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Abstract 

Graphitic carbon nanostructures have been synthesized from cellulose via a simple 

methodology that essentially consists of the steps: i) hydrothermal treatment of cellulose 

at 250ºC and ii) impregnation of the carbonaceous product with a nickel salt followed 

by thermal treatment at 900ºC. The formation of graphitic carbon nanostructures seems 

to occur by a dissolution-precipitation mechanism in which amorphous carbon is 

dissolved in the catalyst nanoparticles and then precipitated as graphitic carbon around 

the catalyst particles. The subsequent removal of the nickel nanoparticles and 

amorphous carbon by oxidative treatment leads to graphitic nanostructures with a coil 

morphology. This material exhibits a high degree of crystallinity and large and 

accessible surface area.  
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1. Introduction 

Carbon nanostructures are receiving widespread attention due to their attractive 

chemical and physical properties (i.e. chemical resistance, mechanical strength, good 

thermal and electrical conductivity and high external surface area), which make them 

suitable for applications in areas such as electron field emission, storage and production 

of energy, hydrogen storage, nanocomposites, catalyst support or drug delivery [1-4]. 

These nanostructures can be synthesized in a wide variety of morphologies, such as 

tubes, fibers, onions, horns, capsules, ribbons or coils [2, 3, 5-7]. This type of materials 

is normally synthesized under harsh conditions (T > 5000ºC), by means of a laser, 

plasma or arch discharge [5, 8, 9]. However, the use of a catalyst may lead to a 

softening of the synthesis conditions and a reduction of the temperature at values as low 

as 600ºC [10]. The chemicals that act as catalyst in the graphitization process are 

transition metals, such as V, Zr, Pt, Ti, Al, Mn, Fe, Co, or Ni [11, 12], or metallic 

compounds, such as Cr2O3, MnO2, MnO3 or Fe3O4 [12, 13]. Among these, Fe, Ni and 

Co have been found to be particularly effective as catalysts in the production of 

graphitic structures at temperatures < 1000ºC [14, 15]. This catalytic process makes it 

possible to transform both the graphitizing and non-graphitizing precursors into 

graphitic carbon, thereby broadening its applicability to a wider range of substances. Of 

course, the use of cheap precursors would reduce considerably the cost of the process. 

Among the possible carbon precursors, saccharides are widely available and low-priced. 

However, cellulose is the cheapest and most abundant of all the naturally occurring 

organic compounds and, what is more, it is renewable. Although it is commonly used as 

precursor for activated carbons, to the best of our knowledge, it has only once been used 

to prepare graphitic carbon nanostructures [16]. In this case, the graphitic carbon 

nanostructures were synthesized at a very high temperature (laser pyrolysis), 2250ºC, 
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which increases the cost and complexity of the process. Here we investigate the use of 

cellulose as a starting point for fabricating graphitic nanostructures. The synthesis 

strategy involves two basic steps: a) the hydrothermal carbonization of cellulose at a 

temperature of around 250ºC to obtain an intermediate highly functionalized 

carbonaceous solid, here denoted as hydrochar, and b) the impregnation of the 

hydrochar with a nickel salt and its carbonization up to 900ºC. The nickel (Ni2+) which 

is incorporated into the hydrochar is converted into metallic nickel nanoparticles during 

carbonization. These nanoparticles act as a catalyst for the conversion of a fraction of 

the amorphous carbon formed into graphitic carbon. Two mechanisms have been 

proposed to explain the process of catalytic graphitization [12]: a) the dissolution-

precipitation mechanism, whereby amorphous carbon first dissolves into the metal 

catalyst, which then precipitates as graphitic carbon and b) the formation-decomposition 

of carbide intermediates, whereby the carbon forms a carbide with the metal, which then 

decomposes at a certain temperature, leaving behind graphitic carbon. In the present 

work, in order to clarify the mechanism of catalytic graphitization of cellulosic 

products, we paid special attention to the chemical transformations occurring during the 

heat treatment. Accordingly, the nickel impregnated hydrochar was subjected to heat 

treatments at different temperatures in the 300-900ºC range and characterized by X-ray 

diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy and 

transmission electron microscopy.  

