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 25	

Abstract 26	

 27	

In Albariño white wines, aging of wines on lees is a technique not used or only 28	

used empirically by some producers to obtain a distinctive character in the final 29	

wine. This study analyzes the influence of a short aging on lees on the chemical 30	

and sensorial parameters of this young white wine.  Albariño grape must was 31	

inoculated with a locally selected yeast (S. cerevisiae 1) and the effect of a 32	

short aging on lees was studied during different times (10, 20, 30, 40 and 50 33	

days). Mannoprotein content and the aromatic profile were determined and a 34	

sensorial analysis of the wines was conducted. Results showed that aging time 35	

was correlated with the concentration of some key aroma compounds and 36	

mannoproteins in Albariño wines. The best sensorial character was obtained in 37	

wines aged 20 days on lees.  Further aging times decreased the sensorial 38	

quality of Albariño wine and modified its volatile profile and mannoprotein 39	

concentration.   40	

 41	

Significance of study: The use of a short contact time during ageing on lees of 42	

young Albariño white wines could be a successful post-fermentative alternative 43	

to enhance their typical aromatic characteristics and to produce more distinctive 44	

wines. 45	

 46	

Keywords: white wines, yeast, lees, aging on lees, aroma compounds, 47	

mannoproteins. 48	
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 49	

1. Introduction 50	

Aging on lees is an oenological practice, which involves the contact of the wine 51	

obtained after alcoholic fermentation with resting dead yeast cells.  Lees are 52	

formed by microorganisms (mainly yeast), and tartaric and inorganic matter 53	

(both in a minor proportion) (Perez-Serradilla and de Castro 2008).  54	

Traditionally, only some white wines mainly from Burgundy and sparkling wines 55	

produced by the traditional method are aged in contact with their lees (Loscos 56	

and others 2009) ,but nowadays, wine aging on lees is gaining importance in  57	

many wine production areas (Del Barrio-Galan and others, 2011; Pati and 58	

others 2012; Rodrigues and others 2012). The aim of this technique is to 59	

improve wine’s sensorial character, as well as some technological aspects such 60	

as stability and foam ability.  The yeast autolysis process, which takes place 61	

during wine aging produces breakdown of cells membranes, release of 62	

intracellular components, liberation of hydrolytic enzymes, and hydrolysis of 63	

intracellular biopolymers into low molecular weight products. Amongst 64	

compounds released by yeast during aging on lees, mannoproteins consists on 65	

small chains with one to four D-mannose residues that are linked to polypeptide 66	

chains on serine or threonine residues (Perez-Serradilla and de Castro 2008).  67	

Mannoproteins like other breakdown products released into wine can modify 68	

significantly its sensorial properties (Pozo-Bayon and others 2009). 69	

In young white wines the aroma is one of the principal quality criteria, these 70	

wines are characterized by a high intensity of fresh and fruity notes which 71	

depends mainly on the content of terpenes present in the grape, in addition with 72	
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acetates and mono- and dicarboxylic acid ethylesters which appear during the 73	

fermentation process (Perez-Coello and others 2003). Additionally, yeast lees 74	

can influence the wine aroma contributing to its balance, thus affecting 75	

positively the wine quality. Nevertheless, the contact of wine with lees could 76	

also reduce their content in certain volatile compounds, which a consequent 77	

decrease in the quality of wine (Perez-Serradilla and de Castro 2008). This 78	

behavior seems to be correlated with several variables, such as the 79	

characteristics of lees and the time that wine stays in contact with lees.   Loscos 80	

and others (2009) have found that lees from different yeast strains may have 81	

slightly different abilities to release volatile compounds derived from precursors. 82	

