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Gephyrin is a bi-functional modular protein involved in

molybdenum cofactor biosynthesis and in postsynaptic

clustering of inhibitory glycine receptors (GlyRs). Here,

we show that full-length gephyrin is a trimer and that its

proteolysis in vitro causes the spontaneous dimerization

of its C-terminal region (gephyrin-E), which binds a GlyR

b-subunit-derived peptide with high and low affinity. The

crystal structure of the tetra-domain gephyrin-E in com-

plex with the b-peptide bound to domain IV indicates how

membrane-embedded GlyRs may interact with subsynap-

tic gephyrin. In vitro, trimeric full-length gephyrin forms a

network upon lowering the pH, and this process can be

reversed to produce stable full-length dimeric gephyrin.

Our data suggest a mechanism by which induced confor-

mational transitions of trimeric gephyrin may generate a

reversible postsynaptic scaffold for GlyR recruitment,

which allows for dynamic receptor movement in and

out of postsynaptic GlyR clusters, and thus for synaptic

plasticity.
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Introduction

A high concentration and dynamic regulation of receptors in

specialized plasma membrane microdomains is crucial for

many biological functions including neurotransmission.

Efficient synaptic transmission at chemical synapses requires

the specific accumulation of neurotransmitter receptors in

the postsynaptic plasma membrane domains underlying

the transmitter-releasing presynaptic nerve terminals, as re-

flected by a tight correlation between receptor number and

synaptic strength (Nusser et al, 1998). Therefore, a highly

coordinated process must regulate receptor density in newly

established synapses and during their remodeling.

Glycine is a major inhibitory neurotransmitter in the

central nervous system (Betz, 1992). Its postsynaptic actions

are mediated by inhibitory glycine receptors (GlyRs), which

are highly enriched at postsynaptic sites facing glycine-releas-

ing nerve terminals (Betz, 1992). GlyRs are members of a

family of ligand-gated ion channels, which includes the

closely related gamma-amino butyric acid type A (GABAA)

receptors and the more distantly related nicotinic acetylcho-

line receptors, as well as serotonin type 3 receptors (Moss

and Smart, 2001). Postsynaptic GlyR-rich microdomains are

stabilized by gephyrin, a peripheral membrane protein that

co-purifies with GlyRs (Schmitt et al, 1987; Prior et al, 1992).

In cultured neurons, the postsynaptic accumulation of GlyRs

depends on synaptic activity (Kirsch and Betz, 1998; Levi

et al, 1998) and gephyrin expression (Kirsch et al, 1993).

Nonsynaptic GlyRs diffuse freely in the plasma membrane,

while synaptic GlyRs colocalizing with submembranous ge-

phyrin may alternate within seconds between diffusive and

confined states (Meier et al, 2001). Thus, gephyrin appears to

restrict the plasma membrane mobility of GlyRs. Studies with

knockout mice have shown that gephyrin is essential for the

postsynaptic clustering of both GlyRs and most GABAA

receptor subtypes (Essrich et al, 1998; Feng et al, 1998;

Kneussel et al, 1999a).

At the molecular level, gephyrin acts as a linker between

synaptically localized inhibitory receptors and the subsynap-

tic cytoskeleton (Kirsch and Betz, 1995). GlyR colocalization

with gephyrin depends on the large cytoplasmic loop of the

receptor b-subunit located between the third and fourth

transmembrane segments (Meyer et al, 1995; Kneussel et al,

1999b). Upon coexpression in non-neuronal cells, gephyrin

recruits GlyR b-subunits into intracellular gephyrin aggre-

gates (Kirsch et al, 1995), a process that is also observed

with GABAA and NMDA receptors containing a minimal GlyR

b-loop binding sequence (Meyer et al, 1995; Kins et al, 1999;

Kneussel et al, 1999b). Cytoskeletal anchoring (Kirsch and

Betz, 1995) is mediated by an interaction of gephyrin with

tubulin (Kirsch et al, 1991) and F-actin, and its oligomeriza-

tion state may be regulated by the gephyrin binding protein

collybistin, a GDP–GTP exchange factor (GEF) for GTPases of

the Rho/Rac family (Kins et al, 2000). Furthermore, profilin

and Mena/VASP have been implicated in linking gephyrin
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and GlyRs to the microfilament system (Mammoto et al,

1998; Giesemann et al, 2003), and intracellular trafficking

of gephyrin may be facilitated by interactions with dynein

light-chain (Dlc) subunits of dynein motor protein complexes

(Fuhrmann et al, 2002).

In addition to functioning as a receptor anchoring protein,

gephyrin serves as an enzyme in many tissues. Gephyrin’s

N-terminal G- (homologous to Escherichia coli MogA) and

C-terminal E-domains (homologous to E. coli MoeA) are

involved in a universal molybdenum cofactor (MoCo) bio-

synthesis pathway, which is conserved from bacteria to hu-

mans (Kneussel and Betz, 2000). Like its bacterial homolog

MogA, the G-domain from gephyrin forms trimers in solution

and in the crystal structure (Liu et al, 2000; Sola et al, 2001).

As both the G- and E-domains of gephyrin have been shown

to bind molybdopterin (MPT) (Stallmeyer et al, 1999), it has

been proposed that gephyrin might be involved in the final

steps of molybdenum insertion into MPT (Hasona et al,

1998). Notably, hereditary deficiencies in MoCo biosynthesis

cause severe brain malformations in humans (Johnson and

Wadman, 1995). Whether MoCo biosynthesis and neuronal

receptor clustering are two independent functions of gephyrin

at the synapse is presently unknown.

Here, we show that full-length gephyrin can adopt different

oligomeric states in solution, which may act at distinct steps

of synapse formation and modification. Our structural ana-

lysis of the E-domain provides insights into how gephyrin

interacts with GlyRs and how it mediates GlyR clustering.

