means that there are several
possible parameter vectors that give the same agreement
between experimental data and model predictions. We
may distinguish between a priori structural identifiabil-
ity and a posteriori or practical identifiability [40,41].
The parameters are structurally identifiable if they can be
uniquely estimated from the designed experiment under
ideal conditions of noise-free observations and error-
free model structure. Structural identifiability is a the-
oretical property of the model structure, which can be
very difficult to determine for large and complex models
[42-44]. Even if a model is structurally identifiable, it may
exhibit practical identifiability issues. Practical identifia-
bility depends on the output sensitivity functions (partial
derivatives of the measured states with respect to the
parameters). If the sensitivity functions are linearly depen-
dent themodel is not identifiable, and sensitivity functions
that are nearly linearly dependent result in parameter esti-
mates that are highly correlated. Furthermore, even if they
are linearly independent, low sensitivities may lead to an
undesirable situation. Practical identifiability can be stud-
ied from sensitivity-based criteria like the Fisher infor-
mation matrix (FIM). The practical identifiability of the
models can be analyzed in this way with the AMIGO tool-
box [33]. The AMIGO_LRank method ranks the model
parameters according to their influence on the model out-
puts, using several sensitivity measures. In large biological
models identifiability issues are the norm rather than the

exception [9,42,45-54]. This may be partly due to incon-
sistent modelling practices, but even when a model has
been carefully built and is structurally identifiable, the
amount of data required for a perfect calibration (prac-
tical identifiability) is usually large. As an illustration,
consider the general case of a model described by dif-
ferential equations, and assume the ideal situation where
the structure of the equations is perfectly known. Then, a
well-known result states that identification of r parameter
values requires 2r + 1 measurements [55]. However, it is
frequently the case that a model with more than a thou-
sand parameters has to be calibrated with only dozens or
maybe hundreds of measurements. Another issue which
is intimately related to lack of identifiability is overfitting,
which may occur when the number of parameters is too
large compared to the number of data. In this case the
calibrated model is actually describing the noise present
in the data, instead of the true dynamics of the system.
Like unidentifiability, overfitting is common in large-scale
systems biology models such as the ones presented here.
Finally, it should be noted that lack of identifiability does
not preclude the use of model-based methods. Unique
model predictions can in fact be obtained despite uniden-
tifiability, as discussed by Cedersund [52].

Implementation
Here we present a collection of parameter estimation
problems and their descriptions. The characteristics of
the six dynamic models are summarized in Table 1. Four
of the benchmark problems have been defined using in
silico experiments, where pseudoexperimental data have
been generated from simulations of the models and addi-
tion of artificial noise. The use of simulated data is usu-
ally considered the best way of assessing performance of
parameter estimation methods, because the true solution
is known. Additionally, we provide two benchmark prob-
lems that use real data. For each problem we provide
the following information (see Additional file 1 and the
BioPreDyn-bench website, https://sites.google.com/site/
biopredynbenchmarks/):

• Dynamic model.
• Experimental information: initial conditions, input

functions, what is measured, measurement times,
noise level and type.

• Cost function to be used: its type (least squares,
weighted least squares, maximum likelihood, etc),
and why it should be chosen.

• Parameters to estimate: lower and upper bounds,
initial guesses, nominal values (the latter are reference
values, which must not be used during estimations).

• Implementations (Matlab with and without the
AMIGO toolbox, C, COPASI): installation,
requirements, and usage. Ready-to-run scripts are

https://sites.google.com/site/biopredynbenchmarks/
https://sites.google.com/site/biopredynbenchmarks/
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Table 1 Models

Model ID B1 B2 B3 B4 B5 B6

Model Ref [25] [23] [24] [26] [27] [29]

Cell S. cerevisiae E. coli E. coli CHO Generic Drosophila
melanogaster

Description Metabolic: Metabolic: Metabolic: CCM Metabolic Signal Developmental
level genome scale CCM & transcription transduction GRN (spatial)

Parameters 1759 116 178 117 86 37

Dynamic states 276 18 47 34 26 108 –212

Observed states 44 9 47 13 6 108 –212

Experiments 1 1 1 1 10 1

Data points 5280 110 7567 169 96 1804

Data type simulated measured simulated simulated simulated measured

Noise level σ = 5% real no noise variable σ = 5% real

Main features of the benchmark models. The standard deviation, σ , is given in those cases where artificial noise with constant variance was added to the data.

provided, with examples of how to execute them and
their expected output.