On the other hand, it has been observed that the contact of white wines with 83	

lees during 7 months has modified their sensorial properties, decreasing fruit 84	

and floral aromas (Bautista and others  2007). Using a short ageing time on 85	

lees (20 days), the behavior observed was dependent on the grape variety. 86	

While in Airen wines most of the compounds increased its concentration, in 87	

contrast in Macabeo wines decreased (Bueno and others 2006). The reported 88	

capacity of lees to interact with aroma compounds and potentially modify their 89	

sensory properties has also been associated to mannoprotein fraction, 90	

considering that some of them can retain aroma compounds (Chalier and others 91	

2007; Juega and others 2012).  92	

Albariño grape is a Galician typical variety recognized by its high quality.  93	

White wines from Albariño grapes are mainly produced as young wines with a 94	

high concentration of terpenes, and fruity and floral odors (Vilanova and others 95	

2010; Carrascosa and others 2012).  Until present day, there are not studies 96	
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about the impact of short aging times on lees in the aroma composition and 97	

final quality of these wines, although this is a practice used empirically by some 98	

producers with the purpose to obtain a distinctive character in the final wine.  In 99	

the present work, we have studied the effect of different aging times on lees in 100	

Albariño white wines, assessing its impact on the mannoprotein content, aroma 101	

profile and sensorial character. 102	

 103	

2. Materials and methods 104	

 105	

2.1- Must, yeast and fermentation conditions. The grape must used in this 106	

study was from Vitis vinifera cv. Albariño grapes (vintage 2009) and was 107	

supplied by the winery Terras Gauda, Galicia, Spain. The composition of the 108	

must was the following: sugars 190 g/L, pH 3.38, total acidity 8.2 g/L and 109	

maturation index 22.3. The grape must was inoculated with Saccharomyces 110	

cerevisiae (S. cerevisiae) strain 1, a locally-selected yeast (Carrascosa and 111	

others 2012) and fermented in 30L stainless steel tanks. Fermentation 112	

experiments were carried out in triplicate. The temperature was set to 18ºC. 113	

Fermentation was followed by the sugar consumption, and the reducing sugar 114	

during fermentation was determined until 40 days. The obtained wines were 115	

aged on its lees during different periods: 10 days (W10), 20 days (W20), 30 116	

days (W30), 40 days (W40) and 50 days (W50). A control wine (CW) was 117	

prepared without aging on lees.	 Once alcoholic fermentation was completed, 118	

the control wine was kept in the tank for 4 days to allow sedimentation of the 119	

gross lees. Following this, the wine was racked off and kept in the tank for 4-5 120	
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days to allow sedimentation of the fine lees. Predominance of the selected 121	

yeast in the fermentation tanks was verified by studying the mitochondrial DNA 122	

profile at the end of the fermentation (Querol and others 1992). 1500 mL 123	

samples were taken from each tank and used in the experimental and sensory 124	

analysis. They were prepared by centrifugation at 1800 x g, 15 min and kept at -125	

18º C until analysis. Conventional parameters in the wines (alcoholic grade, 126	

total acidity, volatile acidity, pH, tartaric and malic acid) were determined by the 127	

European Commission methods (EC 1990) at the end of the fermentation and 128	

after 50 days of aging. 129	

 130	

2.2- Precipitation, hydrolysis, and quantification of mannoproteins. The 131	

procedure described by Segarra and others 1995, was used for the isolation of 132	

the colloidal fraction containing mannoproteins.  40 ml of ethanol (96% v/v) and 133	

400 µl HCL (1N) were added to 8 ml of wine. After 18 h of incubation at 22 ºC, 134	

the tubes were centrifuged (1800 x g, 20 min), after which the supernatant was 135	

discarded and the pellet was washed three times in ethanol (96%, v/v). For the 136	

determination of the sugar composition of mannoproteins, the samples obtained 137	

were hydrolysed at 100 ºC for 24 h in a closed vial containing 1 ml of 2 M 138	

trifluoroacetic laudinaacid and 0.5 ml myo-inositol (0.1 % w/v, internal standard) 139	