Together our data suggest how dynamic domain interactions

within the gephyrin scaffold may regulate the movement of

GlyRs in and out of the synaptic regions during processes

such as postsynaptic differentiation and plasticity. Moreover,

the conformational transitions of gephyrin reported here

might have important implications for the regulation of

GABAA receptors (Essrich et al, 1998; Feng et al, 1998;

Kneussel et al, 1999a).

Results

Three different oligomeric states of gephyrin

Purified full-length gephyrin, corresponding to splice variant

Ge2,6 (Figure 1A) (Prior et al, 1992), eluted from a gel

filtration column in a peak corresponding to the size of an

B300 kDa complex (gephyrin-300). Chemical crosslinking of

gephyrin-300 produced a new band on SDS–PAGE migrating

at B250 kDa (Figure 1B). This is consistent with a trimeric

structure of gephyrin (monomer of 81.3 kDa), and is in

agreement with the trimeric crystal structure of the isolated

N-terminal G-domain (Sola et al, 2001).

Limited proteolysis by trypsin of gephyrin-300 produced

three smaller stable fragments, which corresponded to the N-

terminal G-domain and part of the intermediate domain

(gephyrin-Gtrp; residues 1–242), and two almost identical

fragments of the C-terminal E-domain (gephyrin-Etrp; resi-

dues 318–736; and 329 (subdomain III) to 736) (Figure 1A),

as determined by N-terminal sequencing and mass spectro-

scopy performed on gephyrin-Gtrp and gephyrin-Etrp. Both C-

terminal fragments eluted upon size-exclusion chromatogra-

phy at a volume corresponding to an B100 kDa protein (data

not shown), indicating dimerization. Indeed, chemical cross-

linking of recombinant gephyrin-E (residues 316–736; ge-

phyrin-E) generated an adduct that migrated on SDS–PAGE

close to the 98 kDa marker (Figure 1C). Thus, gephyrin-E

(apparent molecular weight on SDS–PAGE B48 kDa;

Figure 1C, lane 1) forms dimers in solution, which is con-

sistent with the dimeric structure of the E. coli homolog MoeA

(Xiang et al, 2001). This suggests that gephyrin-E is trapped in

a metastable conformation within trimeric gephyrin-300, as

its C-terminal E-domain dimerizes spontaneously upon tryp-

sinization.

The ability of gephyrin-E to dimerize upon proteolysis of

gephyrin-300 may indicate that, in vivo, full-length trimers

dimerize via regulated E-domain interactions that trigger

gephyrin scaffolding at synaptic sites (Kneussel and Betz,

2000). During attempts to identify mechanisms that may

trigger gephyrin clustering, we found that dialysis of gephyr-

in-300 into an ammonium acetate buffer (pH 6.7) resulted in

precipitation. Notably, these precipitates were completely re-

solubilized by raising the pH from 6.7 to 8.0. Chemical

crosslinking of re-solubilized gephyrin produced a novel

adduct that migrated on SDS–PAGE slightly above the

150 kDa marker protein, consistent with a dimeric structure

(gephyrin-200) (Figure 1D). Variation in the time of back

dialysis of ammonium acetate-precipitated gephyrin-300 into

Figure 1 Schematic domain organization and oligomerization of
gephyrin. (A) Gephyrin consists of an N-terminal G-domain, a
middle domain (black box) and a C-terminal E-domain (gray-
shaded boxes), composed of four subdomains. The splice cassettes
2 and 6, the position of cassette 5 and tryptic fragments are
indicated. (B) Chemical crosslinking of gephyrin-300 indicates
trimer formation. Lane 1, gephyrin-300; lane 2, gephyrin-300 in-
cubated with 1mM glutaraldehyde, and lane 3 with 10mM glutar-
aldehyde. (C) Chemical crosslinking of gephyrin-E shows dimer
formation. Lane 1, gephyrin-E; lane 2, gephyrin-E incubated with
1mM and lane 3 with 5mM glutaraldehyde. (D) Chemical cross-
linking of gephyrin-200 reveals dimers. Lane 1, gephyrin-200; lane
2, gephyrin-200 incubated with 1mM and lane 3 with 5mM
glutaraldehyde. (E) Chemical crosslinking of gephyrin-200, which
was not yet completely equilibrated into pH 8.0 buffer, reveals
dimers (2) and, to a lesser extent, multimers of dimers (asterisks).
Lane 1, gephyrin-200; lane 2, gephyrin-200 incubated with 5mM
glutaraldehyde. Final crosslinking products are indicated with an
asterisk.
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a pH 8 buffer produced a ladder of bands on SDS–PAGE upon

chemical crosslinking, whose electrophoretic mobilities were

consistent with dimeric, tetrameric and higher order com-

plexes of dimeric gephyrin (Figure 1E). This was confirmed

by electrospray ionization mass spectroscopy of ammonium

acetate-treated gephyrin-300, which resulted in peaks corre-

sponding to dimers (163189.0Da; calculated molecular

weight of the monomer 81 302Da), tetramers (326 410.9Da)

and hexamers (489 599Da). Equilibrated at pH 8.0, gephyrin-

200 was monodisperse as judged by gel filtration (data not

shown), consistent with a transition from a trimer to a stable

dimer.

Negative staining electron microscopy

of low-pH-treated gephyrin-300

Negative staining electron microscopy (EM) of low-pH-trea-

ted gephyrin-300 revealed aggregates that appeared to be

ordered (data not shown). In an attempt to simulate native

trimeric gephyrin binding to membrane-anchored GlyRs, we

produced proteoliposomes coated with His–GST–

GlyRb(HR378–426) peptides in complex with gephyrin-300.

These proteoliposomes showed clearly visible extensions

upon EM analysis (Figure 2A), while control liposomes with-

out gephyrin-300 showed a smooth surface (Figure 2B).