Problem B1: genome-wide kinetic model of S. cerevisiae
Implementations of the benchmark problems are
provided as Additional files 2 and 3. The version of
the AMIGO toolbox used in this work is provided as
Additional files 4 and 5. The biochemical structure of
this model is taken from yeast.sf.net (version 6, [56]).
In decompartmentalised form, this network has 1156
reactions and 762 variables. We fix some experimentally
determined exchange fluxes, and use geometric FBA [57]
to choose a unique reference flux distribution consistent
with the experimental data.We fix some initial concentra-
tions to their experimentally determined levels and assign
the remainder typical values. We define reaction kinet-
ics using the common modular rate law, a generalised
form of the reversible Michaelis-Menten kinetics that can
be applied to any reaction stoichiometry [58]. The final
model contains 261 reactions with 262 variables and 1759
parameters. This model has been created according to the
pipeline presented in [25], which ensures consistency with
our sparse data set; whilst no data is required to produce
the model, it can incorporate any known flux or concen-
tration data or any kinetic constants. As an addition to the
model developed in [25], this version has been alligned
with previously unpublished experimental data. The new
data consist of 44 steady-state measurements (38 concen-
trations and 6 fluxes), which are included in Additional
file 1: Table S12 and S13. The steady state is found to
be stable. The number of measurements available at the
present stage is not enough for carrying out a proper
model calibration. Envisioning that dynamic (time-series)
measurements of the 44 observed variables may be avail-
able in the near future, we show in this paper how they
will be employed for re-estimating the parameter values.

With this aim, we have generated pseudo-experimental
noisy data corresponding to a pulse in the concentration
of extracellular glucose, and have used this simulated data
to re-calibrate the model. We generated 120 samples per
observable and added artificial measurement noise (stan-
dard uniform distribution, σ = 5%) to resemble realistic
conditions.

Problem B2: dynamic model of the Central Carbon
Metabolism of E. coli
This model, originally published in [23] and available at
the BioModels database [59], reproduces the response to
a pulse in extracellular glucose concentration. It includes
18 metabolites in two different compartments: the cytosol
(17 internal metabolites), and the extracellular compart-
ment (1 extracellular metabolite: glucose). These metabo-
lites are involved in 48 reactions: 30 kinetic rate reac-
tions, 9 degradation equations, 8 dilution equations, and
1 equation for extracellular glucose kinetics. Additionally,
there are 7 analytical functions, thus the model is defined
by a total of 55 mathematical expressions. We have refor-
mulated the model to use it as a parameter estimation
problem; the 116 parameters to be estimated consist of
kinetic parameters and maximum reaction rates.
As an addition to the model version available in the

Biomodels database, we provide the experimental data
that were used in the original publication but had not been
published (Klaus Mauch, personal communication). The
dataset is given in Additional file 1: Table S14, and con-
sists of time-course concentration measurements of nine
metabolites. The aim of the model calibration in this case
is to find a better fit to the experimental data than the
one obtained with the nominal parameter vector used in
the original publication [23]. Note that this is different
from benchmarks 1 and 3–5, which use simulated data
and where the aim is to recover a fit as good as the one
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obtained with the nominal parameter vector, with which
the data were generated.

Problem B3: enzymatic and transcriptional regulation of
the Central CarbonMetabolism of E. coli
This model simulates the adaptation of E. coli to changing
carbon sources. Complete information about this model
is available as the supplementary information of [24]. It is
also included in the BioModels Database [59]. It should be
noted that there are some differences in parameter values
between the original model and the BioModels version;
however, these changes do not alter the simulation results,
a fact that indicates unidentifiability. The model contains
47 ODEs and 193 parameters, of which 178 are consid-
ered unknown and need to be estimated. The other 15
parameters are constants known to the modeler (number
of subunits of the multimers–enzymes–, scaling factors,
universal protein degradation rate, and gene expression
rate constant). The outputs of the system are the 47
state variables, which represent concentrations. Pseudo-
experimental data were generated by simulation of the
sixth scenario defined in the simulation files included as
supplementary material in [24]. This scenario simulates
an extended diauxic shift which consists of three consec-
utive environments, where the carbon sources are first
glucose, then acetate, and finally a mixture of both. Under
these conditions, the 47 concentration profiles are sam-
pled every 1000 seconds, for a total of 161 time points
(45 hours). This model exhibits large differences in value
among concentrations, which span five orders of magni-
tude. To equalize their contribution to the objective func-
tion, we scale each time-series dividing it by themaximum
of the experimental value (scaled least squares).