solution. After hydrolysis, the mixture was evaporated to dryness under 140	

vacuum. The dried hydrolysed residue was silylated following the procedure 141	

described by (Nunez and others 2006). Briefly, the sample was dissolved in 100 142	

ml of anhydrous pyridine, and 100 ml of trimethylsilylimidazole, 100 ml of 143	

trimethylclorosilane, 100 ml of n-hexane and 200 ml of deionized water were 144	
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sequentially added, shaking during each step. Trimethyilsilyl derivatives (1µl) 145	

were analysed on a Hewlett-Packard 6890 Chromatograph (Palo Alto, CA, 146	

USA), equipped with a flame ionization detector (FID) and split/splitless injector. 147	

Samples were injected on a Carbowax 20M column (30 m X 0.25 mm) coated 148	

with a stationary phase of 0.25 mm thickness. Temperatures were as follows: 149	

injector and detector, 220 ºC; oven, held at 175 ºC for 15 min, then increasing 150	

15 ºC/min to 200 ºC  during 13 minutes and finally programmed at 30 ºC/min to 151	

270 ºC during 20 minutes.  The carrier gas was helium (10 psi, split 1/15). 152	

Response factors were calculated with a series of pure standards at different 153	

concentrations using myo-inositol as internal standard. The identification of the 154	

mannose present in the samples was carried out by comparing the retention 155	

time of the peaks with those of pure standard. Each sample was analyzed by 156	

triplicate. Results were expressed as mg/L of polymeric mannose in the wine. 157	

The concentration of protein moieties was determined following the Bradford 158	

method (Bradford 1976), based in the reaction of the protein with the Coomasie 159	

blue G-250. Absorbance was determined at 595 nm 15 min. after the addition of 160	

the reactive. The results were expressed in mg of bovine seroalbumine (BSA)/L. 161	

 162	

2.3- Volatile Compounds.  The extraction of volatile compounds was 163	

automatically performed by using a CombiPal system (CTC Analytics AG, 164	

Zwingen, Switzerland) provided with a 50/30 µm 165	

Divinylbencene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) fiber of 2 cm 166	

length (Supelco, Bellefonte, PA. USA). 5 ml of wine sample and 2 g NaCl were 167	

placed in 15 ml sample vial sample vial with 10 μl of internal standard (methyl 168	
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nonanoate 15ppm). The vial was capped with a PTFE- silicon septum. The 169	

extraction was performed in the headspace of the vial for 20 minutes at 40 ºC. 170	

The desorption was performed in the injector of the GC chromatograph (Agilent 171	

7890) in splitless mode for 12 minutes at 280 ºC. After each injection the fiber 172	

was cleaning for 30 minutes avoiding any memory effect. All the analyses were 173	

performed in triplicate. An Agilent MSD ChemStation Software was used to 174	

control the gas chromatograph (Agilent 7890). For separation, a fused silica CP-175	

WAX 57CB column (50m X 0.25mm X 0.39mm film thickness) from Varian 176	

(Houten, The Netherlands) was used. Helium was the carrier gas (1 ml/min). 177	

The oven temperature was programmed as follows: 60 ºC as initial temperature, 178	

held for 5 minutes, followed by a ramp of temperature at 2 ºC/min to 120 ºC and 179	

3 ºC/min to 215 ºC, and then held for 25 minutes. For the MS system (Agilent 180	

5973N), the temperatures of the manifold and transfer line were 150 and 230 ºC 181	

respectively; electron impact mass spectra were recorded at 70 eV ionization 182	

voltages and the ionization current was 10 µA. The acquisitions were performed 183	

in selected-ion- monitoring (SIM) mode.  The signal corresponding to a specific 184	

ion of quantification was calculated by the data system. Quantitative data were 185	

obtained by calculating the relative peak area (or TIC signal) in relation to that 186	

of the internal standard used for each compound. Calibration curves of each 187	

compound were performed using a model wine (4 g/L tartaric acid, 10 % v/v 188	

ethanol and pH=3) spiked with the commercial pure reference compounds at 189	

five different levels of concentration covering the concentration ranges expected 190	

in wines.  191	

 192	
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2.4- Sensory analysis. A panel of experts comprised of eight judges carried 193	

out sensory evaluation of the wines. The tasting card used was the official Rías 194	

