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Abstract 16 

The single-copy genes encoding putative polyphosphate-glucose phosphotransferases (PPGK, EC 17 

2.7.1.63) from two nitrogen-fixing Cyanobacteria, Nostoc sp. PCC7120 and Nostoc punctiforme 18 

PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, 19 

the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic 20 

polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in 21 

contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium-long sized 22 

polyP (>10 phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in 23 

contrast to most their homologs in Actinobacteria, both cyanobacterial PPGKs exhibited a modest but 24 

significant polyP-mannokinase activity as well. Specific activities were in the range of 180-230 and 2-3 25 

µmol min-1 mg-1 with glucose and mannose as substrates, respectively. No polyP-fructokinase activity 26 

was detected. Cyanobacterial PPGKs required a divalent metal cofactor, and exhibited alkaline pH optima 27 

(approx. 9.0) and a remarkable thermostability (optimum temperature, 45 ºC). The preference for Mg2+ 28 

was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit 29 

molecular mass of ca. 27 kDa. Based on databases searches and experimental data from Southern blots 30 

and activity assays, closely-related PPGK homologs appear to be widespread among unicellular and 31 

filamentous mostly nitrogen-fixing Cyanobacteria. Overall, these findings indicate that polyP may be 32 

metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also 33 

provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases 34 

with ancestral features and high biotechnological potential, capable of efficiently using polyP as an 35 

alternative and cheap source of energy-rich phosphate instead of costly ATP. Finally, these results could 36 

shed new light on the evolutionary origin of sugar kinases. 37 
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INTRODUCTION 1 

Inorganic polyphosphate (polyP) is a linear polyanion composed of tens to hundreds of phosphoryl 2 

residues, all of them being linked by “high-energy” phosphoanhydride bonds. Found in many diverse 3 

organisms in nature, polyP has proven to be essential for the growth, response to stresses and stringencies 4 

of cells (Kulaev 1979; Wood and Clark 1988; Kornberg et al. 1999; Rao et al. 2009). 5 

As phosphorylated compounds with a Gibss free energy of hydrolysis similar to the ATP (-30.5 kJ mol−1), 6 

inorganic pyrophosphate (diphosphate, PPi) and polyP have been suggested to be used in place of ATP in 7 

diverse biological processes (Lipmann 1965). An enzyme known to hydrolyze polyP rather than ATP is 8 

the polyphosphate glucokinase (PPGK, polyphosphate-glucose phosphotransferase, EC 2.7.1.63), which 9 

catalyzes the phosphorylation of glucose using polyP as a phosphoryl donor to form glucose 6-phosphate 10 

as follows: 11 

Glucose + PolyPn → glucose 6-P + PolyPn−1. 12 

PPGK was first observed in Mycobacterium phlei (Szymona 1957), and later in other Gram-positive 13 

bacteria, all of them belonging to the ancient order of Actinomycetales (Szymona 1964; Szymona and 14 

Widomski 1974; Szymona and Szymona 1978; Szymona and Szymona 1979; Pepin and Wood 1986; 15 

Mukai et al. 2003; Tanaka et al. 2003; Lindner et al. 2010a; Hehuan et al. 2012; Koide et al. 2013). 16 

However, no PPGK has been described in other sort of bacteria, archaea, fungi, algae, plants or animals to 17 

date. 18 

Most actinobacterial PPGKs have been validated as monomers or homodimers with a molecular mass 19 

subunit of ca. 30 kDa. A remarkable feature of these enzymes is its dual substrate specificity: PPGK can 20 

use both ATP and polyP as donors to phosphorylate glucose to glucose 6-phosphate. Nevertheless, a 21 

PPGK from the polyP-accumulating actinobacterium Microlunatus phosphovorus, is the only PPGK 22 

enzyme solely dependent on polyP as an energized phosphoryl-substrate donor described to date (Tanaka 23 

2003). Concerning this matter, several studies (Hsieh et al. 1993; Phillips et al. 1999) proved that 24 

although both enzymatic activities belong to the same protein, the binding site for this protein differs in 25 

each phosphate donor substrate. Thus, the enzymes of most phylogenetically ancient species of the 26 

Actinomycetales order seem to prefer polyP instead of ATP. As a result of this, a higher polyP-27 

glucokinase/ATP-glucokinase ratio is exhibited. Compared to the rest of glucokinases, PPGKs displayed 28 

a wider range of NTP as phosphoryl donors (GTP, UTP, TTP, XTP, CTP and dATP), whereas ATP-29 

glucokinases from more evolved organisms are unable to use polyP, and consequently only poorly replace 30 

GTP for ATP, as is the case of hexokinases (EC 2.7.1.11) from fungi and mammals, which are 31 

exclusively dependent on ATP (Rao 2009). 32 

PPGK belong to the ROK (Repressor ORF Kinase) superfamily (Pfam PF00480) (Finn et al. 2014), a 33 

large group of mostly bacterial proteins which also include other sugar kinases and transcriptional 34 

repressors, the latter with an extra h-α-h DNA binding domain. Owing to this fact, kinase enzymes within 35 

this group (bacterial gluco-, fructo- and manno-kinases, eukaryotic hexokinases and ADP-glucokinases) 36 

reveal a significant grade of structural relationship. 37 
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PolyP should play important roles in the overcoming of nutrient and heavy-metal stresses by 1 

Cyanobacteria, a group of Gram-negative oxygenic photoautotrophic prokaryotes which are among the 2 

most successful and oldest forms of life (Schopf 2002) and have gained a lot of attention in recent years 3 

because of their potential applications in biotechnology (Abed et al. 2009). Accumulation of polyP 4 

granules has been described under various culture conditions in both unicellular (Lawry and Jensen 1979) 5 

and filamentous (Jensen et al. 1982) Cyanobacteria. Moreover, induction of genes involved in polyP 6 

metabolism by Pi starvation was reported in the unicellular strain Synechocystis sp. (Gómez-García et al. 7 

2003). Interestingly, in the diazotrophic filamentous cyanobacterium Anabaena flos-aquae P is stored in 8 

different ways depending of the nitrogen source used. Under dinitrogen fixing conditions P is stored as 9 

sugar P, whereas with nitrate as the combined N source it is stored as polyP (Thompson et al. 1994). 10 

However, the functional relationships between polyP metabolism and dinitrogen fixation in cyanobacteria 11 

have not yet been elucidated. 12 

Here, we report the first polyP-gluco(manno)kinases isolated and biochemically characterized from 13 

Cyanobacteria. The single copy ppgK genes of the filamentous nitrogen-fixing strains Nostoc sp. 14 

PCC7120 and Nostoc punctiforme PCC73102 were cloned and overexpressed in E. coli, and the 15 

corresponding recombinant proteins, hereafter referred as NsPPGK and NpPPGK respectively, were 16 

purified and characterized. As shown, these enzymes are smaller proteins and exhibit some novel 17 

biochemical features compared to the previously described PPGKs. Additionally, a survey of homologous 18 

closely-related PPGKs has been carried out in a wide range of diazotrophic Cyanobacteria by several 19 

techniques including Southern blots, activity assays, and bioinformatic analyses. Lastly, this study could 20 

also offer new evidence towards the matter of hexokinases evolution. Overall, the obtained results 21 

provide indications for cyanobacterial PPGKs representing a taxonomic group-specific new subfamily of 22 

strictly polyP-dependent gluco(manno)kinases with high biotechnological potential. 23 

MATERIALS AND METHODS 24 

Reagents and PolyP preparation 25 

Restriction endonucleases and T4 DNA ligase were purchased from Takara Bio Inc (Shiga, Japan). 26 

ACCUZYME™ Proofreading DNA Polymerase and the gel extraction kit were obtained from Bioline 27 

Inc. (MA, USA). Primers were synthesized by Integrated DNA Technologies (Leuven, Belgium). Sodium 28 

polyphosphates PPi, tripolyphosphate (P3), cyclic P3 (trimetaphosphate, P3c), tetrapolyphosphate (P4), a 29 

polyphosphate mix with an average chain length of 13-18 phosphoryl residues (P13-18) and water-insoluble 30 

Maddrell salt (a mixture of crystalline long-chain polyphosphates of very high molecular mass), NTPs 31 

(nucleoside 5’-triphosphates), dATP and hexoses (D-glucose, D-mannose, D-fructose) were purchased 32 

from Sigma Chemical Co. (St. Louis, MO, USA). Purchased substrates (polyPs and hexoses) were 33 

analytical grade reagents, except the Maddrell salt which was of practical grade. P60 and P150 34 

(polyphosphate mixes purified by polyacrylamide gel electrophoresis; average chain lengths 60 and 150 35 

phosphoryl residues, respectively) were kindly provided by Dr. Toshikazu Shiba (RegeneTiss Co, Japan). 36 

Very long chain polyPs with chain lengths of up to approximately 800 phosphoryl residues (PLC) were 37 

obtained by fractionation of solubilized Maddrell salt, prepared as described by Van Wazer (1958) on a 2 38 
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% (w/v) polyacrylamide/0.8 % (w/v) agarose gel. When necessary, crystalline polyP was washed twice 1 

with 70 % (v/v) ethanol, dried overnight in a vacuum dessicator, and resuspended in distilled water. 2 

Otherwise stated, the polyP concentration is expressed in terms of polymer, assuming average chain 3 

lengths of: 3, 4, 15, 60, 150 and 300 phosphoryl residues for P3, P4, P13-18, P60, P150 and PLC, respectively. 4 

All other chemicals were of analytical grade. 5 

Analytical polyacrylamide gel electrophoresis of polyP 6 

Polyacrylamide slab gels (total acrylamide, 30 %, w/v; 70 x 85 mm; 1-mm thick) were prepared which 7 

contained a 19.2:0.8 ratio of acrylamide to bisacrylamide. The gel was pre-electrophoresed at 100 V for 3 8 

h to remove contaminating ions. The polyP samples were mixed at a ratio of 1:6 with loading buffer [100 9 

mM Tris-borate buffer (pH 8.3), 30 % (v/v) glycerol and 0.25 % (w/v) bromophenol blue]. Gels were run 10 

at 50 mA in TBE as electrophoresis buffer. Once electrophoresed, polyPs were fixed and stained with 11 

0.05 % (w/v) Toluidine blue O, 25 % (v/v) methanol and 1 % (v/v) glycerol in water, followed by 12 

destaining in an aqueous mixture containing 25 % (v/v) methanol and 5 % (v/v) glycerol. As a result, the 13 

polyP stained dark blue against the colorless or lightly-blue background. 14 

Bacterial strains and culture conditions 15 

The cyanobacterial strains used in this work were obtained as axenic cultures from various microbial 16 

culture collections of reference for Cyanobacteria (ATCC, American Type Culture Collection, Manassas, 17 

VA, USA; PCC, Pasteur Culture Collection, Paris, France; UTEX, Culture Collection of Algae, 18 

University of Texas, Austin, USA; the CICCartuja Biological Cultures Service, Instituto de Bioquímica 19 

Vegetal y Fotosíntesis, Seville, Spain). The strains were photoautotrophically grown in BG11 liquid 20 

medium without combined nitrogen source unless otherwise stated (Rippka et al. 1979), and are described 21 

in Online Resource Table S1. Cultures (referred to as bubbled cultures) were supplemented with 10 mM 22 

NaHCO3, and bubbled with a mixture of CO2 and air (2 %, v/v), under continuous fluorescent white light 23 