Problem B4: metabolic model of Chinese Hamster Ovary
(CHO) cells
Chinese Hamster Ovary cells (CHO) are used for protein
production in fermentation processes [60]. This model
simulates a batch process with resting cells: no metabo-
lites are fed for a final time horizon of 300 hours. The fer-
menter medium contains glucose as main carbon source,
and leucine and methionine are the main amino acids
taken up. Lactate was modelled to be a by-product of
the fermentation process. A generated protein serves as
main product of the fermentation process. The model
comprises 35 metabolites in three compartments (fer-
menter, cytosol, and mitochondria) and 32 reactions,
including protein product formation, Embden-Meyerhof-
Parnas pathway (EMP), TCA cycle, a reduced amino acid
metabolism, lactate production, and the electron trans-
port chain. The kinetics are modelled as in [23], and
the resulting ODE model comprises 117 parameters in
total. Some aspects of this model were partially discussed
in [26]. For optimization purposes pseudo-experimental

data were generated, mimicking a typical cell behavior.
The following 13metabolites are assumed to bemeasured:
in fermenter, glucose, lactate, product protein, leucine,
and methionine; in cytosol, aspartate, malate, pyruvate,
oxaloacetate, ATP, and ADP; and in mitochondria, ATP
and ADP. Samples were assumed to be daily taken over the
whole fermentation time.

Problem B5: signal transduction logic model
To illustrate the advantages and disadvantages of differ-
ent formalisms related to logic models, MacNamara and
colleagues constructed a plausible network of interac-
tions consisting of signaling factors known to be activated
downstream of EGF and TNF-α [27]. The model consists
of 26 ODEs that use a logic-based formalism, which is
explained in detail in [61]. In this formalism, state values
can vary between 0 and 1 and represent the normalized
activity of a given protein, which is typically measured as
the level of phosphorylation. In total the model includes
86 continuous parameters, corresponding to the half max-
imal activations (k), the Hill coefficients (n) and a set of
parameters controlling the rate of activation/deactivation
of a given protein (τ ). The model incorporates EGF and
TNF-α which are treated as stimuli that trigger the path-
way response. In addition to these two stimuli, the model
includes two kinase inhibitors for RAF1 and PI3K , which
can block the activity of both species. In total the model
can be perturbed by these 4 cues, allowing a rich variation
in the dynamic profiles of the model signaling compo-
nents, an essential requirement for parameter estimation.
In order to generate a data-set for reverse engineering
the model structure, the authors generated data, corre-
sponding to 10 in-silico experiments, where the different
cues (stimuli and inhibitors) are added in different com-
binations. For each experiment 6 strategically located
states are observed. Each observable was measured at 16
equidistant time points per experiment. In addition to
this Gaussian noise was added to the data in order to
mimic a reasonable amount of experimental error. Note
that the SBML implementation of this model uses the
SBML qual format [62], an extension of SBML developed
for qualitative models of biological networks.