2. Experimental 

2.1 Preparation of materials 

A cellulose-derived hydrochar material was used as carbon precursor in the synthesis of 

the graphitic carbon nanostructures. This material was obtained through the 

hydrothermal carbonization of cellulose (320 g·L-1) at 250ºC for 2 h [17]. After that, it 
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was subjected to the following processes: a) impregnation with a solution of nickel 

nitrate (Ni(NO3)2.6H2O) in ethanol (~ 3 mmol metal·g-1 C), b) heat-treatment under N2 

at 900ºC  (3ºC·min-1) for 3 h, c) oxidative treatment (under reflux for 2 h) of the solid 

product in an acid solution of potassium permanganate (molar composition of 

H2O/H2SO4/KMnO4 = 1:0.02:0.006). This last step allows the metal catalyst 

nanoparticles and the amorphous carbon to be removed. Finally the insoluble solid 

product (graphitic carbon nanoparticles) is separated by centrifugation, washed with 

HCl (10 wt %) in order to remove the MnO2 formed, rinsed with abundant distilled 

water and oven-dried at 120ºC for 2h.  

2.2 Characterization 

Scanning electron microscopy (SEM) microphotographs were obtained with a Zeiss 

DSM 942 microscope. Transmission electron microscopy (TEM) images were taken on 

a JEOL (JEM-2000 EX II) microscope operating at 160 kV, while the selected area 

electron diffraction (SAED) patterns of the graphitic carbon nanostructures were 

recorded on a JEOL (JEM-2000 FX) microscope operating at 200 kV. High-resolution 

transmission electron (HRTEM) micrographs were obtained on a JEOL (JEM-3000F) 

microscope operating at 300 kV. X-ray diffraction (XRD) patterns were recorded on a 

Siemens D5000 instrument operating at 40 kV and 20mA, using Cu Kα radiation (λ= 

0.15406 nm). The plane spacing, d002, was calculated by applying Bragg’s law to the 

(002) diffraction peak, whereas the crystallite sizes along the basal plane, La, and 

perpendicular to the basal plane, Lc, were deduced by means of Scherrer´s equation. The 

Raman spectra were recorded on a Horiva (LabRam HR-800) spectrometer. The source 

of radiation was a laser operating at a wavelength of 514 nm and a power of 25 mW. X-

ray photoelectron spectroscopy (XPS) was carried out by means of a Specs 

spectrometer, using MgKα (1253.6 eV) radiation from a double anode at 50 w. The 
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thermogravimetric experiments were performed in a C.I. Electronics analyser. 

Adsorption measurements of the graphitic carbon nanostructures were obtained using a 

Micromeritics ASAP 2020 volumetric physisorption system. The BET surface area was 

deduced from an isotherm analysis in the relative pressure range of 0.04–0.20. The total 

pore volume was calculated from the amount adsorbed at a relative pressure of 0.99. 

The external surface area (Sext) was estimated by means of the αs-plot method and a 

non-graphitized carbon black was used as reference [18].  

3. Results and Discussion 

3.1. Catalytic graphitization of cellulosic hydrochar 

A nickel impregnated hydrochar was subjected to heat treatment under nitrogen at 

different temperatures in the 300-900ºC range and the XRD patterns were recorded. These 

are depicted in Figure 1. When the nickel impregnated hydrochar is heat-treated at 300ºC, 

NiO nanoparticles appear in the carbonaceous matrix as a consequence of the 

decomposition of nickel nitrate, as evidenced by the appearance of X-ray diffraction 

peaks at 2θ ~ 36º, 43º and 62º which can be assigned respectively to the (111), (200) and 