Baixas index card (Carrascosa and others 2012) . Wine samples were 195	

evaluated at 15º C. The scores used were penalizing scores so better quality 196	

wines receive a lower score. Six variables (visual examination, aroma intensity, 197	

aroma quality, taste intensity, taste quality and harmony) were proposed for 198	

assessment, and a scale of 7 categories designed (excellent: 0–7, very good: 199	

8–23, good: 24–44, correct: 45–52, ordinary: 53–78, defective: 79–90, 200	

eliminated: >90). The mode of the scores given by the eight tasters was used to 201	

arrive at the final score for each parameter corresponding to the sensorial 202	

characteristics of wine. 203	

 204	

2.5- Statistical analysis. Significant differences among the data obtained from 205	

the volatile composition of the wines aged on lees during different periods were 206	

estimated by applying analysis of variance (ANOVA). The Tukey least 207	

significant differences (LSD) test was used to evaluate the significance of the 208	

analysis. The program used was SPSS 16.0 for Windows, version 16.0.1 (Nov. 209	

2007). 210	

 211	

3. Results and Discussion  212	

 213	

The inoculated strain prevailed during the elaboration process, 214	

fermenting the grape must to dryness (1.2 g/L ± 0.0 residual sugars). Table 1 215	

shows the values of different chemical wine parameters at the end of alcoholic 216	
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fermentation and after 50 days of aging on lees. According to results, no 217	

significant differences (p<0.01) were observed among them, highlighting that 218	

these parameters were not affected by the aging on lees. In all cases, the 219	

values obtained were according to normal ranges found for these wines (Zamúz 220	

and Vilanova 2006; Carrascosa and others 2012) and showed that the 221	

vinification was adequate. 222	

Table 2 shows variations in protein and polymeric mannose 223	

concentrations during different ageing times on lees. Throughout the first 20 224	

days of aging, no significant differences were found in protein concentration. At 225	

30 days of aging a significant increase in protein concentration was detected in 226	

the wine, suggesting the beginning of the autolysis process. In previous studies, 227	

we have observed that proteins are reliable markers for autolysis process. In 228	

first process stages, there is a steady increase in wine protein concentration 229	

(Martinez-Rodriguez and Polo 2000). In the succeeding stages, previous 230	

released proteins were metabolized by freed proteases, producing small 231	

peptides and amino acids, which are not detected by Bradford protein analysis. 232	

These results agree with those obtained for 50 days of ageing, where a sharp 233	

decrease in proteins was detected, which indicates that the nature of proteins 234	

depends on the aging time on lees, being less polymerized while aging time 235	

increases (Martinez-Rodriguez and Polo 2000). In the case of the polymeric 236	

mannose fraction a similar behavior was detected. No significant changes were 237	

observed during the first 30 days of aging, decreasing the polymeric mannose 238	

concentration at 40 days of aging. It is known that during the first stages of 239	

autolysis, the β-glucanases act on the yeast cell wall releasing mannoproteins 240	
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covalently linked to the glucan in the cell wall (Pozo-Bayon and others 2009). 241	