Problem B6: the gap gene network of the vinegar fly,
Drosophilamelanogaster
Our last benchmark model is slightly different from those
previously described, in that it represents a spatial model
of pattern formation in multi-cellular animal develop-
ment, and the data for fitting are based on microscopy,
rather than metabolomics or transcriptomics. The gap
genes form part of the segmentation gene network,
which patterns the anterior–posterior (AP) axis of the
Drosophila melanogaster embryo. They are the primary
regulatory targets of maternal morphogen gradients, and
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are active during the blastoderm stage in early develop-
ment. In the model, the embryo is a single row of dividing
nuclei along the AP axis, with each nucleus containing the
four gap genes and receiving input from four external fac-
tors. The gap genes included in the model are hunchback
(hb), Krüppel (Kr), giant (gt), and knirps (kni), and the
external inputs Bicoid (Bcd), Caudal (Cad), Tailless (Tll),
and Huckebein (Hkb). Three processes occur within and
between nuclei: (1) regulated gene product synthesis, (2)
Fickian gene product diffusion, and (3) linear gene prod-
uct decay. These processes are formalised with ODEs,
and result in the model having 37 unknown parameters.
This model [29,30] implements the gene circuit approach
[63,64] used to reverse-engineer the regulatory interac-
tions of the gap genes by fitting to quantitative spatio-
temporal gene expression data, which can be mRNA [29]
or protein [30]. The data consist of 9 time points spanning
71 minutes of Drosophila development, and at each time
pointmaximally 53 nuclei with data points for the four gap
genes, and the four external inputs. The fit is measured
with a weighted least squares scheme (WLS) with vari-
able weights, which, in the case of the mRNA data used
here [29], are inversely related to the level of expression.
The weights were created from normalized, integrated
mRNA expression data according to the formula: w =
1.0 − 0.9y, with y ∈[0, 1] being the normalized staining
intensity. This proportionality of variation with expression
level reflects the fact that gap domains (showing high lev-
els of expression) show more variation than those regions
of the embryo in which a gene is not expressed [29].

Results and discussion
We show how our collection of benchmark problems can
be used by reporting selected results using several param-
eter estimation methods. We emphasize that the purpose
of this work is not to provide a comprehensive comparison
of all existing approaches, but to provide a useful, versatile,
and practical test set and illustrate its use. For simplicity,
and to enable direct comparisons among benchmarks, all
the computations reported in this section have been car-
ried out in Matlab, using the algorithms available in the
AMIGO toolbox [33]. This includes both global and local
optimization methods; the latter have been used in a mul-
tistart procedure, where multiple instances are launched
from different initial points selected randomly within the
parameter bounds.
Before estimating the parameter values we assessed

the identifiability of the models. Model parameters
were ranked according to their influence on the sys-
tem output (sensitivity), using the local rank routine
(AMIGO_LRank) from the AMIGO toolbox as described
in the previous section. As is typical of models of this
size, it was found that all benchmarks have identifiabil-
ity issues, with a portion of their parameters exerting very

little influence on the model outputs. Therefore, the goal
of these benchmarks is not to obtain accurate estimates of
all the parameters, but rather to obtain a good fit to the
data: when tested on this collection of benchmarks, opti-
mization methods should be evaluated by their ability to
minimize the objective function. As an illustration of the
typical outcome that can be obtained from the local rank
method, we show in Figure 1 the results of the practical
identifiability analysis for problem B2. Figure 1 ranks the
parameters in decreasing order of their influence on the
system’s behaviour, which is quantified by means of the
importance factors δ

msqr
p :

δ
msqr
p = 1

nlhsnd

√√√√ nlhs∑
mc=1

nd∑
d=1

([sd]mc )2 (9)

where nlhs are the different values for each of the param-
eters selected by Latin Hypercube Sampling and nd is the
number of experiments. The relative sensitivities, [sd]mc,
measure the influence of every parameter pmc on the
model output for a given experiment d. They are defined
as

[sd]mc = 1
no · ns

no∑
o=1

ns∑
s=1

�pmc
�yod

δyod
δpmc

(
td,os

)
(10)

where no is the number of observables and ns the num-
ber of sampling times. Figure 1 shows the sensitivity of the
state variables with respect to the parameters. From this
figure it becomes clear that many parameters such as 8-10,
32-38, 56-64, are not influencing observables. Therefore
those parameters are expected to be poorly identifiable.
In the remainder of this section we show selected results

of the best performing optimization methods in every
parameter estimation problem. Complete results for every
benchmark are reported in the Additional file 1.
To evaluate the performance of local methods we

launched repeated local searches in a multistart proce-
dure, starting from initial parameter vectors with values
chosen randomly from within the parameter bounds. It
should be noted that, while multistarts of local searches
are a popular option for parameter estimation, they are
usually not the most efficient solution when dealing with
large-scale nonlinear models. Due to the multimodal
nature of these problems, local methods tend to be stuck
in local minima, which can sometimes be very far from the
global optimum. Launching local methods from random
points leads to spending a large fraction of the com-
putational time in unsuccessful searches. Hence, global
optimization methods usually perform better in these
cases, especially if–as happens with eSS–they are used in
combination with local searches. As an example, Figure 2
shows histograms of the results (i.e., objective function
values reached and the frequency with which they were
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Figure 1 Benchmark 2: sensitivities. The two panels on top show the local rank of the parameters, i.e., the parameters ordered in decreasing order
of their influence on the system’s behaviour (δmsqr