(75 μE m−2 s−1). The absence of heterotrophic bacterial contamination was assessed by counts on LB 24 

(Luria-Bertani) agar plates incubated in the dark. 25 

Preparation of cyanobacterial cell-free extracts 26 

Cyanobacterial cells were harvested by centrifugation and resuspended in 100 mM Tris-HCl (pH 9.0)  27 

buffer supplemented with 5 mM MgCl2, 5 mM DTT, 0.1 mM PMSF and a 1:1000 dilution of a Protein 28 

Inhibitor Cocktail for use with bacterial cell extracts (P8465; Sigma-Aldrich, USA), at a ratio of 0.2 g 29 

(cells wet wt)/ml. Then cells were ultrasonically disrupted at 0-4 ºC. The cell homogenate was 30 

centrifuged at 15,000 x g at 4 ºC for 20 min, and the resultant clear supernatant (cell-free extract) was 31 

used for enzymatic assays. 32 

DNA methodology 33 

Total DNA was isolated by the following procedure: 50 ml of cyanobacterial cultures in the mid-log 34 

phase of growth were harvested and resuspended in a final volume of 400 µl in a microcentrifuge tube 35 

with 10 mM Tris-HCl (pH 7.5) buffer with 0.1 mM EDTA. Then, 150 µl of sterile glass beads (0.2 µm 36 
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diameter), 20 µl of 10 % (w/v) SDS, and 450 µl of phenol-chloroform-isoamyl alcohol mixture (25:24:1 1 

v/v) were added. The mixture was subjected to six cycles of 1-min vigorous vortexing followed by 1-min 2 

cooling on ice. The resulting suspension was centrifuged at 15,000 x g for 10 min, then the clear 3 

supernatant solution was transferred to a new microcentrifuge tube and DNA was finally ethanol 4 

precipitated. 5 

Southern blotting 6 

DNA samples isolated from a number of strains representative of the different taxonomic groups of 7 

cyanobacteria were digested with appropriate restriction enzymes and loaded onto agarose gels; then 8 

Southern analysis was performed (Ausubel  et al.  1992) using GeneScreen Plus membranes (Dupont, 9 

USA). DNA probes utilized in the hybridizations (full coding ppgK fragments) were obtained by PCR, 10 

and were then labeled with [α-32P]-dCTP using the Ready-To-Go© DNA labeling kit (GE Healthcare). 11 

Nucleic acid hybridization was carried out at 55 °C with gently shaking. Films were exposed for 4 days 12 

and developed using a Cyclone© Storage Phosphor System (Packard, USA). 13 

Construction of recombinant plasmids and gene expression in E. coli 14 

The ppgK genes from Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102 were PCR amplified 15 

using specific primers (Online Resource Table S2) and genomic DNA as a template. The unique DNA 16 

fragments of ca. 0.72 Kb obtained in both cases were initially cloned into the pGemT-Easy vector 17 

(Invitrogen) for sequencing. These plasmids were then digested with BamHI and PstI, and the DNA 18 

fragments carrying the native open reading frames of ppgK genes were eventually ligated into pQE-80L 19 

vector (Quiagen, Germany). In this way, a His6 tag of 12 amino acid residues in total 20 

(MRGSHHHHHHGS; nominal mass 1,420 Da) was added to the N-terminal end of the native proteins. E. 21 

coli BL21(DE3) cells transformed with the appropriate expression plasmid were cultured at 30 °C in 1 L 22 

LB liquid medium supplemented with 100 μg ml−1 ampicillin with vigorous shaking. When OD600 23 

reached ca. 0.6, protein expression was induced by adding 1 mM IPTG and cultures were then incubated 24 

overnight at 20 °C with shaking at 200 rpm. 25 

Purification of recombinant cyanobacterial PPGKs by nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity 26 

chromatography 27 

Cells were harvested and resuspended in buffer A (500 mM NaCl, 50 mM Na2HPO4, 10 mM imidazole, 28 

pH 8.0), and then lysed by sonication at 4 °C. Cell debris were removed by centrifugation at 15,000 x g 29 

for 15 min. The resultant crude extract was loaded onto a pre-equilibrated HisTrap FF Crude Ni-NTA 1-30 

ml column (GE-Healthcare). Subsequently, non-target proteins were removed by washing the column 31 

with buffer B (500 mM NaCl, 50 mM Na2HPO4, 50 mM imidazole, pH 8.0) until no more protein elution 32 

was observed. Finally, recombinant proteins were eluted by applying a linear gradient with a target 33 

concentration of 100 % of buffer C (500 mM NaCl, 50 mM Na2HPO4, 500 mM imidazole, pH 8.0). The 34 

eluted PPGK proteins were dialyzed three times with 50 mM Tris-HCl (pH 9.0) to remove imidazole and 35 

phosphate salts, and eventually concentrated by ultrafiltration using Amicon Ultra-3 kDa filters. 36 
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FPLC gel filtration chromatography. Estimation of molecular masses 1 

Partially purified His-tagged PPGK preparations, previously concentrated by ultrafiltration, were further 2 

purified by FPLC gel filtration chromatography carried out at 4 °C. The concentrated preparations (0.5-3 

1.0 ml volume) were loaded on to a Superdex© 200 PG (GE Healthcare, Sweden) column equilibrated 4 

with 150 mM NaCl, 20 mM KCl, 5 mM MgCl2, 50 mM Tris-HCl (pH 9.0) buffer at a flow rate of 2 ml 5 

min−1 using an ÄKTA-FPLC system (GE Healthcare, Sweden). The molecular masses (Mm) of oligomeric 6 

PPGK proteins were determined using the calibration plot derived from the elution volumes of a series of 7 

protein standards including: thyroglobulin (Thy, 669 kDa), ferritin (Fer, 443 kDa), β-amylase (β-Amy, 8 

200 kDa), alcohol dehydrogenase (ADH, 150 kDa), bovine serum albumin (BSA, 66 kDa), carbonic 9 

anhydrase (CA, 29 kDa) and cytochrome c (Cyt.c, 12.4 kDa). Subunit molecular masses were determined 10 

by denaturing discontinuous SDS-PAGE following the method of Laemmli (Laemmli 1970) using 12 % 11 

(w/v) separating and 4 % (w/v) stacking polyacrylamide gels. Protein bands were stained with Coomassie 12 

Brilliant Blue R-250. Apparent Mm of monomers under denaturing PAGE was calculated using standard 13 

proteins. Absolute Mm values of purified recombinant PPGKs were confirmed by MALDI-TOF mass 14 

spectrometry (see below). These purified fractions were used for the in vitro kinetics assays and 15 

biochemical characterization. 16 

Peptide mass fingerprinting and validation of PPGK proteins by MALDI-TOF mass spectrometry 17 

Protein samples corresponding to high-purity cyanobacterial PPGKs were derived from SDS-PAGE. 18 

Proteins were digested with trypsin and the resulting peptides were extracted, then loaded onto a suitable 19 

MALDI matrix and eventually processed by a MALDI-TOF mass spectrometer (AutoFlex, Bruker-20 

Daltonics, Proteomics Service of the Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-University of 21 

Seville) which generated peptide mass spectra in the mass range 0.8–2.5 kDa. MASCOT-Matrix Science 22 

database was used to analyze the peaks lists for protein identification (Koenig et al., 2008). 23 

Determination of enzymatic activities 24 

Unless otherwise stated sugar-kinase enzymatic activities were determined at 40 °C and pH 9.0, using P13-25 

18 as a phosphoryl donor substrate. The polyP glucokinase activity was assayed spectrophotometrically by 26 

monitoring the production of NADPH at 340 nm using a glucose 6-phosphate dehydrogenase coupled 27 

reaction. The assay mixture (1 ml) contained of 100 mM Tris–HCl buffer (pH 9.0), 5 mM MgCl2, 5 mM 28 

glucose, 1.11 mM polyP, 5 mM NADP+, and 0.5 U of yeast glucose 6-phosphate dehydrogenase (Sigma 29 

Chem. Co., USA). The reaction was started by the addition 0.5-1.5 μg of purified PPGK or 10-20 µl of 30 

cell-free extracts. Concentrations of polyphosphate substrates were calculated as polymers, considering 31 

mean chain lengths of 15, 60 and 300 phosphate residues for P13-18, P60 and PLC, respectively. NTPs were 32 

used at 2 mM concentration when assayed as alternative phosphoryl donor substrates instead of polyP. To 33 

determine the dependence on pH, 1.0 μg of purified enzyme was incubated as described above in the 34 

following buffers at 100 mM concentration: 2-morpholinoethanesulfonic acid (MES) (pH 5.5-7.0), MOPS 35 

(pH 7.0-8.0), Tris (pH 8.0-9.0), N-cyclohexyl-2-aminoethanesulfonic acid (CHES) (pH 9.0-10.0) and 3-36 

[cyclohexylamino]-1-propane sulfonic acid (CAPS) (10.0-10.5). When measuring enzymatic activity in 37 

cell-free extracts or when the effects of pH, temperature, divalent metal ions, inhibitors and other factors 38 
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on glucokinase activity were examined, the assay was discontinuous and NADP+ and glucose 6-1 

phosphate dehydrogenase were omitted from the assay mixture. The reaction was finished by heating the 2 

test tube at 95 ºC for 5 min. Then the assay followed as described above by adding 5 mM NADP+ and 0.5 3 

U of glucose 6-phosphate dehydrogenase. The polyP-mannokinase activity was assayed in a similar way, 4 

but glucose was replaced by 50 mM mannose and 0.5 U of mannose 6-phosphate isomerase (from E. coli; 5 

Sigma Chem. Co., USA). Finally, for fructokinase activity determinations, 50 mM fructose and 0.5 U of 6 

yeast glucose 6-phosphate isomerase (Sigma Chem. Co., USA) were added in substitution of glucose. 7 

Kinetic parameters (Km and kcat) were determined from initial velocity data that were fitted by the 8 

nonlinear regression software Anemona.xlt (Hernández and Ruiz 1998). One unit (U) of PPGK 9 

corresponds to 1 µmol of phosphorylated product per minute at 30 °C. Protein concentration was 10 

determined by the Bradford method (Bradford 1976) with ovalbumin as a standard. 11 

Computer-aided analysis 12 

Amino acid sequence homology among the PPGK sequences was analyzed online using BLAST searches 13 

(Altschul et al. 1990) against the public databases GenBank (Benson et al. 2013), DOE Joint Genome 14 

Institute (JGI) (Nordberg et al. 2014) and InterPro (Hunter et al. 2011). The amino acid sequences of 15 

putative PPGK orthologs from diverse bacterial strains (Online Resource Table S3) were aligned and 16 

phylogenetic trees were constructed with the Evolutionary-distances (Neighbor-joining), Maximum 17 

Parsimony, and Maximum Likelihood methods using the SeaView v5.2 software (Gouy et al. 2010). 18 

Nucleotide sequence accession numbers 19 

The nucleotide sequences of the gene constructs reported in this paper have been deposited in the 20 

GenBank/EMBL/DDBJ nucleotide sequence databases under accession numbers HG764586 (ppgK of 21 

Nostoc sp. PCC7120) and HG764587 (ppgK of Nostoc punctiforme PCC73102), respectively. 22 

 23 

RESULTS 24 

all1371 and Npun_R1878 genes encode functional polyP-dependent glucokinases 25 

BLAST sequence similarity searches in cyanobacterial genomes (Cyanobase, Kazusa DNA Research 26 