When the His–GST–GlyRb(HR378–426)–gephyrin-300 pro-

teoliposomes were dialyzed against ammonium acetate and

then treated with detergent prior to EM analysis, irregular

protein networks and loosely organized structures showing

spacings of B10 nm were observed (Figure 2C). After re-

solubilization at pH 8.0, gephyrin-200 appeared as irregular

single particles upon negative staining EM analysis

(Figure 2D). Together, these data show that ammonium

acetate treatment of gephyrin-300 induced the formation of

imperfect gephyrin ‘clusters’ in vitro that can be dissolved to

produce dimeric gephyrin-200.

Characterization of gephyrin binding

to a GlyR b-subunit-derived peptide

Purified gephyrin-300 was incubated with an excess of pep-

tide derived from the cytoplasmic loop of the b-chain of the

glycine inhibitory receptor GlyRb(378–426His) and com-

plexes were separated by gel filtration from free peptide.

Co-elution of gephyrin-300 and GlyRb(378–426His) was con-

firmed by SDS–PAGE (data not shown) and gephyrin–b-
peptide complex formation was further analyzed by native

gel electrophoresis. This showed that unliganded gephyrin

(Figure 3A, lane 2) migrated substantially faster than gephyr-

in incubated with increasing amounts of GlyRb(378–426His)
(Figure 3A, lanes 3–7). Furthermore, gephyrin-300–

GlyRb(378–426His) complexes purified by gel filtration

(Figure 3A, lane 1) migrated at the same position as fully

saturated complexes (Figure 3A, see lanes 1 and 7), indicat-

ing that the gephyrin trimer binds GlyRb(378–426His) with

an affinity that is high enough to prevent dissociation during

gel filtration. These results are consistent with the tight

association of gephyrin with native GlyRs upon affinity

purification (Schmitt et al, 1987).

We then established that gephyrin-E was sufficient for

interaction with the GlyR b-subunit peptide since upon size-

exclusion chromatography GlyRb(378–426) co-eluted with

dimeric gephyrin-E (data not shown). In order to estimate

peptide occupancy of gephyrin-E, we performed native gel

electrophoresis experiments. Gephyrin-E migrated as a single

band on a native gel (Figure 3B, lane 1), while the gephyrin-

E–GlyRb(378–426) complex purified by gel filtration (data

not shown) produced a band migrating slightly more slowly

(Figure 3B, lane 2). Preincubation of gel-filtered gephyrin-E–

GlyRb(378–426) complexes with an approximately five-fold

molar excess of free peptide significantly enhanced the band

shift, as indicated by a further reduction in electrophoretic

mobility of the gephyrin–peptide complex (Figure 3B, lane 3).

No band shift was observed with an unrelated peptide

(Figure 3B, lane 4). This suggested that gephyrin-E–

GlyRb(378–426) complexes purified by gel filtration chroma-

tography did not exhibit full peptide occupancy.

To further analyze the interaction of gephyrin-E with

GlyRb(378–426), we performed surface plasmon resonance

(SPR) measurements. The SPR responses measured at 251C
indicated a clear concentration-dependent binding of gephyr-

in-E (Figure 3C) and could be fitted to a bivalent analyte

model with two distinct binding affinities. The respective

affinity constants KAB1 and KAB2 were found to be in the range

of 4�10�10–1.1�10�6M. The large difference in binding

affinities between the two binding sites is in agreement

with the peptide binding data obtained by gel filtration and

native gel analysis. Therefore, our data indicate that gephyr-

in-E binds two GlyR b-loop peptides with two rather distinct

affinities. We propose that this reflects steric hindrance and/

or allosteric interactions between the two sites present in the

gephyrin-E dimer.

Consistent with this interpretation, a similar differential

binding of the GlyR b-peptide was observed for full-length

gephyrin-200. Incubation of equimolar ratios of gephyrin-200

Figure 2 Negative staining EM of ‘activated’ gephyrin-300. (A)
Proteoliposomes decorated with complexes formed by His–GST–
GlyRb(HR378–426) and gephyrin-300 (see arrows) (scale bar,
100 nm). (B) Control proteoliposomes containing only the His–
GST–GlyRb(HR378–426) fusion protein only. (C) Proteoliposomes
containing GlyR–gephyrin-300 complexes (as seen in A) were
dialyzed against ammonium acetate and liposomes were briefly
‘solubilized’ in 1% b-octyl glucopyranoside prior to staining with
uranylacetate. Network formation is schematically indicated for two
areas highlighted by white squares next to panel C. (D) Soluble full-
length gephyrin-200 shows single irregular particles. Some are
indicated by black squares. Panels B–D are shown in the same
magnification as indicated in panel A.
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and GlyR b-peptide led to a first band shift (Figure 3D, lanes 3

and 4, compared to unliganded gephyrin-200, lane 1) while

an excess of GlyRb(HR378–426) caused a further reduction in

electrophoretic mobility (Figure 3D, lane 6). These data are in

agreement with gephyrin-200 originating from dimerization

of the E-domains, which, as outlined above, contribute

differentially to GlyRb(378–426) binding.

Crystal structure of dimeric gephyrin-E in complex

with a GlyR peptide

Gephyrin-E–GlyRb(378–426) complexes purified by gel filtra-

tion produced diffraction quality crystals, while gephyrin-E

completely saturated with GlyRb(378–426) (see Figure 3B,

lane 3) did not crystallize. The crystal structure of the

complexes obtained by gel filtration revealed a dimeric

molecule composed of two pseudosymmetrically arranged

monomers. The structure of the gephyrin-E monomer within

this dimer is L-shaped and composed of domains I, II, III and

IV (Figure 4A). At the N-terminus a short helical segment

(alpha1) packs within domain III, but is quickly followed by

domain I, whose four b-strands and two helices constitute a

small core that together with the following extended main

chain forms a bridge between domains III and II. Within the

dimer, domain II is rather flexibly linked as indicated by its

slightly different orientation (Figure 4B) and is composed of a

central four-stranded b-sheet and several extensive loops.