Subsequently, protein moieties of mannoproteins are hydrolysed by proteases 242	

into low molecular peptides, while the β-glucanases degrades the glucans that 243	

are still linked to mannoproteins, releasing peptidemannans into the wine 244	

(Rodrigues and others  2012). These peptidemannans can be detected as a 245	

new increase in polymeric mannose, as was observed for 50 days of aging. 246	

In table 3 lists major volatile compounds identified in the wines aged on 247	

lees at different times. Higher alcohols, ranging from to 2.93 mg/L to 181.59 248	

mg/L, were the most abundant compounds. In all cases, the concentration of 249	

this family of compounds was under 300 mg/L, which is the threshold at which 250	

alcohols can negatively affect the wine (Flanzy 2003). 1-hexanol was not 251	

modified during aging on lees, while 3-methyl-1-butanol and 2-phenylethanol 252	

changed its concentration during the aging process. Some higher alcohols with 253	

high molecular weight, such as 2-phenylethanol, can be absorbed on the yeast 254	

cell wall and its concentration in the wine can be enhanced with the yeast cell 255	

wall lysis (Masino and others 2008). In the present context, the first increase at 256	

30 days of 2-phenylethanol and 3-methyl-1-butanol in wine agrees with some 257	

analytical evidences of the yeast autolysis, suggesting that it can vary the 258	

concentration of these compounds, which was observed at 40 and 50 days of 259	

aging. 260	

Esters and acetates were in terms of quantity the second group of 261	

volatile compounds. These compounds are partially responsible for the fresh 262	

and fruity aroma of young white wines (Antalick and others 2010). A total of 7 of 263	

these compounds were identified in the wines tested:  Isoamyl acetate, ethyl 264	
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hexanoate, hexyl acetate, ethyl octanoate, ethyl decanoate, diethyl succinate, 265	

and 2-phenylethanol acetate. Most individual compounds presented a highest 266	

concentration after 20 days, suffering modifications afterwards. It has been 267	

described that the hydrolysis and esterification of esters can be strongly 268	

affected by esterase activity. Esterases, which are released after alcoholic 269	

fermentation, are also associated to autolysis process (Bueno and others 270	

2006).  271	

In the case of the terpenes and norisoprenoids identified (linalol, α-272	

terpineol, terpin-4-ol, -damascenone, -ionone and -ionone) the highest 273	

concentration for most of them was found at 20 days of aging on lees, except 274	

for nerol and ߙ െionone, which concentration remains uniform during aging on 275	

lees. A previous study, has demonstrated the capacity of the present locally 276	

yeast strain (S.  cerevisiae strain1), selected to carry out the alcoholic 277	

fermentation and aging on less, to influence the volatile profile of white wines 278	

produced with Albariño grape must when they are used as single inoculum, 279	

increasing the final concentration of terpenes and norisoprenoids in the final 280	

wine (Carrascosa and others 2012). Apparently, some mannoproteins 281	

correspond with this behaviour, at least for some compounds such as geraniol 282	

and linalool, which can be absorbed by specific mannoproteins released by this 283	

locally yeast strain (Juega and others  2012). Aditionally, the β- glucosidases 284	

released during autolysis could contribute to increase the concentration of these 285	

compounds in early stages of autolysis. These enzymes are able to break the 286	

glycoside bound of terpenes and norisprenoids, releasing the free aromatic 287	

form that consequently contribute to the characteristic aroma in wine (Liberatore 288	
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and others 2010). 289	

Butyrolactone was the only lactone identified in the wines with a 290	

concentration ranged between 4.16 mg/L and 6.51 mg/L. At these levels, 291	

lactones can contribute to the floral and fruity character of the wines (Perez-292	

Serradilla and de Castro 2008). The concentration of octanoic acid, which was 293	

the main fatty acid quantified in wines, was highest in wines aging on lees for 294	