Institute) (Fujisawa et al. 2014) identified two ORFs, all1371 and Npun_R1878 of the diazotrophic 27 

filamentous strains Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, respectively, with high 28 

homology to the ppgK gene from Mycobacterium tuberculosis H37Rv (Hsieh et al. 1996a). The 29 

corresponding predicted proteins, thereafter named NsPPGK and NpPPGK, shared 32 % and 29% 30 

identity with their mycobacterial homolog and 91% sequence identity to each other. In addition, each of 31 

the genomes of Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102 possessed a gene encoding a 32 

putative glucokinase, alr2973 and Npun_R5075. They respectively showed 27 % and 14 % sequence 33 

identity at the protein level with their corresponding PPGK homolog. Even though both sequences of 34 

putative ppgK genes were available, Npun_R1878 was wrongly annotated as a transcriptional 35 

regulator/sugar kinase (ROK family protein) instead of a PPGK encoding gene. The predicted NsPPGK 36 
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and NpPPGK polypeptides have 239 (nominal mass 25,919 Da) and 238 (nominal mass 25,816 Da) 1 

amino acid residues, respectively. They are smaller than their actinobacterial homologs (of 260-280 2 

residues) and exhibit in their primary structures the seven regions with structural motifs conserved among 3 

the bacterial PolyP/ATP-dependent PPGKs (Mukai et al. 2003), as revealed by protein sequences 4 

alignments. Interestingly, when other putative cyanobacterial PPGK sequences were used in the 5 

alignment a high level of conservation was found within them, while when cyanobacterial PPGKs are 6 

compared to their actinobacterial polyP/ATP-dependent homologs, motifs reported to be involved in 7 

phosphoryl-donor and polyphosphate substrate binding (phosphate-1 and -2, connect-1) and the glucose-8 

binding motif are more clearly conserved (Online Resource Fig. S1). Thus, the finding of putative ppgK 9 

genes led us to investigate whether glucose 6-phosphate synthesis in Cyanobacteria could take place 10 

enzymatically through a similar way to that previously described in M. tuberculosis along with other 11 

Actinobacteria. To characterize NsPPGK and NpPPGK, their respective putative genes were obtained 12 

from genomic DNA by PCR amplification which yielded a single product with the expected size of 0.72 13 

kb in both cases (Fig. 1a). They were lastly cloned into the pQE-80L expression vector and over-14 

expressed in E. coli (BL21). Protein expression was induced in early-log phase cultures by addition of 15 

IPTG. The heterologous overexpression of cyanobacterial ppgK genes conferred high PPGK activity to E. 16 

coli cells. Thus, crude extracts from induced E. coli cells overproducing NsPPGK or NpPPGK showed 17 

fairly high glucokinase activity levels with P13-18 as a substrate, in the range of 0.15 to 0.20 µmol min-1 18 

mg-1 protein, respectively. In contrast, no PPGK activity was detected in extracts from cells containing 19 

the pQE-80L plasmid with no insert. Milligram quantities of the respective N-terminal His6-tagged fusion 20 

proteins were subsequently isolated in ca. 95% purity after one-step affinity purification onto a HisTrap 21 

FF Crude Ni-NTA column (Online Resources Figs. S2 and S3, and Table S4). Enzyme purity was further 22 

enhanced by following FPLC gel-filtration chromatography, which was confirmed by electrophoresis on 23 

SDS-PAGE gels (Fig. 1, Online Resource Table S4). Thus, a single protein band of ca. 27 kDa was found 24 

in both purified PPGK preparations (Fig 1a), in good agreement with the nominal Mm values of 27,339 25 

and 27,236 Da predicted for the recombinant NsPPGK and NpPPGK polypeptides, respectively. Besides, 26 

native Mm values and oligomeric states of oligomeric states of the recombinant proteins were determined 27 

by gel-filtration chromatography, and values of 49.4 ± 4 kDa and 55.1 ± 5 kDa (means + SE of three 28 

independent determinations) were obtained for NsPPGK and NpPPGK, respectively (Fig. 1b). Therefore, 29 

both proteins adopted a stable dimeric arrangement in solution. In accordance with these results, MALDI-30 

TOF determination of absolute Mm values gave values of 27,287 Da ± 0.1% and 27,236 Da ± 0.1% for the 31 

recombinant NsPPGK and NpPPGK subunits, respectively. In addition, the identities of the recombinant 32 

NsPPGK and NpPPGK polypeptides were confirmed by peptide mass fingerprinting covering 33 

respectively about 55 and 82 % of the natural sequences, and eventual identification by MALDI-TOF MS 34 

(Online resource Fig. S4). Together, these active and high purity fractions were used for the subsequent 35 

determination of their enzymatic kinetic parameters. 36 

 37 

NsPPGK and NpPPGK are strictly polyP-dependent glucokinases with preference for long-chain 38 

PolyP 39 
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The purified recombinant NsPPGK showed no activity towards ATP, CTP, GTP, TTP, or dATP as 1 

compared to sorts of polyP (Fig. 2). The absolute specificity of NsPPGK for inorganic polyphosphates 2 

appears to be a common property of PPGK enzymes in other heterocystous filamentous cyanobacteria, 3 

since similar results were observed in the characterization of NpPPGK. The substrate specificities 4 

concerning polyP as phosphoryl donor to produce glucose 6-phosphate by cyanobacterial PPGKs were 5 

probed using synthetic polyP molecules of various chain lengths at saturating glucose levels (Fig. 2a). 6 

The rate of sugar phosphorylation for the polyP chain lengths followed a similar trend in both 7 

recombinant enzymes, longer polyP result in higher specific glucokinase activity. This indicated that 8 

PPGKs from cyanobacteria bound and hydrolyzed long-chain polyP substrates most efficiently (Table 1). 9 

This highlights its reasonable consistency with previous findings on polyP/ATP glucokinases of other 10 

bacteria (Girbal et al. 1989; Hsieh et al. 1996b; Tanaka et al. 2003; Mukai et al. 2003; Lindner  et al. 11 

2010a). Noteworthy, both cyanobacterial PPGKs are also able to use short-chain polyP. With reference to 12 

the sole crystal structure of a bacterial polyP/ATP glucomannokinase published to date (Mukai et al. 13 

2004), it has been proposed that there is a minimal length between two phosphoryl groups consisting on a 14 

putative pentapolyphosphate-binding site. However, NsPPGK and NpPPGK exhibit modest but 15 

significant specific activity levels with P4 (5-7 µmol min-1 mg-1 protein) (see Table 1). Analogous 16 

experiments revealed that cyanobacterial PPGKs were unable to use shorter polyP than P4, such as P3, P3c 17 

or PPi. Estimation of the kinetic parameters of NsPPGK with different polyP and hexose substrates 18 

revealed that there is a remarkable increase of the catalytic constant kcat (more than 30-fold) with 19 

increasing polyP chain-length from P4 up to PLC while Km values remain fairly constant, which explained 20 

the higher catalytic efficiency of long-chain polyP (Tables 1 and 2, Figs. S5 and S6). 21 

To determine the mechanism of polyP utilization by NsPPGK, P150 at saturation concentration was used 22 

as a phosphoryl substrate while the progress of the reaction was monitored by collecting sequential 23 

aliquots at increasing times. PolyP were isolated and electrophoresed on a preparative polyacrylamide gel, 24 

and eventually visualized with Toluidine blue O staining. As shown in Fig. 3, this medium-size polyP 25 

was utilized by the cyanobacterial PPGK by an essentially non-processive mechanism, as was evidenced 26 

by the non noticeable broadening of the range of polyP sizes with the reaction time. A non-processive 27 

mechanism is also consistent with the observed formation of polyP of intermediate sizes from the longest 28 

polyP during the reaction progress (see Fig. 3). 29 

A variety of compounds which are analogs to the phosphoryl donors were also tested to assess whether or 30 

not they could act as PPGK activity inhibitors (Table 3). P3 and PPi were fairly strong inhibitors, with Ki 31 

values of 0.13 and 0.19 mM respectively, while ATP only modestly inhibited the activity of NsPPGK. In 32 

addition, a control experiment with increasing concentrations of NaCl was conducted to determine the 33 

effect of the ionic strength on the PPGK activity. Results from Table 3 indicated that NsPPGK was not as 34 

severely inhibited by NaCl as by short polyP or ATP, since the observed concentrations required for 35 

substantial enzyme inhibition, most probably produced by ionic strength effect, were much higher (50-36 

150 mM range). An inhibitory effect on PPGK activity was also obtained with KCl being even more 37 

marked than that of NaCl (Table 3), thus suggesting that electrostatic forces may be involved in the 38 

interaction between polyP and the enzyme. 39 
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 1 

NsPPGK and NpPPGK possess a modest but significant polyP-dependent mannokinase activity 2 

Besides glucose, the cyanobacterial PPGKs phosphorylated mannose as well, but just in a minor extent 3 

(Table 2). The specific activity values of NsPPGK for glucose and mannose were 229.1 and 3.1 µmol 4 

min-1 mg-1, respectively. Values of the same order of magnitude were obtained for NpPPGK. A further 5 

study of their catalytic efficiencies evidenced that cyanobacterial PPGKs clearly exhibit a remarkable 6 

preference (approx. 100-fold higher) for glucose instead of mannose as a substrate (Table 2). Conversely, 7 

fructose was totally inactive as a phosphoryl acceptor. 8 

 9 

Cyanobacterial PPGKs are divalent-cation dependent enzymes with distinctive alkaline pH 10 

optimum and remarkable thermotolerance 11 

The activities of both cyanobacterial PPGKs were absolutely dependent on the presence of a divalent 12 

cation in the reaction mixture. Mg2+ was the optimal metal cofactor for glucose phosphorylation by both 13 

recombinant PPGKs, while Mn2+ and Fe2+ ions function in a lesser extent and no activity was detected in 14 

the presence of Co2+, Ca2+ or Cu2+ ions (Fig. 4a). No activity was detected after incubation of the enzyme 15 

samples with 10 mM EDTA, and subsequent dialysis to remove all traces of EDTA resulted in complete 16 

loss of activity. Addition of 5 mM Mg2+ restored the full PPGK activity. The highest specific activity with 17 

magnesium ions was found in the concentration range 4-6 mM with an optimum estimated at 5 mM and a 18 

calculated Km value of 1.3 mM (Fig. 4b). Higher concentrations of Mg2+ resulted in a decrease of PPGK 19 

activity. 20 

Cyanobacterial PPGK activity was optimal at the alkaline pH range, between pH 8.5 and 9.0 (Fig. 5a). 21 

Nevertheless, the activity declined quite rapidly at higher pH values with no activity remaining at pH 10.5 22 

or higher. A very similar pH dependence curve was obtained for both enzymes. Alkaline pH optimum is a 23 

common distinctive feature of other cyanobacterial enzymes when compared with their orthologs of non-24 

photosynthetic bacteria and eukaryotes (Serrano et al. 1984, Serrano et al. 1992). 25 