From domain II the chain follows an antiparallel extended

path toward domain I and subsequently to domain III. The

Figure 4 Crystal structure of gephyrin-E in complex with
GlyRb(378–426). (A) Ribbon diagram of the monomer showing
the four subdomains I, II, III and IV. The secondary structure
elements are labeled (b-strands as numbers, alpha helices as a1,
etc. and 3/10 helices as 3/10). The N-terminus starts at residue 318
and the C-terminal end comprises residue 736. The representation
of the individual domains in the linear sequence is shown schema-
tically underneath. (B) Ribbon diagram of the gephyrin-E dimer;
one monomer is shown with the same domain colors as in panel A
and the second one is shown in white. GlyR peptide bound to
domain IV is shown in magenta. Dimerization buries the C-terminal
ends at the interface of domains IV and IV0, while the N-terminus is
freely accessible to connect to the intermediate domain. The posi-
tion of the proposed MPT binding site constituted by domains II and
III0 is indicated by an arrow. (C) Close-up of the position of extra
electron density (Fo–Fc omit map; 2.5 sigma cutoff) accounting for a
partial GlyR peptide model. The poly-Ala model (shown in magen-
ta) could potentially be a GlyR peptide-derived b-strand that runs
parallel to b 26 of domain IV.

Figure 3 GlyRb(378–426) peptide interaction with different iso-
forms of gephyrin. (A) Lane 1, native gel electrophoresis of a
gephyrin-300–GlyRb(HR378–426) complex purified by gel filtration;
lane 2, gephyrin-300; lanes 3–7, gephyrin-300 was incubated with
increasing concentrations of GlyRb(HR378–426) (lane 5
Bequimolar ratios and lane 7 a five-fold molar excess of peptide);
the shift in mobility is the same in lanes 1 and 7 (see line),
indicating that gephyrin-300 binds GlyRb(HR378–426) with ‘high’
affinity, which allows purification of a fully saturated complex by
gel filtration. (B) Gephyrin-E binds GlyRb(378–426) with two
different affinities. Lane 1, gephyrin-E; lane 2, gephyrin in complex
with GlyRb(378–426) as co-eluted from a superdex-200 gel filtration
column; lane 3, gephyrin-E incubated with a five-fold molar excess
of GlyRb(378–426), which leads to a further band shift as indicated
by the two lines; lane 4, gephyrin-E incubated with an unrelated
control peptide. (C) Binding of gephyrin-E to immobilized
GlyRb(HR378–426) peptides as assayed by SPR. The experimental
sensorgrams derived from increasing gephyrin concentrations (1–
40 nM) were best fitted to a bivalent analyte model with excellent w2

values (o0.5) for the whole concentration range. Experimental
curves are shown with the fitted ones overlaid. (D) Gephyrin-200
binds GlyRb(HR378–426) with two different affinities. Lane 1,
gephyrin-200; lanes 2–6, complexes formed by adding increasing
concentrations of GlyRb(HR378–426) (lane 3 Bequimolar ratios
and lane 6 a five-fold molar excess of GlyRb). The two proposed
binding steps are indicated by two lines that represent bands before
binding and a fully saturated complex, while intermediate forms
migrate in between.

Gephyrin conformations and their role in GlyR clustering
M Sola et al

&2004 European Molecular Biology Organization The EMBO Journal VOL 23 | NO 13 | 2004 2513



latter displays an alpha/beta arrangement composed of a

central b-sheet surrounded by a-helices on both sides.

Finally, domain III connects to domain IV, which forms the

upper part of the L-shape and consists of five antiparallel b-
strands with two parallel extended loops that contain two

additional b-strands (Figure 4A). Domain IV also harbors the

proposed GlyRb(378–426) peptide binding sites (Figure 4B).

GlyR b-peptide binding site of gephyrin-E

An Fo–Fc omit electron density map contoured at 2.5 sigma

revealed extra electron density in a depression located be-

tween b-strands 25, 27, 28, 29 and their connecting loops

(Figure 4C). The density is positioned parallel to b29 and

perpendicular to b27 and extends into both directions (visible

at a lower s cutoff). Although the extra electron density was

continuous in one monomer, the second monomer only

showed clusters of electron density at the corresponding

position. The connected electron density was of insufficient

quality to identify sequence patterns but accommodated a

modeled six residue-long Ala–Gly peptide, which could re-

present a short b-strand that corresponds to a section of the

GlyRb(378–426) peptide present in the complex crystallized.

The poor quality of the electron density most likely reflects a

reduced occupancy of the GlyRb(378–426) binding site in our

crystals (see Figure 3B). In addition, the crystals could be

only cryo-protected in 2.5M Li2SO4, which further decreased

the peptide binding, as detected by SDS–PAGE analysis of

crystals after different soaking times (data not shown).

Confirmation of the proposed GlyR b binding site

In order to confirm the crystallographically determined posi-

tion of GlyRb(378–426) binding, we substituted the sequence

of the nonconserved loop region connecting b-strands 27 and

28 (residues 713–721) by that of MoeA, which is shorter by

three residues. The resulting gephyrin-E mutant (gephyrin-

Emut) no longer bound GlyRb(378–426) peptides, as revealed
by native gel electrophoresis where incubation of gephyrin-

Emut with a molar excess of GlyRb(378–426HIS) produced no

change in mobility (Figure 5A, lanes 1–3). In contrast, native

gephyrin-E showed a clear band shift under identical condi-

tions (Figure 5A, lanes 4–6; similar to Figure 3B). Gephyrin-

Emut eluted at the same position from a gel filtration column

as native gephyrin-E and could be crosslinked to a dimer as

found for wild-type gephyrin-E (Figure 5B), indicating that

the loop replacement did not alter the overall behavior of the

protein. Finally, upon heterologous expression in HEK 293

cells, full-length gephyrinmut failed to recruit a DsRed–

GlyRb(378–426) fusion protein to gephyrin-rich intracellular

domains (Figure 5C), a property that is characteristic of wild-

type gephyrin as indicated by the colocalization of gephyrin

and GlyRb fusion proteins in intracellular aggregates

(Figure 5D) (Meyer et al, 1995; Kneussel et al, 1999b).