20 days, coexisting with the first evidences of autolysis.	 It has been reported 295	

that the presence of lees can increase the concentration of fatty acids in wine, 296	

due to desorption phenomena occurred after fermentation and caused by yeast 297	

autolysis (Bueno and others, 2006; Bautista and others, 2007). 298	

The results obtained from the sensorial analysis of the wines are 299	

represented in the figure 1. It can be observed that the aging time on lees can 300	

influence the sensorial evaluation of the wines. A penalizing system was used 301	

in order to score wines, being the wine with lowest scores the best evaluated by 302	

tasters. In accordance with results, aging on less seems to increase the 303	

acceptability of the wines, being the wines aged 20 days (W20) the best 304	

considered. The visual aspect was similar in all the wines, pointing out that the 305	

differences observed were mainly due to variations in aroma and taste. The 306	

wines were sorted according to their preference in the following way: 307	

W20>W30>W40>W50>W10>WC. This distribution points out that between 10 308	

and 20 days of aging on lees, wines acquire their better properties, which 309	

decrease afterwards. These results were consistent with those obtained from 310	

chemical analysis, which indicates that chemical composition influences wine 311	

sensorial behaviour. There was an optimum point for aging on lees associated 312	
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with the best sensorial quality of the wine. The best scored wines (W20) were 313	

also wines with the highest concentration of terpenes, norisoprenoids, esters 314	

and acetates, confirming that these compounds are significantly involved in the 315	

quality of the sensorial attributes of this style of wines. After 20 days of aging on 316	

lees, breakdown process related to yeast autolysis affected the chemical 317	

composition and sensorial properties of wines. Likewise, overall results 318	

comparing with those obtained for control wine (WC), points out that any time of 319	

the aging was favourable for the sensorial character of the wine. The autolysis 320	

process can contributes to modify positively the sensorial character of the wines 321	

trough the aging time on lees, but also it can negatively affect the sensorial 322	

properties of the white wines, mainly after several months of aging on lees 323	

(Bautista and others 2007).The optimum aging time on lees will depends on 324	

several variables related with the winery process, but the yeast strain has a 325	

pivotal role and this point should be considered when this procedure is used 326	

(Bautista and others  2007; Carrascosa and others  2012).  327	

 328	

4. Conclusions 329	

Locally selected yeast strain used in this study to carry out the alcoholic 330	

fermentation and aging on less in Albariño white wines produces the wines with 331	

the best sensorial character after 20 days of aging on lees. This time is also 332	

related with the highest concentration of some key aroma compounds and 333	

mannoproteins.  Further aging times decrease the sensorial quality of the wine, 334	

also modifying its analytical composition in both, aroma compounds and 335	

mannoproteins. Although similar results were obtained in two different vintages 336	
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(data not shown), the identification of an analytical marker capable to define an 337	

optimal aging time on lees could be interesting from the practical point of view, 338	

avoiding the putative interference of the multiple variables involved in the 339	

fermentation process. 340	

 341	
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Figure 1. Mean scores of sensory profile of the wines aged on lees (W10, W20, W30, 
W40 and W50) and the control wine without aging (CW)  
 
 



Table 1. Chemical parameters in Albariño wines, at the end of the fermentation (CW), 
and after 50 days of contact with wine lees (W50). They were not significant differences 
(p < 0.05) between samples.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameters CW W50   
 
Ethanol (% v/v) 12.28  0.06 12.37  0.06 
pH 3.44  0.01 3.42  0.02 
Total acidity (g/L) 6.50  0.00 6.52  0.06 
Volatile acidity (g/L) 0.22  0.01 0.24  0.01 
Tartaric acid (g/L) 3.36  0.12 3.38  0.06 
Malic acid (g/L) 3.38  0.17 3.40  0.15 



 
 
Table 2. Concentration of proteins and polymeric mannose expressed in mg/L, in the 
wines aged on lees for different periods of time (0-50 days).  
 
 
 

 
 
 
 
a, b, c,- Same letter in the same column indicates absence of significant differences (p < 0.05). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Aging time (days) Proteins (mg/L) Polymeric mannose (mg/L)   
 
0 56.59b  2.39 173.41a  2.50 
10 53.31b  0.74 163.31a  8.86 
20 52.06b  1.58 175.73a  3.44 
30 60.32a  5.13 169.76a  2.86 
40 53.02b  1.39 122.69b  2.35 
50 18.75c  1.92 162.75a  2.16 



 
 
 
 
Table 3. Content of each aroma compounds identified in the wines in the control wine 
(CW) and in wines aged on lees at different times (10, 20, 30 40 and 50 days). Results 
are presented as mean ± SD 
 

 
a, b, c,- Same letter in the same row indicates absence of significant differences (p < 0.05). 
 