(220) planes of the face-centered cubic structure of the NiO. For higher temperatures, the 

NiO nanoparticles are reduced by the carbon and consequently the XRD patterns only 

contain the peaks characteristic of the face-centered cubic structure phase of Ni (i.e. (111), 

(200) and (220) at 2θ ~ 44º, 52º and 76º respectively). These peaks become more intense 

as the carbonization temperature increases. This is due to the growth of the nickel 

nanoparticles, whose size increases from 4 nm (300ºC) to ~17 nm (900ºC), as was 

deduced by applying the Scherrer equation to the (111) peak of Ni. These transformations 

were also examined by thermogravimetric analysis of the nickel-impregnated hydrochar 

sample. Figure 2 shows the sample weight changes (weight loss and weight loss rate) that 

take place when the sample is heat-treated under nitrogen atmosphere. The continued 
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decrease in weight with the increase in temperature is due to the pyrolysis of the 

hydrochar and the decomposition of the nickel (II) nitrate hexahydrate into different 

nickel compounds. Three peaks can be identified in the weight loss rate graph. The peak 

at ~240ºC may be attributed to the partial decomposition of the nickel (II) nitrate 

hexahydrate as a previous step to its complete decomposition into NiO. Several studies 

have shown that the decomposition of nickel (II) nitrate hexahydrate is a complex process 

since the nickel decomposes before the removal of all the water of crystallization, into 

intermediate compounds, the exact composition of which has not yet been established 

[19-21]. The narrow peak at around 267ºC corresponds  to the decomposition of this 

intermediate compound into NiO, as supported by XRD analysis (see Figure 1), and the 

broad peak at ~385ºC is due to two superimposed processes: i) the reduction of NiO to Ni 

due to a redox reaction with carbon, as previously shown by XRD (see Figure 1) and ii) 

the carbonization of the hydrochar material (see TGA in ref. [17]). This TGA pattern 

differs from that obtained for the nickel nitrate-impregnated charcoal, where the reduction 

of NiO to Ni by means of carbon occurs at a higher temperature than in this case [22], 

which suggests that the hydrochar has a greater power of reduction. 

The XRD patterns displayed in Figure 1 also provide information about the structural 

changes in the carbonaceous matrix. Thus, for tempertatures < 700ºC no peak associated 

to the graphitic framework is detected, indicating that the carbonaceous matrix is 

amorphous. However, for T ≥ 700ºC a sharp peak appears at 2θ ~ 26º, which is attributed 

to the (002) reflection of the graphitic framework. This peak is superimposed on a broad 

band corresponding to amorphous carbon (see zoom in Figure 1). For T ≥ 730ºC, this 

reflection is more intense and is accompanied by small peaks at 2θ ~ 43º and 55º, which 

are associated to (01) and (004) reflections of the graphitic framework. These peaks are 

almost completely hidden by the intense reflections adscribed to nickel nanoparticles. 
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These results show that the onset of catalytic graphitization takes place at temperatures ≥ 

700ºC, which is in agreement with previous observations for other saccharide-based 

hydrochar materials [23]. As the temperature rises from 700 to 900ºC, the (002) peak 

becomes more intense, denoting an increase in the (graphitic carbon)/(amorphous carbon) 

ratio. However, the structural characteristics of the materials (d002 and Lc), hardly change 

at all as the temperature increases (d002 ~ 0.342-0.343 nm and Lc ~ 7.0-7.6 nm). These 

results suggest that the increase in temperature does not have a significant influence on 

the degree of structural order of the graphitic carbon, but it does influence the amount of 

graphitic carbon generated, as previously observed for other carbon precursors [23, 24]. 