Complementary results were obtained in pull-down experi-

ments with mutated full-length gephyrin (gephyrinmut),

which showed that the GlyRb–GST fusion protein was able

to pull down native gephyrin but not gephyrinmut (Figure 5E,

lanes 2 and 4). Notably, under the same conditions, interac-

tion of Dlc with both native gephyrin and gephyrinmut was

unchanged (Figure 5E, lanes 3 and 6). Thus, loop 713–721 is

important for GlyR(378–426) binding in vitro and in vivo, as

indicated by the crystal structure.

Structure of the gephyrin-E dimer interface

and sequence conservation

Dimerization of gephyrin-E has been proposed to be

important for enzymatic activity as well as for receptor

clustering (Kneussel and Betz, 2000; Xiang et al, 2001).

The crystal structure of gephyrin-E reveals that the dimer

(monomers A and B) is stabilized primarily by an antipara-

llel packing of domains I and III against the same domains

I0 and III0 of the symmetry-related monomer. Domains IV

and IV0, which are related by a two-fold axis, also partici-

pate in dimer formation, while domains II and II0 extend

from the core (Figure 4B). The dimer interface buries a

large surface of 3610 Å2 and is dominated by polar inter-

actions with contributions from van der Waals contacts.

Notably, although mammalian gephyrin-E and E. coli

MoeA display 45% sequence similarity, most dimer–dimer

interactions are mediated by nonconserved residues (Figure

6A and B).

Figure 5 A gephyrin mutant that does not bind GlyRb peptides. (A)
Gephyrin-Emut did not bind GlyRb(HR378–426). Native gel electro-
phoresis of gephyrin-Emut–GlyR complexes compared to native
gephyrin-E–GlyR complexes. Lane 1, gephyrin-Emut; lane 2 gephyr-
in-Emut incubated with equimolar and lane 3 with a five-fold molar
excess of GlyRb(HR378–426) peptide. Lane 4, gephyrin-E; lanes 5
and 6, gephyrin-E–GlyRb(HR378–426) complexes (equimolar
amounts and a five-fold molar excess, respectively). Note that
unliganded gephyrin-Emut migrates in a different manner compared
to wild-type gephyrin-E due to the loop exchange. Similar band
positions are indicated by lines. (B) Chemical crosslinking of
gephyrin-Emut results in the same dimer as obtained with wild-
type gephyrin-E. Lane 1, gephyrin-Emut; lanes 2 and 3, gephyrin-
Emut crosslinked with 1 and 10mM EGS, respectively. (C, D) HEK
293 cells were cotransfected with DsRed–GlyRb(378–426) and GFP–
gephyrinmut (C) or wild-type GFP–gephyrin (D). Colocalization is
indicated by the yellow color in the overlay. Occasionally, DsRed–
GlyRb(378–426) is also found in the nucleus, as previously ob-
served (Kneussel et al, 1999b). Scale bar, 8mm. (E) Pull-down of
full-length gephyrin and gephyrinmut. Full-length gephyrin pull-
down with GST (lane1), GST–GlyRb(378–426) (lane 2) and GST–
Dlc (lane 3). Full-length gephyrinmut pull-down with GST (lane 4),
GST–GlyRb(378–426) (lane 5) and GST–Dlc (lane 6).
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Similarly, sequence conservation between surface residues

is only limited and confined to larger surface patches on

domains II and III (Figure 6B and C). Residues from these

domains have been proposed to constitute the proposed

active site positioned at the interface of domains II and III0

(Xiang et al, 2001). Specifically, residues Gly414 (domain II;

Figure 6B) and Asp549 (domain III0; Figure 6C) have been

implicated by mutagenesis in MPT binding (Heck et al, 2002)

and the conserved sequence 572–GGVS–575 (Figure 6C) has

been suggested to be important for the enzymatic activity of

E-domains (Schwarz et al, 2000; Xiang et al, 2001).

Superpositioning of the C-alpha atoms of bacterial MoeA

(pdb 1g8r) and gephyrin-E reveals an overall similar structure

and an r.m.s.d. of 4.2 Å (Figure 7A). Main differences are due

to movements of domains IV and II, which result in a slight

rotation of domain IV and an B20 Å displacement of domain

II (Figure 7A). The movement of domain II might play a role

in the catalytic activity, as a transition of the cleft between

domains II and III0 from a ‘closed’ conformation as seen in

gephyrin-E to a more open conformation as found in MoeA

might influence MPT binding. Notably, this would reduce the

distance between active site residues Asp549 and Gly414 to

B13 Å (Figure 7B) as compared to a distance of B18 Å in the

case of the homologous MoeA residues (Figure 7C) (Schwarz

et al, 2000; Xiang et al, 2001; Heck et al, 2002).

Discussion

In this work, we present the crystal structure of gephyrin-E

and evidence that full-length gephyrin can exist in three

different oligomeric states: trimers (gephyrin-300), ‘aggre-

gates’ and dimeric gephyrin (gephyrin-200), which all bind

a peptide derived from the GlyR b-subunit. We further con-

firm that the E-domain of gephyrin is sufficient for the GlyR

interaction (Rees et al, 2003; Schrader et al, 2004), a result

that is in contrast to the proposal that splice cassette 5 located

within the G-domain (Figure 1A) is involved in GlyR recogni-

tion (Meier et al, 2000; Meier and Grantyn, 2004).