Both cyanobacterial PPGKs showed an optimal temperature as high as 45 °C (Fig. 5b). Indeed, PPGK 26 

from the actinobacterium Arthrobacter sp. (Mukai et al. 2003) exhibits a similar value, but considerably 27 

higher as compared to 30 °C for the PPGK from Microlunatus phosphovorus and most others 28 

actinobacterial polyP/ATP glucokinases (Tanaka et al. 2003). To determine the thermostability of 29 

cyanobacterial PPGK, NsPPGK was preheated at 40 ºC, 50 ºC, 60 ºC and 70 ºC for 30 min. No loss of 30 

activity was observed after incubation below 50 ºC. At 50 ºC, 45 % activity remained. However, only 7 % 31 

of PPGK activity remained at 60 ºC implying that NsPPGK is unable to tolerate these fairly high 32 

temperatures. Finally, this PPGK was irreversibly inactivated when exposed to temperatures above 60 ºC 33 

for 30 min. 34 

 35 
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Closely-related PPGK orthologs occur among diazotrophic Cyanobacteria 1 

A bioinformatic search was carried out looking for PPGK homologs in a range of filamentous and 2 

unicellular strains representative of any of the five cyanobacterial taxonomic sections defined by Rippka 3 

et al.  (1979). Then, a number of putative ppgK genes were identified in strains belonging to all these 4 

taxonomic groups. With two exceptions, the nitrogen-fixing strains Synechococcus sp. PCC7335 5 

(Bergman et al. 1997) and Synechococcus sp. PCC7502, no PPGK-like ORFs were found so far among 6 

sequenced genomes of unicellular species from section I, typically non nitrogen-fixing, e.g. Synechocystis 7 

sp. PCC6803 and Synechococcus elongatus PCC7942. Likewise, no hybridization band was observed in 8 

Southern blot analysis (Fig. 6) and no PPGK activity was detected in whole-cell extracts of the two latter 9 

strains (Table 4). In contrast, clear hybridization bands and significant levels of PPGK activity were 10 

detected with several polyPs in a number of strains of sections II to V with sequenced genomes exhibiting 11 

predicted ppgK genes as expected (such as Dermocarpa sp. PCC7437 and Nostoc spp.), but also in other 12 

diverse Cyanobacteria whose genomes have not been sequenced yet, such as section III strain 13 

Pseudanabaena sp. PCC6903, the section IV strains Nostoc sp. PCC6719, Calothrix sp. PCC7601, 14 

Calothrix sp. PCC9327, Anabaena sp. ATCC33047 and Nodularia chucula, and section V strain 15 

Fischerella muscicola (Fig. 6 and Table 4). Therefore, closely related putative polyP-dependent PPGKs 16 

seem to be widely distributed among diazotrophic, mostly multicellular, cyanobacterial strains. 17 

 18 

DISCUSSION 19 

A BLAST sequence similarity search in the genome of Nostoc sp. PCC7120 revealed one ORF, all1371, 20 

with high homology to the well-characterized Mycobacterium tuberculosis H37Ra ppgK gene (Szymona 21 

and Widomski 1974; Hsieh et al. 1996a). A similar approach revealed another putative PPGK encoding 22 

gene, Npun_R1878, in the genome of Nostoc punctiforme PCC73102, which was annotated as encoding a 23 

ROK (transcriptional regulator/sugar kinase) family protein which share a 91 % sequence identity with its 24 

homolog of Nostoc sp. PCC7120. Subsequent searches in bioinformatic databases identified about other 25 

forty putative cyanobacterial PPGK orthologs. They are predicted to be highly-similar proteins of about 26 

230-250 amino acid residues, clearly smaller than their conventional ATP-glucokinase counterparts (290-27 

330 residues), and most of them were unprecisely annotated as ROK family proteins or transcriptional 28 

regulators/sugar kinases. This finding together with the deduced ROK family domain architecture 29 

characteristic of other previously reported bacterial PPGKs predicted for all cyanobacterial orthologs, led 30 

us to investigate whether glucose 6-phosphate synthesis could take place in Cyanobacteria through PPGK 31 

enzymes. 32 

This presumption was confirmed by the biochemical characterization of two recombinant cyanobacterial 33 

PPGK proteins purified by metal-affinity and size-exclusion chromatographies as above described. As a 34 

result, both Nostoc proteins were functionally validated with the ability to phosphorylate glucose and, to a 35 

lesser extent, mannose. These enzymatic reactions occurred using a wide range of polyP with different 36 

chain lengths as phosphoryl donors. However, no activity was detected with the shortest chain-length 37 

polyPs, namely pyrophosphate (PPi), P3c, or P3. In fact, P4 was confirmed as the shortest polyP active as 38 
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substrate for PPGK enzymes described so far. Concerning the length of the chain of active polyP 1 

substrates, both Nostoc proteins seemed to follow a similar pattern, with higher catalytic efficiencies for 2 

long-chain polyP (>P60). Remarkably, reaction rates of polyP utilization increased considerably with the 3 

number of phosphate residues per molecule. To our knowledge, Mukai et al. reported the sole crystal 4 

structure so far available for a polyP/ATP-glucokinase – from the actinobacterium Arthrobacter sp. KM – 5 

and it was complexed with one glucose and two phosphate molecules instead of polyP (Mukai et al. 6 

2004). According to this model, P5 has been claimed as the shortest polyP able to enzymatically 7 

phosphorylate glucose. In contrast, we showed that both NsPPGK and NpPPK are able to generate 8 

glucose 6-phosphate when using P4 as a phosphoryl donor, although with a lower efficiency than longer-9 

chain polyPs. Apart from this, it is noteworthy that both cyanobacterial PPGKs were strictly dependent on 10 

polyP, as there was no activity detected when ATP or any other NTP were used as phosphoryl substrates. 11 

This feature has been only described to date for the PPGK of the primitive, polyP-accumulating 12 

actinobacterium Microlunatus phosphovorus (Tanaka et al. 2003). Here we describe a novel subfamily of 13 

PPGK enzymes characteristic of Cyanobacteria, all of them being strictly dependent of polyP as the 14 

phosphoryl donor. 15 

Using multiple sequence alignment of the polyP/ATP-glucomannokinase from Arthrobacter sp. KM and 16 

other actinobacterial polyP/ATP glucokinases an specific extra heptapeptide (PEAPAAG) was identified 17 

in the conserved glucose region of the former protein which was proposed as responsible for the 18 

mannose-phosphorylating ability of the polyP/ATP-glucomannokinase. In fact, PPGK from Arthrobacter 19 

sp. KM can phosphorylate fructose as well (Mukai et al. 2003). In addition, Szymona et al. have shown 20 

that when Mycobacterium phlei was grown on fructose, a polyP-fructokinase activity was found. 21 

Contrastingly, when grown on mannose, polyP-mannokinase was detected (Szymona and Ostrowski 22 

1964). Nonetheless, despite lacking such heptapeptide, this work shows that both cyanobacterial PPGKs 23 

are able to phosphorylate mannose, although with fairly modest levels and a notably reduced catalytic 24 

efficiency compared to glucose. However, no significant polyP-fructokinase activity was detected for 25 

NsPPGK and NpPPGK. 26 

Some other features of NsPPGK and NpPPGK were in some extent distinct to those previously described 27 

for other bacterial PPGKs. Thus, optimum pH was clearly alkaline, 8.5-9.0, while actinobacterial PPGKs 28 

have almost neutral optimal pH values (e.g. 7.5 for the Arthrobacter enzyme). Also, the notable 29 

thermostability of cyanobacterial PPGKs (optimal temperature, ca. 45º C) is an outstanding catalytic 30 

feature that, like its alkaline optimal pH, may have biotechnological relevance. Other biochemical 31 

features were similar to those of other sugar kinases; thus, both cyanobacterial PPGKs required divalent 32 

metal cations, to which Mg2+ was preferred. Similarly, they were identified as homodimers although with 33 

natural subunit Mm values somewhat lower than those of bacterial polyP/ATP-dependent glucokinases 34 

(ca. 30 kDa) and eukaryotic hexoquinases (ca. 35 kDa). 35 

It has been hypothesized that polyP could be the phosphoryl donors for ancient organisms, and they were 36 

later replaced by ATP in the evolution (Lipman 1965). This is based on the assumption that the Gibbs free 37 

energy of polyP hydrolysis is similar to the ATP, and their likely occurrence since prebiotic times. An 38 

interesting observation is that PPGK activities have been reported to date only in the comparatively 39 
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ancient order of Actinomycetales. Noteworthy, in bacteria belonging to this order, the ratio polyP-1 

glucokinase vs. ATP-glucokinase activities is higher in more phylogenetically ancient representatives 2 

(Hsieh et al. 1993; Phillips et al. 1999). According to this hypothesis, the following stage in the evolution 3 

of sugar kinases might be played by the dual ATP/polyP glucokinases, like the PPGKs described in 4 

Propionibacterium shermanii, Mycobacterium tuberculosis or other Actinobacteria (Pepin and Wood 5 

1986; Kowalczyk et al. 1996; Hsieh et al. 1996b). Lastly in sequence evolution, this role would be played 6 

by hexokinases which all are strictly dependent on ATP (Bork et al. 1993). For this reason, it would be 7 

expected that PPGK from more primitive bacteria, such as Microlunatus phosphovorus or cyanobacterial 8 

species were strictly dependent on polyP. It was also expected, therefore, that a similar analysis carried 9 

out with PPGKs from this ancient group of photosynthetic prokaryotes may shed light on the origin and 10 

evolution sugar kinases.  11 

Likewise PPGK where polyP can be employed instead of ATP, the polyP/ATP-dependent NAD kinase 12 

(PPNK, EC 2.7.1.23) forms NADP using either polyP or ATP. Characterized (Lindner et al. 2010b) or 13 

putative PPNKs are identified in Actinobacteria already described to possess PPGK. Surprisingly, no 14 

putative PPNKs were revealed after Blast sequence similarity searches in the Nostoc sp. PCC7120 and 15 

Nostoc punctiforme PCC73102 genomes, as well as in many other cyanobacterial genomes (data not 16 

shown). These findings might suggest that the series of genes involved in polyP metabolism of 17 

filamentous nitrogen-fixing Cyanobacteria are characteristic. 18 

The occurrence of PPGK orthologs in other Cyanobacteria was confirmed following a multidisciplinary 19 

approach based on Southern blot experiments and PPGK activity level determinations in whole-cell 20 

extracts. Thus, using the full ppgK gene from Nostoc sp. PCC 7120 as a probe putative ppgK genes were 21 

identified in genomic Southern blot analysis of a number of diverse cyanobacterial species belonging to 22 

sections II, III, IV, and V of the classification of Rippka et al. (1979). However, no orthologs were 23 

detected in unicellular species from section I, such as Synechocystis sp. PCC6803, Thermosynechococcus 24 

enlongatus BP-1, and others. As a consequence, the occurrence of PPGK might be a characteristic feature 25 

of nitrogen-fixing cyanobacterial species, like the heterocystous filamentous species of sections IV and V, 26 

as well as the non-heterocystous filamentous and colonial species of section III which fix nitrogen in 27 

microaerobiosis. 28 

An amino acid alignment including the aminoacid sequences of NsPPGK and NpPPGK proteins and 29 

those of the known PPGKs from other bacteria showed extensive sequence similarity (Online Resource 30 

Fig. S1). More importantly, the seven characteristic motifs of this protein family and all amino acid 31 

residues shown to be involved in catalysis (Mukai et al. 2003 and 2004) are conserved. These results 32 

along with the biochemical characterization presented in this work clearly demonstrate that all1371 and 33 

Npun_R1878 encode functional polyP-gluco/mannose phosphotransferases, hence its re-annotation. 34 