The variation of the graphitic/amorphous carbon ratio with the carbonization temperature 

was exammined by means of XPS spectroscopy (Figure 3). It was found that for the 

sample heat-treated at 730ºC the ratio between the area of the peak corresponding to 

graphitic carbon, i.e. C=C groups (EB = 284.4 eV) and that of the peak attributed to 

amorphous carbon, i.e. C-C/CHx groups (EB = 285.1 eV) is 0.434, whereas for the sample 

heat-treated at 900ºC it is 0.756, which indicates an increase in the amount of graphitic 

carbon as the temperature rises. The presence of oxygen groups remaining in the 

graphitized materials is revealed by the peaks at around 287.2 and 289.2 eV, which are 

attributed to carbonyl groups (>C=O) and carboxylic groups, esters or lactones (-COOR) 

respectively [25]. 

 The XRD patterns and the TEM images of the carbonized samples reveal that they 

contain both amorphous and graphitic carbon. It suggests that the mechanism of catalytic 

graphitization is dissolution-precipitation. Thus, in the XRD spectra (see Figure 1) only 

nickel metallic nanoparticles are identified in the samples heat-treated at different 

temperatures. No nickel carbide has been detected at any temperature, ruling out the 

carbide formation-decomposition mechanism. On the other hand, the TEM images in 
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Figure 4 show that graphitic carbon is located around the nickel nanoparticles or in their 

vicinity whereas the carbon far away from the nickel nanoparticles remains amorphous. 

This is in accordance with the dissolution of amorphous carbon in the metallic 

nanoparticles and its precipitation as graphitic carbon, which then remains in the vicinity 

of, or not far away from, the catalyst nanoparticles [12, 26]. The morphology of the 

graphitic structures is the result of the movement of the catalyst nanoparticles throughout 

the amorphous carbon matrix, leaving behind a trail of graphitic carbon.  

3.2. Structural characteristics of the graphitized carbons 

As a consequence of the catalytic graphitization process, graphitic carbon 

nanostructures appear immersed in a matrix of amorphous carbon, together with 

metallic nanoparticles (Figure 4). The metallic nanoparticles, as well as the amorphous 

carbon, can be selectively removed by means of liquid-phase oxidation with an acid 

solution of permanganate potassium. This is demonstrated by the TEM images and 

XRD patterns obtained after the oxidative treatment (see Figure 5b and 5c), where no Ni 

nanoparticles or amorphous carbon can be identified. The yield of this oxidative 

treatment is 34 % (i. e. 34 g of GCNs are extracted per 100 g of graphitized material) 

whereas the yield of the overall process is around 8 % (i.e. 8 g GCNs/100 g cellulose). 

A diagram of the overall synthesis process is presented in Figure 6. The graphitic 

nanocarbons consist of nanoparticles with a size < 200 nm, as evidenced by the SEM 

image shown in Figure 5a. TEM inspection of these nanoparticles reveals that they have 

a nanocoil morphology (see Figure 5b). Well-defined (002) lattice fringes are observed 

in the high-resolution transmission electronic microscopy images (see inset Figure 5b), 

which evidences the high degree of crystallinity of the graphitic carbon nanostructures. 

This is confirmed by the selected area electron diffraction pattern (Figure 5c, inset), X-

ray diffraction analysis (Figure 5c) and Raman spectroscopy (Figure 5d). Thus, the 
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XRD pattern for these nanostructures contains intense peaks at 2θ ~ 26º, 43º, 54º and 

78º, which correspond to the (002), (10), (004) and (110) diffractions of the graphitic 

framework, respectively. The plane spacing, d002, has a value of 0.341 nm whereas the 

crystallite sizes along the basal plane, La, and perpendicular to the basal plane, Lc, have 

values of 16 and 9.8 nm, respectively. The first-order Raman spectrum of the carbon 

nanostructures displayed in Figure 5d reveals intense and narrow D and G bands at ~ 