Structural comparison of gephyrin-E and MoeA

The crystal structure of gephyrin-E reveals a dimer that is

composed of four subdomains, as shown for its bacterial

homolog MoeA (Xiang et al, 2001). Due to their conserved

function in MoCo biosynthesis, the overall structures of

gephyrin-E and bacterial MoeA are highly similar. The main

structural differences are due to movements of domains IV

Figure 6 Dimer interface analysis and sequence conservation. (A)
Sequence conservation was mapped onto the surface of monomeric
gephyrin-E based on the alignment of sequences from gephyrin-E
from R. norvegicus, gephyrin from Gallus gallus, cinnamon E-
domain from Drosophila melanogaster, Moco-1 E-domain from
Caenorhabditis elegans, the Cnx1 E-domain from Arabidopsis thali-
ana, CnxE from Aspergillus nidulans and MoeA from E. coli.
Conserved residues are shown in blue and conservative changes
in light blue; white, no homology. Residues involved in dimer
contacts are labeled. (B) same as (A) but rotated by 1801. (C)
Close-up of a major surface sequence conservation patch at domain
III. Residues implicated in MPT binding (Asp549) and catalysis
(residues 572–575) are shown in yellow.

Figure 7 Comparision of gephyrin-E and the E. coliMoeA structure.
(A) Superposition of C-alpha atoms of one gephyrin-E monomer
and one MoeA monomer (Xiang et al, 2001). The r.m.s.d. between
the two monomers is 4.2 Å. (B, C) The movement of domain II leads
to a more closed conformation of gephyrin-E with respect to the
putative active site when compared to MoeA. This positions MPT
binding residues Gly414 closer to Asp549 (B) than the correspond-
ing residues Gly101 and Asp228 from MoeA (C). The corresponding
monomers in panels B and C are shown as ribbon diagrams in
different colors and the residues implicated in catalysis are shown
as a ball and stick model.
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and II. Conformational flexibility of domain II might be

important for its enzymatic activity, which locates to a cleft

formed by domains II and III0 (Schwarz et al, 2000; Xiang et al,

2001; Heck et al, 2002) as it might allow for ‘close’ and ‘open’

conformations of the active site cleft. Closure would bring

residues Gly414 and Asp549 (gephyrin domain II) as well as

conserved residues 573–575 (domain III0), all implicated in

MPT binding and catalytic activity, into close proximity

(Schwarz et al, 2000; Xiang et al, 2001; Heck et al, 2002).

Stallmeyer et al (1999) have speculated that such conforma-

tional flexibility could account for the cooperativity of MPT

binding, which might contribute to an allosteric mechanism

of MoeA function (Xiang et al, 2001). The proposed flexibility

is also consistent with the two slightly different conforma-

tions of both domains II and II0 within our gephyrin-E dimer

structure.

GlyR b-peptide interaction with gephyrin

The gephyrin GlyR receptor interaction (Schmitt et al, 1987;

Prior et al, 1992) has been previously mapped to 49 amino

acids of the cytoplasmic loop connecting the third and the

fourth transmembrane domains of the b-subunit (Meyer et al,

1995; Kneussel et al, 1999b). Gel filtration chromatography,

native gel electrophoresis and SPR experiments suggest that

full-length gephyrin-300 binds GlyR b-subunit peptides with

high affinity while the dimers gephyrin-200 and gephyrin-E

display both high-affinity binding (such as nanomolar bind-

ing and complex identification by gel filtration) and low-

affinity binding (in the micromolar range and dissociation

under gel filtration). Dual-affinity binding of a GlyR b-peptide
to gephyrin-E has recently also been reported by Schrader et al

(2004); however, the KD’s derived from our SPR experiments

and their isothermal titration calorimetry measurements dif-

fer, which might be attributed to substantial differences in

experimental setups (see Schrader et al, 2004).

Our experiments suggest that dimerization of the E-domain

transforms one high-affinity site into a low-affinity one,

probably due to steric hindrance. Notably, the crystal struc-

ture showed low occupancy by GlyR b-subunit peptide, since
only gel-filtered complexes could be crystallized. In addition,

cryo-protection of the crystals required high salt, which might

have further reduced GlyR b-peptide binding. Although the

structure of the gephyrin-E GlyR b-subunit complex reveals

electron density that could be attributed to the b-subunit
peptide bound to domain IV, we used mutagenesis analyses

to corroborate the localization of the GlyR b-peptide binding

site for both the E-domain dimer and full-length gephyrin.

The position of the binding site indicates that the E-domain

acquired the additional GlyR binding function by insertion of

b-strand 28 as part of a longer loop connecting b-strands 27

and 29, which is not found in MoeA (Xiang et al, 2001).

Interestingly, the peptide binding site identified here is ideally

positioned to allow interaction of the E-domain dimer with

membrane-anchored GlyRs (Figure 8A), which is consistent

with the proposal that E-domain dimerization is involved in

receptor clustering (Kneussel and Betz, 2000; Xiang et al,

2001).

E-domain monomer/trimer to dimer transition

In gephyrin-300, the E-domain should be contained as a

monomer within the trimeric structure. This implies that E-

domain dimerization must be prevented either by a confor-

mation that differs from that observed in the crystal structure,

or by masking the dimerization interface through interactions

with the intermediate domain. In addition, a limited sequence

conservation as observed at the dimer interface has been

generally predicted to be common to proteins that form

transient oligomers (Nooren and Thornton, 2003). Our data

suggest that the E-domain is in a metastable conformation

within native gephyrin-300. Hence, a regulated removal of

specific trimerization constraints appears to be required for

dimerization. In vitro, this can be achieved by proteolysis or

ammonium acetate treatment. In vivo, a specific, yet un-

known signal might trigger the conformational rearrange-

ments that induce(s) E-domain dimerization.