Based on the above sequence similarities, the ppgK assignation for both cyanobacterial genes is further 35 

supported by molecular phylogenetic analyses (Fig. 7). As molecular phylogenetic data shown, their 36 

encoded PPGK proteins form a compact well-supported cluster, clearly divergent from the actinobacterial 37 

PPGK assembly, with a number of putative orthologs encoded by the genomes of selected unicellular, 38 

colonial and filamentous cyanobacterial strains. I should be noted in this respect that about fifty putative 39 
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cyanobacterial PPGK orthologs were identified in databases searches (July 2014) (Online Resource Table 1 

S3). Noteworthy, PPGK orthologs of marine cyanobacterial strains such as Acaryochloris marina 2 

MBIC11017 and Nodularia spumigena CCY9414 are also included in this group. This suggests that, 3 

cyanobacterial polyP is possibly used as an alternative source of energy in place of ATP in the ocean 4 

environment as well. All in all, our sequence comparison and molecular phylogenetic data reveal that 5 

cyanobacterial PPGKs are structurally simpler and presumably more ancient than their homologs of 6 

Actinobacteria. With the exception of the enzyme of the polyP-accumulating actinobacterium M. 7 

phosphovorus, all the other PPGKs described to date utilize polyP as well as ATP. These findings agree 8 

with the ancestral character of Cyanobacteria, and suggest that the strictly polyP-dependent PPGKs may 9 

represent molecular relicts of a hypothetical ancient world in which polyP could be preferentially used for 10 

metabolic functions. 11 

The present work also envisages new perspectives for an innovative costly-effective enzymatic 12 

production of glucose 6-phosphate or mannose 6-phosphate by a novel class of strictly-polyP dependent 13 

glucokinases from diazotrophic Cyanobacteria. Thus, synthesis of sugar-phosphates could be performed 14 

by immobilized-engineered cyanobacterial PPGKs from the very-stable inorganic polymer polyP without 15 

continuous regeneration of ATP, an expensive cofactor required by conventional hexokinases. 16 
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 31 

FIGURE CAPTIONS 32 

 33 

Fig. 1 (a) Upper panel. PCR amplification of cyanobacterial ppgK genes. An electrophoretic analysis 34 
of PCR-amplified DNA fragments corresponding to the ppgK genes of Nostoc sp. PCC7120 (lane 1) and 35 
Nostoc punctiforme PCC73102 (lane 2), and DNA size markers (M), is shown. Amplification reactions 36 
were performed with specific primers pairs and cyanobacterial genomic DNA as a template, as described 37 
in Materials and Methods, and subsequently loaded onto 1.2 % agarose-TBE gel. As shown, a single 38 
DNA band of approximately 0.72 kb was obtained in each case (arrow). Lower panel. SDS-PAGE (12 %, 39 
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w/v, polyacrylamide, 0.5 %, w/v, SDS) analysis of recombinant NsPPGK and NpPPGK purified after 1 
FPLC gel filtration. Approx. 10 µg of NsPPGK (27.34 kDa, nominal subunit Mm) and NpPPGK (27.24 2 
kDa, nominal subunit Mm) were applied per lane. M, protein standards. Numerals on the left indicate the 3 
molecular masses (kDa). Arrow indicates the PPGK protein bands. (b) FPLC gel filtration 4 
chromatography analyses of native Mm and oligomeric states of the PPGKs from Nostoc spp. Aliquots 5 
(0.5 ml) of metal-chelated chromatography purified preparations of recombinant NsPPGK and NpPPGK 6 
were applied to a Superdex© 200 PG column. Calibration curves with protein standards (Thy, 7 
thyroglobulin; Fer, ferritine; Amy, β-amylase; ADH, alcohol dehydrogenase; BSA, bovine seroalbumin; 8 
CA, carbonic anhydrase; Cyt.c, cytochrome c) are displayed on the left upper corner of the 9 
chromatography elution profile figures. A SDS-PAGE analysis of selected fractions around the central 10 
peak fraction (50 µl aliquots applied per lane) is also shown. Note that single elution peaks, 11 
corresponding to absorbance at 280 nm (broken line) and polyP-glucokinase activity (filled circles, solid 12 
line), overlapped in both cases. The asterisks indicate the fraction peaks of recombinant PPGKs as 13 
determined by their enzymatic activity and absorbance at 280 nm. Native Mm values of 49.4 and 55.1 kDa 14 
were estimated for NsPPK and NpPPGK, respectively. Kav, phase distribution coefficient of the analyzed 15 
proteins 16 

Fig. 2 Substrate specificity of cyanobacterial recombinant PPGKs. PolyP-glucokinase activity levels of 17 
purified NsPPGK (black bars) and NpPPGK (white bars) were determined using polyPs of different chain 18 
lengths (panel a) or diverse NTPs (panel b) as phosphoryl donor substrates. Activity levels were obtained 19 
from three independent experiments and are shown as means ± S.E. Note that both cyanobacterial PPGKs 20 
are strictly polyP dependent glucokinases, and long-chain polyPs are their optimal substrates. No 21 
significant activity was detected with either NTPs, PPi, P3c or P3 22 

Fig. 3 Non-processive utilization of P150 by NsPPGK. 2.5 mM of P150 was used as a substrate for 23 
purified NsPPGK (approx. 3 µg/ml) following the standard assay conditions, as described in the Material 24 
and Methods section. At different time intervals, sequential aliquots were collected and polyP was 25 
isolated, electrophoresed on a preparative PAGE gel, and finally stained with Toluidine blue O. Lane 1 is 26 
zero time, lanes 2 to 10 correspond to 3, 6, 8, 10, 12, 14, 16, 18 and 20 min, respectively 27 

Fig. 4 Biochemical characterization of recombinant NsPPGK (black bars) and NpPPGK (white bars) 28 
regarding to metal cations dependence of polyP (P60) glucokinase activity. (a) Metal cofactor specificity. 29 
Several divalent metal cations were added at 5 mM concentration to the assay mixtures. No detectable 30 
activity was measured with Mg2+ in the presence of 10 mM EDTA. Bars represent activity levels from 31 
three independent experiments and are shown as means ± S.E. Activity is expressed in relative units (100 32 
% percentage assigned to the optimum condition in each case). 100 % activity levels correspond to 33 
81.7+7.4 and 95.8+12.5 µmol min-1 mg-1 for NsPPGK and NpPPGK, respectively. (b) NsPPGK activity 34 
dependence on Mg2+ concentration. Each point represents the mean activity value ± S.E. of three 35 
independent experiments. As shown, no activity was detected either in the absence of a divalent cation or 36 
with an excess of the chelating agent EDTA 37 

Fig. 5 Effect of the pH (panel a) and temperature (panel b) on the polyP (P60) glucokinase activity of 38 
NsPPGK (filled circles) and NpPPGK (open circles). Data are shown as relative units (100 % percentage) 39 
and were assigned to the optimum condition in each case. Activity levels were obtained from three 40 
independent experiments and are shown as means ± S.E. 100 % activity values correspond to 80.6+7.3 41 
and 93.5+9.2 µmol min-1 mg-1 (panel a) and 80.4+6.7 and 92.7+7.3 µmol min-1 mg-1 (panel b) for 42 
NsPPGK and NpPPGK, respectively 43 

Fig. 6 Experimental evidence for the widespread occurrence of homologs of Nostoc spp. ppgK genes 44 
among diazotrophic Cyanobacteria. A search of putative ppgK genes was carried out by Southern blot 45 
analysis with diverse cyanobacterial strains representatives of the taxonomic sections (roman numerals) in 46 
the classification of Rippka et al. (1979). The strains are identified by their collection numbers. The 47 
positions of EcoRI-HindIII-restricted λ DNA fragments used as standards (in the range of 21 to 2 kb) are 48 
indicated on the left side. Genomic DNAs (approx. 5 µg) were digested with HindIII (left panel) or EcoRI 49 
(right panel) restriction enzymes. The full coding sequence of the ppgK gene from Nostoc sp. PCC7120 50 
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was used as a probe under heterologous hybridization conditions at 55°C. As shown, no hybridization 1 
band was observed only in the lanes corresponding to unicellular non-diazotrophic Cyanobacteria 2 
Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942 3 

Fig. 7  Molecular phylogenetic analysis of cyanobacterial PPGKs. Unrooted Neighbor-Joining (a) and 4 
Maximum Parsimony (b) phylogenetic trees, obtained from amino acid sequence alignments of selected 5 
bacterial orthologs, are shown. A similar topology was obtained for a Maximum Likelihood tree (not 6 
shown). Numbers in selected nodes are bootstrap percentages based on 1,000 replicates. Scale bar 7 
indicates number of changes per amino acid site. Most cyanobacterial strains are identified by their PCC 8 
numbers. Biochemically characterized PPGKs are shown boxed, and the three strictly polyP-dependent 9 
enzymes characterized so far are moreover shown in boldface. Other predicted PPGK sequences were 10 
obtained from public databases (UniProtKB and IMG-JGI databases) and their details are summarized in 11 
Online Resource Table S3. Note the well-defined and robust cyanobacterial cluster (shaded) which is 12 
clearly divergent from the actinobacterial assembly of dual ATP/polyP-dependent homologs, as well as 13 
the two deeply-branched clusters of uncharacterized putative PPGKs from α- and β-proteobacteria 14 
closely related to the cyanobacterial assembly 15 

 16 

TABLES 17 

 18 

Table 1. Kinetic parameters of purified recombinant polyP-gluco(manno)kinase from Nostoc sp. 19 
PCC7120 with different polyPs and hexoses as substrates 20 

Substrate 
(polyPn) 

Vmax 

(µmol min-1 mg-1) 
Km

a 

(µM) 
kcat 

(s-1) 
Catalytic efficiency  

kcat/Km 
    (mM-1s-1) 

P4 5.7 29.9 4.9 164 
P13-18 31.4 37.7 27.0 717 
P60 81.7 39.8 70.2 1764 
PLC 176.3 49.5 151.4 3059 

Glucose (PLC) 239.3 67.7 196.0 2895 
Mannose (PLC) 3.1 2,360 1.6 0.7 

a Km values are calculated as polyP. 21 

 22 

Table 2. PolyP-hexokinase activities of purified recombinant NsPPGK and NpPPGK 23 

 Specific activity (µmol min-1 mg-1) 
Hexose NsPPGK NpPPGK 

Glucose (5 mM) 229.1±14.0 174.3±14.7 
Mannose (50 mM) 3.1±0.2 2.0±0.1 
Fructose (50 mM) ND a ND 

a ND, not detected; the minimum level of detection was ca. 0.05 nmol min-1 mg-1. 24 

 25 

Table 3. Effect of different compounds on the activity of NsPPGK towards glucose and P13-18 as substrates 26 

Chemicals Activity (%) 
NaCl (1 mM) 100 
NaCl (5 mM) 99.7 
NaCl (10 mM) 99.5 
NaCl (50 mM) 84.5 
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NaCl (150 mM) 66.0 
KCl (1 mM) 95.8 
KCl (5 mM) 82.3 
KCl (10 mM) 70.4 
KCl (50 mM) 65.2 
KCl (150 mM) 49.9 
ATP (1 mM) 96.3 
ATP (5 mM) 71.0 
ATP (50 mM) 12.2 
PPi (1 mM) 99.8 
PPi (5 mM) 55.6 
PPi (10 mM) 28.4 
P3 (1 mM) 87.5 
P3 (5 mM) 39.9 
P3 (10 mM) 12.0 
None 100 
Specific activity in the absence of inhibitor (set as 100 %) was 31.8 µmol min-1 mg-1. 1 