 
 
 
 
 
 
 

Concentration (mg/L) CW W10 W20 W30 W40 W50 

Higher alcohols              

3-methyl-1-butanol 178.41a ± 5.92 152.50b ± 0.63 127.50c ± 2.47 181.59a ± 5.72 116.90c ± 10.85 161.05b ± 1.67 

1- hexanol 3.33a ±0.11 3.06 a ±0.75 3.05a±0.06 3.93a±0.30 2.93a ±0.04 3.33a ±0.03 

2-Phenylethanol 12.20a ±0.00 11.20a±0.02 10.90a±0.02a 14.60b±0.00 10.91a ±0.00 12.54a±0.00 

Lactones               

Butyrolactone 5.70a±0.02 4.44bc±0.95 4.16b±0.01 6.51d±0.08 4.41bc ±0.01 5.19ac ±0.05 

Esters and acetates             

Isoamyl acetate 2.03a ±0.15 1.80a±0.31 2.29a±0.12 2.05a±0.06 1.36b±0.06 2.05a±0.19 

Ethyl hexanoate 0.80a±0.02 0.58b±0.09 0.86a±0.05 0.84a±0.03 0.56b±0.03 0.72a±0.00 

Hexyl acetate 0.79a±0.00 0.70a±0.07 0.81a±0.03 0.74a±0.01 0.60b±0.02 0.84a±0.02 

Ethyl octanoate 1.12a±0.01 0.57b±0.02 0.90c±0.01 1.03d±0.02 0.76e±0.00 0.64f±0.04 

Ethyl decanoate 0.17a±0.00 0.08a±0.00 0.18a±0.00 0.16a±0.00 0.11a±0.00 0.18a±0.00 

Diethyl succinate 3.65ab±0.10 3.84bd±0.00 4.86c±0.08 4.55c±0.07 4.16d±0.07 3.44a±0.09 
  2- phenylethanol acetate 0.22a±0.00 0.21a±0.02 0.24b±0.00 0.22a±0.00 0.18c±0.00 0.21a±0.00 

Fatty acids             

Octanoic acid 2.27a±0.81 5.42b±0.36 6.76c±0.73 4.94b±0.38 4.67b±0.32 6.29c±0.26 

Terpenes             

Linalool 0.041a±0.000 0.040a±0.000 0.051b±0.000 0.041a±0.001 0.038a±0.000 0.040a±0.001 

Terpinen-4-ol 0.001a±0.000 0.030a±0.000 0.042b±0.000 0.030a±0.001 0.030a±0.000 0.031a±0.000 

α-terpineol 0.020a±0.000 0.016a±0.000 0.021b±0.000 0.020a±0.000 0.015a±0.000 0.021b±0.000 

Nerol 0.013a±0.000 0.009a±0.001 0.010a±0.000 0.009a±0.000 0.010a±0.000 0.009a±0.000 

Eugenol 0.081a±0.000 0.083b±0.000 0.081a±0.000 0.082b±0.000 0.080a±0.000 0.083b±0.000 

Norisoprenoids             

ß-Damascenone 0.002a±0.000 0.001a±0.000 0.003b±0.000 0.002a±0.000 0.002a ±0.000 0.002a±0.000 

α-ionone 0.013a±0.000 0.013a±0.001 0.013a±0.000 0.013a±0.000 0.013a±0.001 0.013a±0.000 

ß-ionone 0.040a±0.000 0.040a±0.001 0.042b±0.000 0.040a±0.001 0.040a±0.000 0.041b±0.000 



 
Table 3. Content of each aroma compounds identified in the wines in the control wine 
(CW) and in wines aged on lees at different times (10, 20, 30 40 and 50 days). Results 
are presented as mean ± SD 
 

 
a, b, c,- Same letter in the same row indicates absence of significant differences (p < 0.05). 
 