p , as defined in equations (9) and (10)). Note that the middle panel is a continuation of the upper
one with a smaller y-axis scale. The array in the bottom panel shows the sensitivity of the 9 state variables (metabolite concentrations, in columns) of
the model with respect to the 116 parameters. The colour bar in the right shows the sensitivity range: high sensitivities are plotted in red, low
sensitivities in blue.

found) obtained with the DHC local method for bench-
mark B3. Similar outcomes were obtained with the other
benchmarks and methods. Complete results for all the
benchmarks and with different methods are included in
the Additional file 1. In all cases, the number of local
searches was fixed so that their overall CPU time was
comparable to that consumed in optimizations where
the global method eSS was used. While there was great

variability in the results obtained for the different bench-
marks, a conclusion was common to all of them: in all
cases, the local methods were outperformed by the global
optimization method eSS.
The convergence curves of the six benchmarks are

shown in Figure 3. Results were obtained with the eSS
method on a computer with Intel Xeon Quadcore proces-
sor, 2.50 GHz. It can be clearly noticed that, due to the
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B3: histogram of local searches with the DHC method

Figure 2 Benchmark 3. Histograms of local searches. The X axis
shows the values of the solutions found by the DHC local method,
and the Y axis shows their frequency. Of the total of 1000 local
searches launched, only the 188 that converged are shown.

differences in size and complexity, the computational cost
of estimating the parameters varies among benchmarks.
Results show that they can be naturally classified in three
different levels:

• B1 and B3 are the most expensive: in our computers,
obtaining a reasonably good fit took at least one week.

• B5 and B6 are intermediate in terms of cost; a good fit
could be obtained in one day.

• B2 and B4 are the least expensive, with good fits
obtained in one or a few hours.

These computation times can be used as a reference to
select the appropriate benchmarks to test a particular
optimization method, depending on its focus and the
available time. Due to the stochastic nature of the eSS
algorithm, results may vary among optimization runs.
Figure 4 shows the dispersion of 20 different optimization
results for benchmark B4.
Table 2 summarizes the settings and outcomes of

the parameter estimations with eSS, including the local
method used for each problem. Note that, while DN2FB
is generally recommended [65], we have realized that for
large-scale problems it may not be the most efficient local
method, due to the large number of evaluations needed to
calculate the derivatives. Hence, for the problems consid-
ered here it is outperformed by other methods like DHC,
SOLNP, or FMINCON.
One of the outcomes reported in Table 2 is the cumula-

tive normalized root-mean-square error,
∑

NRMSE. The
root-mean-square error is a standard measure of the
goodness of fit obtained for an observable which is defined
as

RMSEo =
√∑nε

ε=1
∑nε,o

s
s=1

(
ymε,o

s − yε,o
s (p)

)2
nε · nε,o

s
(11)

with the same notation as in equation (1). To account for
the different magnitudes of the observables it is useful to
report the normalized root-mean-square error, NRMSEo,
which scales the RMSEo by dividing it by the range of
values of the observable:

NRMSEo = RMSEo

max(ymε,o) − min(ymε,o)
(12)
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Figure 3 Convergence curves. Representative results of parameter estimation runs of the six benchmarks, carried out with the eSS method. The
curves plot the (logarithmic) objective function value as a function of the (logarithmic) computation time. For ease of visualization, the values in the
curves have been divided by the final value reached by each of them, i.e. the y axis plots J/Jf . Note that, since the benchmarks have different
number of variables and data points, and different noise levels, the objective function values are not equivalent for different models. Results
obtained on a computer with Intel Xeon Quadcore processor, 2.50 GHz, using Matlab 7.9.0.529 (R2009b) 32-bit.
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Figure 4 Dispersion of convergence curves. Results of 20 parameter estimation runs of the B4 benchmark (CHO cells) with the eSS method. The
figures plot the objective function value as a function of the computation time (in log-log scale). Results obtained on a computer with Intel Xeon
Quadcore processor, 2.50 GHz, using Matlab 7.9.0.529 (R2009b) 32-bit.