Network formation of gephyrin in vitro

E-domain dimerization has been proposed to cause clustering

of GlyRs by forming a gephyrin scaffold (Kneussel and Betz,

2000; Xiang et al, 2001). Our in vitro data show that gephyrin-

300 can be ‘activated’ to form a protein network with no

defined higher order by lowering the pH from 8.0 to 6.7. The

lack of symmetry seen in EM might be due to the absence of

correct anchors both to the membrane and/or the cytoskele-

ton (Kirsch and Betz, 1995; Kneussel and Betz, 2000).

Figure 8 Model for network formation and GlyR docking by ge-
phyrin-300. (A) The E-domain dimer might either interact with b-
subunits from two different GlyR receptors (left panel) or with two
b-subunits derived from one GlyR receptor (right panel). High- and
low-affinity interactions with GlyR b-subunits are indicated (H, L).
(B) E-domain dimerization could potentially form a hexagonal
network as viewed from the top. The G- and E-domains are
shown as ribbon and the intermediate domain is drawn schemati-
cally. Each monomer chain is color coded differently.
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However, as the three-fold symmetry axis of the G-domain

and the two-fold symmetry axis of the E-domain have to be

related by a fixed angle to generate the hypothesized hex-

agonal network (Kneussel and Betz, 2000), internal flexibility

might prevent ordered polymerization resulting in an ‘open’

network with multiple shapes as observed here.

Unexpectedly, pH shift induced disassembly of the net-

work formed in vitro and produced dimeric gephyrin-200, as

confirmed by mass spectroscopy, which implies that the N-

terminal G-domain trimer (Sola et al 2001) can disassemble

under close to physiological conditions.

Implications for dynamic GlyR clustering

Based on these findings, we propose the following model for

gephyrin scaffolding at the synapse (Figure 8). In the cytosol,

gephyrin folds into a trimeric conformation, which is meta-

stable and prevents dimerization of the E-domains. Via its E-

domains gephyrin-300 can bind to membrane-anchored

GlyRs, which are either contained in transport vesicles

(Hanus et al, 2004) or have been randomly inserted into

the neuronal somatodendritic membrane (Rosenberg et al,

2001). A yet unknown signal such as phosphorylation or

acylation then triggers a conformational change of gephyr-

in-300 that initiates the dimerization of E-domains belonging

to different trimers (Figure 8A). E-domain dimerization also

creates two adjacent GlyR b-subunit binding sites, of which

one displays only low affinity. As heteromeric GlyRs contain

multiple copies of the b-subunit (Moss and Smart, 2001) (J

Grudzinska, H Betz and B Laube, unpublished data), this

low-affinity site might recruit a free b-subunit loop region

from an already prebound GlyR, and thus contribute to the

stability of the submembranous gephyrin lattice through

GlyR-mediated crosslinking of the E-domain dimer. Due to

the length of the cytoplasmic GlyR b-subunit M3–M4 loop

region (B100 amino acids), dimeric gephyrin-E might either

dock onto two b-chains derived from two different GlyRs or

onto two b-chains within one pentameric GlyR (Figure 8A).

E-domain dimerization then leads to the formation of a

submembranous gephyrin network, which might be hexa-

gonal as previously suggested (Figure 8B) (Kirsch and Betz,

1995) or more loosely organized as indicated by our in vitro

data (Figure 2C).

In order to enable dynamic changes of the postsynaptic

specialization, disassembly of the gephyrin scaffold must also

occur. Single receptor tracking has identified three major

GlyR pools in differentiating neurons that have distinct

diffusion properties: mobile extrasynaptic receptors that are

not associated with gephyrin, less mobile perisynaptic recep-

tors that may have gephyrin bound and slowly diffusing

synaptic receptors anchored to the gephyrin scaffold

(Dahan et al, 2003). Notably, rapid dynamic exchanges are

seen between these receptor pools, in agreement with pre-

vious studies that postulated that GlyRs are clustered by a

diffusion-trap mechanism during synaptogenesis (Kirsch and

Betz, 1998; Levi et al, 1998). Our in vitro data suggest that

disassembly of the gephyrin lattice might produce gephyrin-

200, which is dimeric most likely due to E-domain dimeriza-

tion. In this case, the N-terminal trimeric G-domains must

disassemble for network opening and GlyR release from

synaptic sites. Disassembly of the gephyrin scaffold might

be further facilitated by one of the E-domain interactions with

GlyR b-loop sequences being of only low affinity. As a result,

mobile gephyrin-200–GlyR complexes that could be endocy-

tosed or move laterally out of the postsynaptic membrane

would be generated. On the other hand, newly assembled

gephyrin-300–GlyR complexes may enter the synapse and

participate in receptor clustering. In conclusion, we propose

that conformational transitions of gephyrin regulate both

its assembly state and its interactions with inhibitory

receptors, and thereby allow for a dynamic regulation of

receptor density during synapse formation, modification

and elimination.

Materials and methods

Expression vectors
The cDNA encoding full-length gephyrin (amino acids 1–736) from
Rattus norvegicus (Swissprot Q03555) was cloned into the pRSET
expression vector (Invitrogen) using NheI and HindIII sites and
expressed as an N-terminally 6-His-tagged recombinant protein.
cDNA fragment corresponding to residues 316–736 was subcloned
into a modified pMAL-c2g vector (New England Biolabs) containing
a TEV protease cleavage site and into pRSET. In full-length
gephyrinmut and gephyrin-Emut, residues 713–721 (PPKTEQYVE)
were replaced by the corresponding residues of E. coli MoeA
(ERDRGN) by using a standard PCR mutagenesis protocol and
cloned into pRSET using NheI and HindIII restriction sites.