 2 

Table 4. PPGK specific activities levels with different polyP substrates in whole-cell extracts from 3 
diverse Cyanobacteria 4 

Cyanobacterial strain a P4 P13-18 P60 PLC 
 (nmol-1min-1 mg-1) 
Synechococcus elongatus PCC7942(I) ND b ND ND ND 
Synechocystis sp. PCC6803 (I) ND ND ND ND 
Dermocarpa sp. PCC7437 (II) 9.0±0.7 8.4±0.7 8.5±0.7 10.9±1.3 
Pseudanabaena sp. PCC6903 (III) 3.6±0.4 15.1±1.3 11.1±0.9 16.3±1.4 
Anabaena sp. ATCC29413 (IV) 6.8±0.7 27.4±1.7 18.2±1.5 16.0±1.8 
Calothrix sp. PCC9327 (IV) 0.1±0.3 2.1±0.2 3.1±0.2 4.6±0.3 
Nostoc punctiforme PCC73102 (IV) 10.5±0.9 15.4±1.2 13.7±1,1 19.0±1,4 
Nostoc sp. PCC7120 (IV) 0.8±0.1 17.9±1.3 18.4±1.5 10.9±0.9 
Scytonema sp. PCC7110 (IV) 0.4±0.1 5.7±0.8 3.1±0.5 12.8±1.6 
Chlorogloeopsis sp. PCC6912 (V) c ND ND ND ND 
Fischerella muscicola UTEX1829 (V) c ND ND ND ND 
a ATCC (American Type Culture Collection); PCC (Pasteur Culture Collection); UTEX (University of Texas at 5 
Austin Culture Collection). Roman numerals in parentheses indicate the sections of the taxonomic classification of 6 
Rippka et al. (1979). The two unicellular strains of section I were grown in the presence of 2 mM NaNO3 as a 7 
nitrogen source. 8 

b ND, not detected activity; the minimum level of detection is ca. 0.05 nmol min-1 mg-1. 9 

c The presence of large amounts of extracellular mucous material made very difficult achieving reliable 10 
measurements with these colonial strains. 11 
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                                                                    phosphate-1                                                                                    glucose 
                                          ***********                                                 ************ 

NsPPGK               1 ----------MVEDNGSIRTLSVDIGGSGVKALVLD-ITGNPVTERARVDTPQPATPEVVINAIMVLAAAQG-------EFHRVSVGFPGVVRA 

NpPPGK               1 ----------MVEENGSIRTLSVDIGGSGVKAMVLD-ITGSPVTERARLDTPQPATPGVVINAIVVLAAAQG-------EFHRVSVGFPGVVRC 

Syn. sp. PCC7335     1 -----------------MKTLAIDIGGSGLKALLLD-EQGNPLGDRDRIKTPKPATPKAVMSLLIELAQRQG-------DFDRVSVGFPGIVRK 

Acar. marina         1 ------M---GTPADESLLVLSVDIGGSGIKAMVLD-ESGQPITERQRIETPSYPNPPAVLDVIVELAKGQG-------DFNRVSVGFPGVVQN 

Glo. kilaueensis     1 ------M---IAEQSTFPRTLAVDIGGSGIKALVLA-ADGSPLTERVREATPRPAPPEAVVAIIQKLSKALG-------PFERVSVGFPGVVRN 

Osc. sp. PCC6506     1 ----------MTTQDKSVRTLAVDIGGSGIKVMILN-EEGQPIAERARVETPEPAKPEPVLAAIASLVAQQG-------EFERVSVGFPGVVSN 

Der. sp. PCC7437     1 ------MN--SNQTEQGIRTLGVDIGGSGVKAIVLD-EQGLTITERSRVKTPQPATPEAVLNAIASLASEQG-------EFERVAVGFPGVVQY 

Nod. spumigena       1 ----------MVEDHESIRTLSVDIGGSGVKALVLD-ITGNPITKRMRLETPQPAKPEMIIDAMEVLAASQG-------EFHRVSVGFPGVVRQ 

Cyl. stagnale        1 ----------MVEDNGSVRTLSVDIGGSGVKAMVLD-IAGKPLTERARLETPQPAKPEVVINAIVVLAAAQG-------DFHRVSVGFPGVVRC 

Cal. sp. PCC7507     1 ----------MVDENGSIRTLSVDIGGSGVKAMVLD-ITGTPITERGRLDTPQPAKPDVVINAIAVLAAAQG-------EFHRVSVGFPGVVRC 

Fis. sp. PCC9605     1 -----------MDNKENIRTLSVDIGGSGVKAIVLD-ITGNPLTQRSRLETPQPPKPEVVINAITTLASTQG-------EFDRVSVGFPGVVRN 

Mic.phospho. PPGK1   1 ------MTDTPPVAAPGRSVLGIDIGGSGIKGAPVDLATGLFAAERLRIDTPAKSTPANVAKVVAEIVDHFKAE---V-GDGPIGITIPAVVTH 

Mic.phospho. PPGK2   1-------------MNETANIALGIDIGGTGIKGALVDLETGALVSDRFRLDTPRPALPAAVADTVVAVAAHFD-------FAGPVGVAFPGVVLD 

Arthrobacter sp. KM  1 ------MAKKDEKSHKNAPLIGIDIGGTGIKGGIVDLKKGKLLGERFRVPTPQPATPESVAEAVALVVAELSARPEAPAAGSPVGVTFPGIIQH 

Thermobifida fusca   1 ------------MASRGRVGLGIDIGGSGIKGAPVDLDRGTFVVDRVKIATPQPATPEAVAAVVAEIVTAFADD---VPQDAPLGVTFPAVIQH 

Str. coelicolor      1 -----------------MQIFGVDIGGSGIKGAPVDLDRGDLAQERCKVLTPHPATPDGVADGVKQVVEHFG-------WTGRVGLTFPGVVTG 

Cor. glutamicum      1 ---------------MTETGFGIDIGGSGIKGARVNLKTGEFIDERIKIATPKPATPEAVAEVVAEIISQAE-------WEGPVGITLPSVVRG 

Mic. tuberculosis    1 MTSTGPETSETPGATTQRHGFGIDVGGSGIKGGIVDLDTGQLIGDRIKLLTPQPATPLAVAKTIAEVVNGFG-------WRGPLGVTYPGVVTH 

 

 

 

                                                                                         connect-1                               phosphate-2 
                                                     **********                    ********** 

NsPPGK              76 G-VTETAVNLDSDWIGFDLETALSQRLH-KPVRVINDADMQGFGA-----I-KGKGVELVITLGTGFGSALFVDGKLVPNMEMGHHPFRKGETY          

NpPPGK              76 G-VTETAVNLHPDWIGFDLETALLKHLN-KPVRVINDADMQGFGA-----I-AGKGVELVITLGTGFGSALFVDGKLVPNMEMGHHPFRKGETF 

Syn. sp. PCC7335    69 G-IIYTAVNLHPDWREYDLATQLSSSVG-KPVRVANDADLQGMGA-----I-SGEGVEMVITLGTGFGTALFTEGHLVPNIELAHHRFRKSETY 

Acar. marina        77 G-VIKTAVNLNKEWIDYDLAKNLEARLD-APVRVANDADIQGYGA-----I-SGQGVELVVTLGTGFGSALFVNGHLVPNLEIAHHPFIKGKTY 

Glo. kilaueensis    77 G-RTLTA-HLHPDWIGFQFDAVLAQTLG-KPVRVANDADVQGLGT-----I-AGRGVELVITLGTGLGSSLFADGRLFPNLQLAHQPFLEGKTY 

Osc. sp. PCC6506    76 G-ITKTAVNLDPDWVGFDFGNTLSDRLG-KPVRVVNDADMQGMGA-----I-SGHGVELVITLGTGFGSALFVDGKLVPNLEAGHHPFRKGETY 

Der. sp. PCC7437    78 G-ITKTAVNLDPQWENFNLGDALSKLLA-KPVKVANDADIQGLGA-----I-KGQGVELVLTLGTGFGSALFIDGKLVPNLEMGHHPFRKGETY 

Nod. spumigena      76 G-VTETAANLYRDWIGFDLETALSQRLN-KPVRVINDADMQGFGA-----V-TGKGLELVITLGTGFGSALFINGKLVPNMEMGHHQFRKGKTY 

Cyl. stagnale       76 G-VTETAVNLHPDWIGCDLATTLSKQLN-KPVRVINDADMQGLGA-----I-AGKGVELVVTLGTGFGSALFIDGKLVPNMEMGHHQFRKGETY 

Cal. sp. PCC7507    76 G-VTETAVNLDRDWIGFNLETALSQQLR-KPVRVINDADMQGFGA-----I-AGKGVELVITLGTGFGSALFVDGKLVPNMEMGHHQFRKGETY 

Fis. sp. PCC9605    75 G-VTETAVNLDPGWIGFDLATVLSNRLS-KPVRVINDADMQGLGA-----I-QGLGVELVITLGTGFGSALFVDGKLVPNLEMGHHPFRKGETY 

Mic.phospho. PPGK1  84 G-QTRSAANIDHSWIDAEAEQIFEDVLQ-RDIYLMNDADAAGIAEVHYGAAKGHPGLVIVTTLGTGIGSAMIHRGVLIPNSELGHLEIDG-LDA 

Mic.phospho. PPGK2  75 G-VVHTAANLHPDWIGASLAELVGSRLS-GPSVFLNDADAAGLAEARFGAAKGVSGVVLLVTLGTGIGTAMISDGQLVPNSEFGHLELDG-LDA 

Arthrobacter sp. KM 88 G-VVHSAANVDKSWLNTDIDALLTARLG-RPVEVINDADAAGLAEARYGAGAGVKGTVLVITLGTGIGSAFIFDGKLVPNAELGHLEIDG-HDA 

Thermobifida fusca  79 G-VARSAANVDRSWIGTNVEELLSAVTG-RRVLVVNDADAAAMAEHRYGAASGVDGVVLLTTLGTGIGTAVLVDGVLLPNTEFGHLEIDG-YDA 

Str. coelicolor     70 GATVRTAANVDKGWVDTDARALFAERLGGLDVTVVNDADAAGVAEMHFGAGRGRKGTVVLLTFGTGIGSAVFTDGLLVPNTELGHLELDG-HDA 

Cor. glutamicum     72 Q-IALSAANIDKSWIGTDVHELFDRHLNGREITVLNDADAAGIAEATFGNPAAREGAVILLTLGTGIGSAFLVDGQLFPNTELGHMIVDG-EEA 

Mic. tuberculosis   87 G-VVRTAANVDKSWIGTNARDTIGAELGGQQVTILNDADAAGLAETRYGAGKNNPGLVVLLTFGTGIGSAVIHNGTLIPNTEFGHLEVGG-KEA           

----------------------------------------p    phosphate-3-                       adenosine                                       connect-2      
*********************************************************************************************************************