 
 
 
 
 
 
 
 

Concentration (mg/L) CW W10 W20 W30 W40 W50 

Higher alcohols              

3-methyl-1-butanol 178.41a ± 5.92 152.50b ± 0.63 127.50c ± 2.47 181.59a ± 5.72 116.90c ± 10.85 161.05b ± 1.67 

1- hexanol 3.33a ±0.11 3.06 a ±0.75 3.05a±0.06 3.93a±0.30 2.93a ±0.04 3.33a ±0.03 

2-Phenylethanol 12.20a ±0.00 11.20a±0.02 10.90a±0.02a 14.60b±0.00 10.91a ±0.00 12.54a±0.00 

Lactones               

Butyrolactone 5.70a±0.02 4.44bc±0.95 4.16b±0.01 6.51d±0.08 4.41bc ±0.01 5.19ac ±0.05 

Esters and acetates             

Isoamyl acetate 2.03a ±0.15 1.80a±0.31 2.29a±0.12 2.05a±0.06 1.36b±0.06 2.05a±0.19 

Ethyl hexanoate 0.80a±0.02 0.58b±0.09 0.86a±0.05 0.84a±0.03 0.56b±0.03 0.72a±0.00 

Hexyl acetate 0.79a±0.00 0.70a±0.07 0.81a±0.03 0.74a±0.01 0.60b±0.02 0.84a±0.02 

Ethyl octanoate 1.12a±0.01 0.57b±0.02 0.90c±0.01 1.03d±0.02 0.76e±0.00 0.64f±0.04 

Ethyl decanoate 0.17a±0.00 0.08a±0.00 0.18a±0.00 0.16a±0.00 0.11a±0.00 0.18a±0.00 

Diethyl succinate 3.65ab±0.10 3.84bd±0.00 4.86c±0.08 4.55c±0.07 4.16d±0.07 3.44a±0.09 
  2- phenylethanol acetate 0.22a±0.00 0.21a±0.02 0.24b±0.00 0.22a±0.00 0.18c±0.00 0.21a±0.00 

Fatty acids             

Octanoic acid 2.27a±0.81 5.42b±0.36 6.76c±0.73 4.94b±0.38 4.67b±0.32 6.29c±0.26 

Terpenes             

Linalool 0.041a±0.000 0.040a±0.000 0.051b±0.000 0.041a±0.001 0.038a±0.000 0.040a±0.001 

Terpinen-4-ol 0.001a±0.000 0.030a±0.000 0.042b±0.000 0.030a±0.001 0.030a±0.000 0.031a±0.000 

α-terpineol 0.020a±0.000 0.016a±0.000 0.021b±0.000 0.020a±0.000 0.015a±0.000 0.021b±0.000 

Nerol 0.013a±0.000 0.009a±0.001 0.010a±0.000 0.009a±0.000 0.010a±0.000 0.009a±0.000 

Eugenol 0.081a±0.000 0.083b±0.000 0.081a±0.000 0.082b±0.000 0.080a±0.000 0.083b±0.000 

Norisoprenoids             

ß-Damascenone 0.002a±0.000 0.001a±0.000 0.003b±0.000 0.002a±0.000 0.002a ±0.000 0.002a±0.000 

α-ionone 0.013a±0.000 0.013a±0.001 0.013a±0.000 0.013a±0.000 0.013a±0.001 0.013a±0.000 

ß-ionone 0.040a±0.000 0.040a±0.001 0.042b±0.000 0.040a±0.001 0.040a±0.000 0.041b±0.000 
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