A cDNA fragment encoding residues 378–426 (49 amino acids)
(Meyer et al, 1995) of the GlyR b-subunit was subcloned into the
modified pMAL-c2g-TEV vector and a pETM30 vector (EMBL-
Heidelberg, Protein Expression Facility). The pETM30 constructs
were further modified to contain either a C-terminal 6-His tag,
GlyRb(378–426His), or two extra N-terminal residues (His, Arg),
GlyRb(HR378–426). The sequences of all expression constructs
were confirmed by DNA sequencing.

Protein expression and purification
Protein expression was performed in E. coli strains BL21 codon
plusTM (Invitrogen) and BL21 (DE3) pLysS (Novagen). Recombi-
nant proteins were purified on an Ni2þ affinity matrix, amylose
resin or on glutathione agarose as described (Supplementary data).
Expression of gephyrin constructs in mammalian (HEK) 293 cells
was performed as described (Kneussel et al, 1999b; Fuhrmann et al,
2002). The conditions for the GST pull-down are described
elsewhere (Supplementary data).

Limited proteolysis of full-length gephyrin
A 1mg portion of full-length gephyrin-300 was treated with trypsin
at a 1:500 (w/w) ratio and the reaction was stopped with 1mM
PMSF. The resulting fragments were analyzed by N-terminal
sequencing and mass spectroscopy.

Crosslinking of gephyrin oligomers
Samples (buffer D, 50mM Hepes (pH 8.0), 100mM NaCl, 20mM b-
mercaptoethanol) were incubated at room temperature for 20min
with glutaraldehyde concentrations as indicated. Gephyrin-Emut

was crosslinked with ethylene glycol bis[succinimidyl succinate]
(EGS) in buffer D (without b-mercaptoethanol) and reactions were
quenched by adding Tris (pH 8.0) to a final concentration of 50mM.

Gephyrin–GlyR peptide complex formation
Gephyrin-300, gephyrin-200, gephyrin-E and gephyrin-Emut were
incubated with increasing amounts of either purified GlyRb(378–
426) or GlyRb(HR378–426) peptides (molar ratios up to 1:5) as
indicated on ice for 1 h. Gephyrin-E was also incubated with an
unrelated control peptide (YTSLIHSLIEESQNQQEKNEQELLELDK-
WASLWNWF). The mobility of the complexes was analyzed by
either 9 or 7% nondenaturing polyacrylamide gel electrophoresis.

Surface plasmon resonance
SPR measurements were performed at 251C on a BIAcore 3000
(BIACORE AB, Uppsala, Sweden) as described (Supplementary
data).
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Ammonium acetate (pH 6.7) treatment of gephyrin-300 in
vitro
Gephyrin-300 (1mg/ml) purified from gel filtration was dialyzed
against 50mM ammonium acetate (pH 6.7) and 20mM b-
mercaptoethanol. Precipitation was visualized after 3–4h and the
dialysis buffer was exchanged against buffer D and further dialyzed
until the solution was clear again (430min).

‘Native’ mass spectroscopy
The measurements were carried out on an ESI-Q-Tof2 instrument
(Micromass, Manchester, UK) under native like conditions (100mM
ammonium acetate). MassLynx software (Micromass) was used for
the deconvolution analysis.

Preparation of liposomes coated with dimeric GlyR peptides
and gephyrin-300
Liposomes containing 20% (w/v) 1,2-dioleoyl-sn-glycero-3-[N-(5-
amino-1-carboxypentyl)iminodiacetic acid)succinyl (DOGS-NTA)
(Avanti Polar Lipids), 75% (w/v) phosphatidylcholine (Sigma)
and 0.5% cholesterol (w/v) (Sigma) were produced as described
(Supplementary data).

Electron microscopy of gephyrin
Samples were applied to the clean side of carbon on mica (carbon/
mica interface) and negatively stained with either 1% uranyl
acetate (gephyrin-200; proteoliposomes after ammonium acetate
treatment) or 1% sodium silicotungstate (proteoliposomes coated
with either His–GST–GlyRb(HR378–426) or His–GST–
GlyRb(HR378–426)–gephyrin-300 as described (Supplementary
data).

Crystallization of gephyrin-E in complex with GlyRb(378–426)
Crystals of gephyrin-E in complex with GlyRb(378–426) (in 20mM
Tris (pH 8), 100mM NaCl, 25mM b-mercaptoethanol at 7.5mg/ml)
were obtained by mixing 1ml of reservoir buffer (1M Li2SO4, 10mM
MgCl2, 50mM Na-cacodylate (pH 6.0)) with 1ml of protein solution.
For cryoprotection, the crystals were gradually (200mM steps,
20min each) transferred into the well buffer adjusted to 2.5M
Li2SO4.

Data collection, structure solution and refinement
Diffraction data were collected at the European Synchrotron
Radiation Facility (Grenoble, France) at beam line ID14-EH2. The
data were processed using the programs Mosflm and SCALA (CCP4,
1994) (see Table I). The structure was solved by molecular
replacement as described (Supplementary data).

The final model was refined to an R-factor of 25.0 and an Rfree of
30.4. The model exhibits good stereochemistry (Table I) and 98% of

the residues are in most favored and additionally allowed regions
according to the Ramachandran plot as defined in PROCHECK
(Laskowsky et al, 1993). Monomer A consists of residues 318–574,
580–697 and 700–736 (side chains of residues 318, 319, 580, 695–
697 and 736 were modeled as alanines) and monomer B contains
residues 318–430 and 445–736 (residues 318, 319, 445–447 and 736
were modeled as alanine). In addition, eight sulfate ions were
included in the refinement. For structure analysis, see Supplemen-
tary data. The coordinates have been deposited in the RCSB Protein
Data Bank (accession code 1T3E).

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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