NsPPGK              161 EEQLGRAT—-LDKIGQKKWNR-RLEKAIASLQRLFNYDYLYIGGGEAVRVNFQLPLNVK----L----IPNISGLLGGIALWRDEKTL----- 

NpPPGK              161 EQQLGRAE--LEKIGEKRWNR-RLEKAIASLQHLFNYDYLYIGGGEAVRVNFQLPLNVK----L----IPNITGLLGGIALWRDEKR------ 

Syn. sp. PCC7335    154 EEQLGRAA--LKKIGSKTWNT-RLLKAIESLSRVLNYDRLYLGGGEVKHIEIELPENVT----I----VSNMLGLLGGIKLWKD--------- 

Acar. marina        162 EQQLGRQA--MKKKGKKAWNR-HLAQAIKNLEHLFNYDRLYMGGGETKRVKIDLSDNVE----I----VSNRAGILGGIALWRDRG------- 

Glo. kilaueensis    161 EQHLGNPA--LQVKGKKKWNQ-ALALALTNFEALFGFDACYIGGGNALYVKLDLPPHIQ----I----SSNINGLLGGIALWRDSVDEAR--- 

Osc. sp. PCC6506    161 EQQLGRAA--LDAVGQKRWNR-RLEKAIATLQNLFNCDCLYIGGGNTKKITMELPPNVK----V----VPNVNGLLGGIVLWKD--------- 

Der. sp. PCC7437    163 EEQLGRAA--LNKIGVQKWNN-RLQRAIANLEHLFNYNTLYLGGGEAKNINFQLPESVV----V----IPNISGLLGGIKLWQN--------- 

Nod. spumigena      161 EEQLGRTE--LEKIGDKRWNK-RLDKAIASLQSLFNYDYLYIGGGEAVRVNLELPLNVK----L----IPNITGLLGGIALWKD--------- 

Cyl. stagnale       161 EEQLRRAA--LEQIGEKKWNR-RLEKAIASLQHLFNYDYLYIGGGEAVKVNMHLPLNVK----L----IPNVTGLLGGIALWKD--------- 

Cal. sp. PCC7507    161 EEQLGRAI--LEKIGDKKWNK-RLEKAIASLQNLFNYDCLYIGGGEAVRVNMHLPLNVK----L----IPNITGLLGGIALWRN--------- 

Fis. sp. PCC9605    160 EEQLGRAA--LERVGDNKWNK-RLLKAIATLQRLFNYDSLYIGGGEATRIKSQLPTNVK----I----IPNITGLLGGIALWRD--------- 

Mic.phospho. PPGK1  175 ETNAASSAKERNDWSYSEWAP-KLQRYYERLEALFWPDLIVVGGGVSKKAHKFLPKLKL-KSQIIPAQLLNTAGIVGAAWLAADRLVHPDPMG 

Mic.phospho. PPGK2  166 ETYAAASARKRNNHTWEEWAG-HAEHYLKYLEGLVWPKLFVLGGGITKNPELWLHYLKP-RTPIVLATNINNAGIIGAAAAAAQTQQAG---- 

Arthrobacter sp. KM 179 ETKASAVARERDGLSWDEYSV-LLQRYFSHVEFLFSPELFIVGGGISKRADEYLPNLRL-RTPIVPAVLRNEAGIVGAAIEIALQHKLAK--- 

Thermobifida fusca  170 ETRASASAKERENLSYKEWAEERLQRYYSVIEDLLWPDLIVVGGGVSRKADKFLPHLRL-RAPIVPAKLRNTAGIVGAAVLAAERLGGDRVSA 

Str. coelicolor     163 EKRASSKVKDDHDMSWEHWAH-RVQKYLAHVEMLFSPELFIIGGGVSRKSQKFLPHIKDVRAEIVPAQLQNNAGIVGAAMHAAG--------- 

Cor. glutamicum     164 EHLAAASVKENEDLSWKKWAK-HLNKVLSEYEKLFSPSVFIIGGGISRKHEKWLPLMEL-DTDIVPAELRNRAGIVGAAMAVNQHLTP----- 

Mic. tuberculosis   179 EERAASSVKEKNDWTYPKWAK-QVIRVLIAIENAIWPDLFIAGGGISRKADKWVPLLEN-RTPVVPAALQNTAGIVGAAMASVADTTH----- 

Fig. S1. Multiple sequences alignment and primary structure features of cyanobacterial PPGKs 

and other bacterial polyP/ATP-gluco(manno)kinases. The amino acid sequences (from top to 

bottom) of NsPPGK, NpPPGK, 9 putative cyanobacterial orthologs, and characterized homologs 

from the Actinobacteria Microlunatus phosphovorous NM-1 (the characterized strictly polyP-

dependent PPGK1 and its uncharacterized paralog PPGK2), Arthrobacter sp. strain KM, 

Thermobifida fusca YX, Streptomyces coelicolor A3, Corynebacterium glutamicum and 

Mycobacterium tuberculosis H37Ra are shown (see Table S3 for details). Seven conserved motifs 

involved in binding of substrates - the so-called phosphate-1, glucose, phosphate-2, phosphate-3, 

connect-1, connect-2 and adenosine regions - are highlighted with black dashes. The specific 

heptapeptide in the glucose region of the poly(P)/ATP-glucomannokinase from Arthrobacter sp. 

strain KM is underlined. The sequence alignment was carried out using ClustalW (Larkin et al. 

2007) and formatted with Boxshade version 3.21. Residues that are highly identical among the 

sequences are given a black background, and those that are similar among the sequences are 

given a gray background. 



Fig. S2. Partial purification of recombinant cyanobacterial Nt-His PPGK by Ni-NTA metal-

affinity chromatography. Protein elution profiles of the metal-chelate affinity 

chromatography of recombinant PPGKs from Nostoc sp. PCC 7120 (a) and Nostoc 

punctiforme PCC 73102 (b) are shown. Sonicated E. coli (BL21) cells were centrifuged and 

the crude supernatants containing the overproduced recombinant enzymes were loaded 

onto pre-equilibrated HisTrap FF Crude 1 mL Ni-NTA columns. Partially purified PPGKs 

were eluted with a linear gradient of imidazole with a target concentration of 500 mM. The 

asterisk indicates the fraction peak of recombinant protein as determined by its 

polyphosphate-glucokinase activity (grey bars) and absorbance at 280 nm. 
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Fig. S3. Purification profiles of recombinant NsPPGK (a) and NpPPGK (b) preparations 

analyzed by Coomassie blue staining of SDS-PAGE 12% (w/v) gels. Lane 1: PPGK-

overexpressing E. coli (BL21) crude extracts; lanes 2-4, fractions eluted at low 

concentration of imidazole with a linear gradient (20-50 mM); lane 5, partially purified 

PPGK preparation from HisTrap FF Crude column eluted at high concentration of 

imidazole (ca. 0.25 M); lane 6, purified PPGK after FPLC gel filtration. Numerals on the left 

indicate the molecular masses (kDa) of protein markers (M). Arrows indicate the bands of 

the recombinant PPGK proteins. 
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Fig. S4. Sequence and domain structure validation of cyanobacterial PPGKs by tryptic-

peptide fingerprinting and MALDI-TOF mass spectrometry analysis. The Pfam domain 

structures of the two natural PPGKs are shown, as well as the sequences of the 

corresponding purified recombinant proteins in which the amino acid residues are bold-

coloured accordingly, the experimentally identified peptides are underlined and the N-

terminal His-tags are in lowercase. Identified peptides cover about 80 and 55 % of the 

predicted protein sequences of natural NsPPGK and NpPPGK, respectively. 

  1 mrgshhhhhh gsMVEENGSI RTLSVDIGGS GVKAMVLDIT GSPVTERARL 

 51 DTPQPATPGV VINAIVVLAA AQGEFHRVSV GFPGVVRCGV TETAVNLHPD  

101 WIGFDLETAL LKHLNKPVRV INDADMQGFG AIAGKGVELV ITLGTGFGSA  

151 LFVDGKLVPN MEMGHHPFRK GETFEQQLGR AELEKIGEKR WNRRLEKAIA  

201 SLQHLFNYDY LYIGGGEAVR VNFQLPLNVK LIPNITGLLG GIALWRDEKR  

Mascot Search Results 
Probability Based Mowse Score 

Match to: gi|23125685  

Transcriptional regulator/sugar kinase –[Nostoc punctiforme PCC 73102] –> 

NpPPGK 

Sequence coverage of natural protein: 55 % 

Nominal mass (Mm): 25,816 (without the N-terminal tag of 12 aa) 

aa:  1  12          166          238         

aa:  1  12         169          239         

  1 mrgshhhhhh gsMVEDNGSI RTLSVDIGGS GVKALVLDIT GNPVTERARV 

 51 DTPQPATPEV VINAIMVLAA AQGEFHRVSV GFPGVVRAGV TETAVNLDSD  

101 WIGFDLETAL SQRLHKPVRV INDADMQGFG AIKGKGVELV ITLGTGFGSA  

151 LFVDGKLVPN MEMGHHPFRK GETYEEQLGR ATLDKIGQKK WNRRLEKAIA  

201 SLQRLFNYDY LYIGGGEAVR VNFQLPLNVK LIPNISGLLG GIALWRDEKT  

251 L  

Match to: gi|81772382 

polyphosphate glucokinase  – [Nostoc sp. PCC 7120] –> NsPPGK 

Sequence coverage of natural protein: 82 % 
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Fig. S5. Determination of the kinetic parameters of the recombinant NsPPGK. Increasing 

concentrations of polyPs of different chain lengths were used in the range up to 300 µM to 

phosphorylate glucose (5 mM). Concentration dependence curves of NsPPGK activity with 

P4 (a), P13-18 (b), P60 (c), and PLC (d) as phosphoryl donor substrates are shown. 

Enzymatic reactions were carried out at optimal conditions as described in the Materials 

and Methods section. Points represent mean activity values + S.E. of three independent 

determinations. Kinetic parameters were determined by nonlinear curve fitting from the 

Michaelis-Menten plot using the spreadsheet Anemona.xlt (Hernández et al. 1998). 
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Fig. S6. Determination of the kinetic parameters of the recombinant NpPPGK with different 

monosaccharide substrates. Concentration dependence phosphorylation activity curves 

with glucose (a) and mannose (b) of purified NpPPGK, using 1 mM PLC as phosphoryl 

donor, are shown. Enzymatic reactions were carried out at optimal conditions as described 

in the Materials and Methods section. Points represent mean activity values + S.E. of three 

independent determinations. Kinetic parameters were determined by nonlinear curve fitting 

from the Michaelis-Menten plot using the spreadsheet Anemona.xlt (Hernández et al. 

1998). 
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Online Resource Table S1. List of cyanobacterial strains used in this work 

Strain a Description, alternative names N2-fixation 
conditions 

Group b 

Synechococcus elongatus PCC7942 Unicellular rod-shaped, also 
called  Anacystis nidulans 

No I 

Synechocystis sp. PCC6803 Unicellular globular-shaped No I 
Dermocarpa sp. PCC7437 Colonial, also called Stanieria 

cyanosphaera 
Microaerobic II 

Pseudanabaena sp. PCC6903 Filamentous, non-heterocystous Microaerobic III 
Anabaena sp. ATCC29413 Filamentous, heterocystous, also 

called Anabaena variabilis 
Aerobic IV 

Anabaena sp. ATCC33047 Filamentous, heterocystous Aerobic IV 
Calothrix sp. PCC7601 Filamentous, heterocystous, also 

called Fremyella diplosiphon 
Unable to fix N2 
(mutant strain)  

IV 

Calothrix sp. PCC9327 Filamentous, heterocystous, also 
called Tolypothrix sp. 