The cumulative normalized root-mean-square error,∑
NRMSE, is simply the sum of the NRMSEo for all

observables.
Note that, due to the realistic nature of most of these

problems, there may be lack of identifiability and opti-
mization may result in overfitting: that is, an optimal
solution may be found that gives a better fit to the
pseudoexperimental data than the one obtained with the

nominal parameter vector used to generate the data. This
is explained because, in the presence of measurement
noise, the optimal solution manages to fit partially not
only the system dynamics, but also the noise itself–which
of course cannot be achieved by the nominal solution.
Hence in the results reported in Table 2 the optimal
objective function value (Jf ) is sometimes smaller (i.e. bet-
ter) than the nominal one (Jnom). This may also happen

Table 2 Parameter estimation with eSS (AMIGO implementation): settings and results

Model ID B1 B2 B3 B4 B5 B6

pU 5 · pnom 10 · p(ex)
nom 10 · p(ex)

nom 5 · pnom varying varying

pL 0.2 · pnom 0.1 · p(ex)
nom 0.1 · p(ex)

nom 0.2 · pnom varying varying

Local method DHC FMINCON none FMINCON DHC FMINCON

CPU time ≈170 hours ≈3 hours ≈336 hours ≈1 hour ≈16 hours ≈24 hours

Evaluations 6.9678 · 105 9.0728 · 104 7.2193 · 106 1.6193 · 105 8.8393 · 104 2.0751 · 106
J0 5.8819 · 109 3.1136 · 104 4.6930 · 1016 6.6034 · 108 3.1485 · 104 8.5769 · 105
Jf 1.3753 · 104 2.3390 · 102 3.7029 · 10−1 4.5718 · 101 3.0725 · 103 1.0833 · 105
Jnom 1.0846 · 106 − 0 3.9068 · 101 4.2737 · 103 −∑

NRMSE0 3.5834 · 101 8.5995 · 10−2 3.5457 · 101 4.8005 · 101 4.0434 · 101 2.3808 · 102∑
NRMSEf 5.7558 2.4921 2.9298 · 10−1 2.8010 2.7430 · 101 1.6212 · 102∑
NRMSEnom 3.8203 − 0 2.8273 3.0114 · 101 −

Optimization settings and results obtained for each of the benchmarks with the eSS method, using the implementation provided in the AMIGO toolbox. In some cases
the lower (pL) and upper (pU) bounds in the parameters are specified as a function of the nominal parameter vector, pnom . There may be exceptions to these bounds,
in cases where it makes sense biologically to have a different range of values (e.g. Hill coefficients in the range of 1–12). Cases with exceptions are marked by (ex) . In
other cases all the parameters have specific bounds; this is marked as “varying”. The initial objective function value, J0, corresponds to the parameter vector p0 used as
initial guess in the optimizations, which is randomly selected between the bounds pL and pU . The only exception is benchmark B2, where p0 is the parameter vector
reported in the original publication. The final value achieved in the optimizations is Jf , and the value obtained with the nominal parameter vector is Jnom . More details
about the definition of the objective functions J are given in section “Problem statement”.

∑
NRMSE is the cumulative normalized root-mean-square error as defined

in eq. (12); the subscripts (0 , f , nom) have the samemeaning as in the objective functions J. Results obtained on a computer with Intel Xeon Quadcore processor, 2.50
GHz, using Matlab 7.9.0.529 (R2009b) 32-bit.
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with the
∑

NRMSE values. Note however that, since the
objective functions used in the calibration (J) and the∑

NRMSE are different metrics, their behavior may be
different. For example, for B1 Jf < Jnom and

∑
NRMSEf >∑

NRMSEnom, while for B4 the opposite is true: Jf > Jnom
and

∑
NRMSEf <

∑
NRMSEnom.