1341 and 1570 cm-1. In addition, the G’ band, which corresponds also to the disordered 

induced phase, is observed at around 1610 cm-1. By fitting this band, an ID/IG ratio equal 

to 1.02 was obtained, indicating a high proportion of edge planes and a distortion of the 

graphitic planes in the carbon nanostructures. The graphene layers around the catalyst 

nanoparticles follow their shape. It is also worth noting that the nanostructures prepared 

by catalytic graphitization possess higher values of La than Lc [14, 23, 27], which 

suggests that growth of the nanostructures takes place in the direction of the basal plane 

rather than perpendicular to the basal plane. These results prove that the carbon 

nanostructures have a high graphitic order. Moreover, the analysis of the textural 

properties of these carbon nanostructures by means of the N2 sorption isotherm shows 

that they do not contain framework-confined pores and that they have quite a large 

external surface area, of aprox. 114 m2.g-1 (see Figure 7). This external surface area 

matches the specific surface area, as the adsorption only takes place on the external 

surface of the nanoparticles.  

4. Conclusions 

In summary, we have proved that the carbonaceous products obtained by the 

hydrothermal treatment of cellulose constitute an excellent precursor for the preparation 

of graphitic carbon nanostructures. The main advantages of this precursor are that: i) it 

is obtained from the cheapest and most abundant of all the naturally occurring organic 
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compounds, ii) it is synthesized by means of a “green” process (only water is involved 

as solvent) and iii) it possesses a high concentration of oxygen functionalities, which 

favours the impregnation and dispersion of the catalyst. With the aid of nickel 

nanoparticles that act as catalyst, this material can be transformed, via a dissolution-

precipitation mechanism, at moderate temperatures (900ºC) into graphitic 

nanostructures with a coil morphology and a high degree of crystallinity, as evidenced 

by HRTEM/SAED, XRD and Raman spectroscopy. These curved structures are the 

result of the growth of graphene layers around the catalyst nanoparticles, following their 

shape. Finally, these nanostructures possess, in combination with the high crystallinity, 

an accessible surface area, which makes them ideal candidates for use in 

electrochemical applications as fuel cell catalytic supports or as anodes in Li-ion 

batteries.  
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Figure 1. XRD patterns of the nickel impregnated hydrochar carbonized at different 

temperatures. 
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Figure 2. TGA of the nickel impregnated hydrochar (N2 atmosphere, 5ºC/min-850ºC-

1h): variation of sample weight and weight loss rate with temperature.  
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Figure 3. XPS spectra of the Ni-impregnated hydrochar samples heat-treated at 730ºC 

(a) and 900ºC (b). 
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Figure 4. TEM images of the nickel-impregnated sample heat-treated at 900ºC (GC = 

graphitic carbon, Ni = nickel nanoparticles). 
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Figure 5. Structural characteristics of the graphitic carbon nanostructures obtained from 

the cellulose-derived hydrochar sample. (a) SEM microphotograph, (b) TEM image 

(Inset: HRTEM image), (c) XRD pattern (Inset: Selected Area Electron Diffraction 

pattern) and (d) First-order Raman spectrum. 
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Figure 6. Diagram of the overall synthesis process used to obtain graphitic carbon 

nanocoils from hydrothermally carbonized cellulose (i.e. hydrochar). The process 

consists of the following steps: (1) hydrothermal carbonization of a cellulose dispersion 

(320 g·L-1) at 250ºC for 2 h, (2) impregnation of the hydrochar with the graphitization 

catalyst (Ni) and carbonization at 900ºC and (3) extraction of the GCNs by means of 

oxidation treatment with KMnO4. 
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Figure 7. (a) Nitrogen sorption isotherm and (b) αs-plot of the adsorption branch of the 

isotherm for the graphitic carbon nanostructures obtained from the cellulose-derived 

hydrochar sample. The method used for the calculation of the external surface area is 

illustrated in Figure (b). SBET,ref  is the BET surface area of the material used as reference 

and α0.4 ads,ref  is the amount of nitrogen (cm3 N2 liquid·g-1) adsorbed by the reference 

solid at a relative pressure of 0.4. For details see ref. [18]. 

 

 