Aerobic IV 

Nodularia chucula  Filamentous, heterocystous Aerobic IV 
Nostoc sp. PCC6719 Filamentous, heterocystous Aerobic IV 
Nostoc sp. PCC7107 Filamentous, heterocystous Aerobic IV 
Nostoc sp. PCC7120 Filamentous, heterocystous, also 

called Anabaena 
Aerobic IV 

Nostoc punctiforme PCC73102 Filamentous, heterocystous Aerobic IV 
Scytonema sp. PCC7110 Filamentous, heterocystous Aerobic IV 
Chlorogloeopsis sp. PCC6912 Branched filamentous, 

heterocystous, also called 
Chlorogloeopsis fritschii 

Aerobic V 

Fischerella muscicola UTEX1829 Filamentous, heterocystous Aerobic V 
a Culture Collection abbreviations are as described in Table 4. 
b With reference to the taxonomic classification of Rippka et al. (1979). 

 

Online Resource Table S2. Primers for cloning the ppgK genes from Nostoc sp. PCC7120 and Nostoc 
punctiforme PCC73102 

Gene Primers (new restriction site, underlined) 
F (BamHI) 5'-GCCGGATCCATGGTGGAAGATAACGGC-3' ppgK (N.7120) 

ppgK (N.7120) R (PstI) 5'-TCACTGCAGCTATAGTGTTTTTTCATC-3' 
F (BamHI) 5'-GCCGGATCCATGGTTGAAGAAAATGGATCG-3' ppgK (N.73102) 

ppgK (N.73102) R (PstI) 5'-TCACTGCAGTTACCTTTTTTCATCTCGCC-3' 
 

 

 

 

 

 

 

 

 



 

Online Resource Table S3. PPGK sequences used in this study 

Source organism Protein or Gene 
ID entry a 

Predicted 
protein 

length (aa) 

Taxonomy b 

Synechococcus sp. PCC7335* B4WQL2 228 Cyanobacteria, Chroococcales (I) 
Synechococcus sp. PCC7502* K9SS42 238 Cyanobacteria, Chroococcales (I) 
Gloeobacter kilaueensis JS1* U5QNN6 241 Cyanobacteria, Gloeobacterales (I) 
Pleurocapsa sp. PCC7319 2509711744  235 Cyanobacteria, Pleurocapsales (II) 
Dermocarpa sp. PCC7437 2503800427  237 Cyanobacteria, Pleurocapsales (II) 
Acaryochloris marina   
MBIC11017* 

B0C5T1 238 Cyanobacteria, Chroococcales (II) 

Acaryochloris sp. CCMEE5410 2514738042  238 Cyanobacteria, Chroococcales (II) 
Oscillatoriales sp. JSC-12 2510096246  230 Cyanobacteria, Oscillatoriales (III) 
Pseudanabaena biceps PCC7429 L8N8S2 234 Cyanobacteria, Oscillatoriales (III) 
Pseudanabaena sp. PCC6802* 2506783054  234 Cyanobacteria, Oscillatoriales (III) 
Coleofasciculus chthonoplastes 
PCC7420 

B4W415 235 Cyanobacteria, Oscillatoriales (III) 

Crinalium epipsammum PCC9333 2504685141 235 Cyanobacteria, Oscillatoriales (III) 
Lyngbya majuscula 3L 2506483678  235 Cyanobacteria, Oscillatoriales (III) 
Microcoleus chthonoplaste 
PCC7420 

647572171  235 Cyanobacteria, Oscillatoriales (III) 

Microcoleus sp. PCC7113 2509437012  235 Cyanobacteria, Oscillatoriales (III) 
Microcoleus vaginatus PCC9802 2505167359  235 Cyanobacteria, Oscillatoriales (III) 
Moorea producens 3L F4Y1Y5 235 Cyanobacteria, Oscillatoriales (III) 
Oscillatoria sp. PCC6407 2508875670 235 Cyanobacteria, Oscillatoriales (III) 
Oscillatoria sp. PCC6506* D8FXR8 235 Cyanobacteria, Oscillatoriales (III) 
Oscillatoria sp. PCC7112 2504089037  235 Cyanobacteria, Oscillatoriales (III) 
Oscillatoria acuminata PCC6304 2509419241 236 Cyanobacteria, Oscillatoriales (III) 
Pseudanabaena sp. PCC7367* K9SLD8 237 Cyanobacteria, Oscillatoriales (III) 
Lyngbya aestuarii BL J 2578016402 238 Cyanobacteria, Oscillatoriales (III) 
Lyngbya sp. PCC8106* A0YLE5 238 Cyanobacteria, Oscillatoriales (III) 
Oscillatoria sp. PCC10802 2509508264 239 Cyanobacteria, Oscillatoriales (III) 
Leptolyngbya sp. 2LT21S03 2509751146 243 Cyanobacteria, Oscillatoriales (III) 
Leptolyngbya sp. PCC7375* K9EMV6 251 Cyanobacteria, Oscillatoriales (III) 
Leptolyngbya sp. Heron Island J 2579003743 255 Cyanobacteria, Oscillatoriales (III) 
Calothrix sp. PCC6303 K9V545 234 Cyanobacteria, Microchaetaceae 

(IV) 
Calothrix desertica PCC7102 2510030452 235 Cyanobacteria, Microchaetaceae 

(IV) 
Calothrix sp. PCC7103 WP_019497362 235 Cyanobacteria, Microchaetaceae 

(IV) 
Calothrix sp. PCC7507* K9PMJ8 235 Cyanobacteria, Microchaetaceae 

(IV) 
Fremyella diplosiphon UTEX481 2501543286 235 Cyanobacteria, Microchaetaceae 

(IV) 
Microchaete sp. PCC7126 2509783891 235 Cyanobacteria, Microchaetaceae 

(IV) 
Raphidiopsis brookii D9 D4TRI7 232 Cyanobacteria, Nostocaceae (IV) 
Anabaena sp. PCC7108 2506493476 235 Cyanobacteria, Nostocaceae (IV) 
Anabaena cylindrica PCC7122 2504134473 235 Cyanobacteria, Nostocaceae (IV) 
Cylindrospermum stagnale  
PCC7417* 

K9WXY9 235 Cyanobacteria, Nostocaceae (IV) 

Nodularia spumigena CCY9414* A0ZFN0 235 Cyanobacteria, Nostocaceae (IV) 
Nostoc azollae (strain 0708) D7E4T8 235 Cyanobacteria, Nostocaceae (IV) 



 

Nostoc  sp. PCC7107 K9Q5V7 235 Cyanobacteria, Nostocaceae (IV) 
Scytonema hofmanni PCC7110 2551958472 236 Cyanobacteria, Scytonemataceae 

(IV) 
Nostoc sp. PCC7524 2509810004 237 Cyanobacteria, Nostocaceae (IV) 
Nostoc punctiforme PCC73102* B2J3R4 238 

(NpPPGK)c 
Cyanobacteria, Nostocaceae (IV) 

Anabaena variabilis ATCC29413* Q3M5W7 239 Cyanobacteria, Nostocaceae (IV) 
Nostoc sp. PCC7120* Q8YX46 239 

(NsPPGK)c 
Cyanobacteria, Nostocaceae (IV) 

Fischerella muscicola SAG1427-1 2550703822 234 Cyanobacteria, Stigonematales (V) 
Fischerella sp. PCC9605* WP_026733157  234 Cyanobacteria, Stigonematales (V) 
Mastigocladopsis repens MORA, 
PCC10914 

2517243485  235 Cyanobacteria, Stigonematales (V) 

Fischerella sp. PCC9431 WP_026723397  235 Cyanobacteria, Stigonematales (V) 
Bifidobacterium longum* D6DBE0 255 Actinobacteria, Bifidobacteriaceae 

Corynebacterium glutamicum* Q6M4B1 250 Actinobacteria, Corynebacteriaceae 

Corynebacterium diphtheriae* Q6NGU6 253 Actinobacteria, Corynebacteriaceae 

Frankia alni* Q0RE01 289 Actinobacteria, Frankiaceae 

Arthrobacter sp. KM* A0JVB2 267 Actinobacteria, Micrococcaceae 

Arthrobacter aurescens* A1R5H5 272 Actinobacteria, Micrococcaceae 

Mycobacterium bovis* C1AFG1 265 Actinobacteria, Mycobacteriaceae 

Mycobacterium tuberculosis* P9WIN1 265 Actinobacteria, Mycobacteriaceae 

Rhodococcus erythropolis* C0ZYU0 273 Actinobacteria, Nocardiaceae 

Rhodococcus fascians* Q8VM93 274 Actinobacteria, Nocardiaceae 

Thermobifida fusca TM51 R9F6L8 262 Actinobacteria, Nocardiopsaceae 

Thermobifida fusca YX* Q47NX5 262 Actinobacteria, Nocardiopsaceae 

Microlunatus phosphovorus 
NM-1* 

F5XI06 253 
(PPGK2) 

Actinobacteria, 
Propionibacteriaceae 

Propionibacterium  shermanii* D7GI59 261 Actinobacteria, 
Propionibacteriaceae 

Microlunatus phosphovorus 
NM-1* 

F5XK61 266 
(PPGK1)c 

Actinobacteria, 
Propionibacteriaceae 

Streptomyces peutecius  
subsp. caesius* 

S5DRF7 242 Actinobacteria, Streptomycetaceae 

Streptomyces coelicolor A3(2)* Q9ADE8 246 Actinobacteria, Streptomycetaceae 

Candidatus Poribacteria sp. 
WGA-4E d 

2265139082  231 Poribacteria 

Agrobacterium tumefaciens C58* A9CH74 225 α-Proteobacteria 

Nitrobacter hamburgensis X14* Q1QLK2 229 α-Proteobacteria 

Mesorhizobium loti MAFF303099* Q98EJ9 240 α-Proteobacteria 

Bradyrhizobium sp. DFCI-1* U1H9M5 244 α-Proteobacteria 

Rhizobium tropici* L0LZW1 250 α-Proteobacteria 

Burkholderia xenovorans LB400* Q13JL2 266 β-Proteobacteria 

Burkholderia caribensis MBA4* W4NCD7 269 β-Proteobacteria 

Burkholderia phymatum  
DSM17167 / STM815* 

B2JFU9 270 β-Proteobacteria 

Cystobacter fuscus DSM2262 d 2538040499  255 δ-Proteobacteria 

Deinococcus radiodurans* Q9RW46 279 Thermus/Deinococcus group, 
Deinococcaceae 

a Sequences (mostly putatives) are referred to their corresponding UniProtKB, GeneBank or IMG-JGI databases entry 
codes. Those sequences used for the molecular phylogenetic analyses are indicated with an asterisk. 
b Taxonomy was established following both general bacteriological rules and the specific rules for Cyanobacteria 
(taxonomic sections denoted by roman numbers in parenthesis) of Rippka et al. (1979). 
c Biochemically characterized strictly polyP-dependent PPGKs. 



 

d These two sequences of non-photosynthetic bacteria cluster into the cyanobacterial assembly and are not included 
in the trees for clarity purposes; they may be the results of horizontal gene transfer events. 

 
 

Online Resource Table S4. Purification of His-tagged NsPPGK from transformed E. coli cells 

Step Specific activity 
(µmol min-1 mg-1) 

Protein 
(mg) 

Recovery 
(%) 

Purification 
(folds) 

Crude supernatant 0.16 285.0 100 1 
Ni-NTA 14.57 1.4 45 91 
Amicon Ultra-3 kDa 
ultrafiltration 

14.12 1.3 40 -- 

Superdex 200 31.40 0.5 28 196 
 