As an example of the fit between data and model out-
put that is obtained after calibration, let us consider
benchmark B5, which uses pseudoexperimental data cor-
responding to ten different experiments. Figure 5 reports
a goodmatch between data andmodel output; notably, the
algorithmmanages to reproduce the oscillations in NFκB.
The fit can also be represented with histograms of the

residuals, which show the distribution of the errors in
the state variables. This kind of plot can also be used
for showing the errors in the recovered parameters when
compared to the nominal (true) values. An alternative
way of visualizing this relation is by plotting the pre-
dicted states (or parameter) values as a function of the
true values. This results in a diagonal–like plot; the larger
the deviations from the diagonal, the larger the predic-
tion errors. When there are identifiability issues, the fit
is typically better for the states than for the parameters,
because a good fit to the data does not necessarily ensure

that the correct parameters have been recovered. Exam-
ples of these plots are shown in Figure 6, which shows the
fits obtained for benchmark B4.

Conclusions
To address the current lack of ready-to-run benchmarks
for large-scale dynamic models in systems biology, we
have presented here a collection of six parameter esti-
mation problems. They cover the most common types,
including metabolism, transcription, signal transduction,
and development. The benchmarks are made available
in a number of formats. As a common denominator, all
of the models have been implemented in Matlab and
C. When possible (i.e. for benchmarks B1–B5), model
descriptions are also given in SBML. Ready-to-run imple-
mentations of all the benchmarks are provided in Matlab
format (both with and without the AMIGO toolbox) and
in COPASI (for benchmarks B1–B4). With these files
it is straightforward to reproduce the results reported
here.
More importantly, the benchmark files can be easily

adapted to test new parameter estimation methods for
which a Matlab, C, or COPASI implementation is avail-
able. The performance of an existing or newly developed

Figure 5 Benchmark 5. Data fits: time courses. Pseudo-experimental data (red circles) vs. optimal solution (solid blue lines) for the 6 observed
states. X axis: time [minutes]. Y axis: activation level [0÷1].
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Figure 6 Benchmark 4, typical parameter estimation results. (A) Optimal vs. nominal parameters. (B) Pseudo-experimental (“measured states”)
vs. simulated data (“predicted states”). (C) Errors in the parameters: histogram of the differences between the nominal parameter vector and the
optimal solution, in %. (D) Errors in the predictions: histogram of the difference between pseudo-experimental and simulated data, in %.

method can be evaluated by comparing its results with
those reported here, as well as with those obtained by
other methods. To this end, we have provided guidelines
for comparing the performance of different optimizers.
The problems defined here may also be used for educa-
tional purposes, running them as examples in classes or
using them as assignments.
Finally, it should be noted that the utility of this col-

lection goes beyond parameter estimation: the models
provided here can also be used for benchmarkingmethods
for optimal experimental design, identifiability analysis,
sensitivity analysis, model reduction, and in the case of
metabolic models also for metabolic engineering pur-
poses.

Availability and requirements
Project name: BioPreDyn-Bench
Project home page: https://sites.google.com/site/
biopredynbenchmarks/
Operating systems:Windows, Linux, Mac OSX
Programming languages: C, Matlab
Other requirements:

• For C implementations: GCC compiler, Matlab
Compiler Runtime (the MCR is a free component

which does not require a Matlab installation)
• For Matlab and AMIGO implementations: Matlab

R2008 or newer
• For COPASI implementations: COPASI version 4.13

(Build 87) or newer
• For SBML: any software package capable of reading

SBML

Please refer to the Additional file 1 for more details on
these requirements and installation instructions
License: Artistic License 2.0

Restrictions for non-academic use: None

Additional files

Additional file 1: Describes the benchmark models in further detail
and reports additional results.

Additional file 2: The first part of a compressed folder with the
benchmark implementations.

Additional file 3: The second part of a compressed folder with the
benchmark implementations.

Additional file 4: The first part of a compressed folder with the
AMIGO toolbox.

Additional file 5: The second part of a compressed folder with the
AMIGO toolbox.

https://sites.google.com/site/biopredynbenchmarks/
https://sites.google.com/site/biopredynbenchmarks/
http://www.biomedcentral.com/content/supplementary/s12918-015-0144-4-s1.pdf
http://www.biomedcentral.com/content/supplementary/s12918-015-0144-4-s2.zip
http://www.biomedcentral.com/content/supplementary/s12918-015-0144-4-s3.zip
http://www.biomedcentral.com/content/supplementary/s12918-015-0144-4-s4.zip
http://www.biomedcentral.com/content/supplementary/s12918-015-0144-4-s5.zip
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