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Abstract 

 

A novel differential electrochemical mass spectrometry (DEMS) cell has been 

developed to study gas diffusion electrodes (GDEs) used in fuel cells under operating 

conditions. In this way, catalytic and diffusion properties of the electrodes can be 

evaluated at the same time. Moreover, DEMS, allows the detection of volatile and 

gaseous products and intermediates generated in the electrochemical reactions with 

good sensitivity. In this way, CO2 conversion efficiencies are evaluated during alcohol 

oxidation reaction. In the present communication, the electrochemical behaviour 

towards hydrogen evolution and CO and alcohol electrooxidation at different platinum-

based catalysts has been studied using the new DEMS cell configuration. The relative 

yields of CO2 and by-side products during methanol oxidation have been evaluated to 

determine the CO2 conversion efficiency. In addition, the diffusional properties of 

diverse GDEs have been considered. 
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1. Introduction 

 

Among the different types of fuel cells, polymer electrolyte fuel cells (PEMFCs) are the 

most promising for both portable and stationary applications due to its high power 

density at low temperatures (55-95 ºC), low weight, compactness and suitability for 

discontinuous operation [1-4]. The main part of a PEMFC is the membrane-electrode-

assembly (MEA), composed by two gas diffusion electrodes (GDE), and the polymer 

membrane, which acts as the electrolyte. Normally, the GDE is constituted by a gas 

diffusion layer (GDL) and a catalytic layer. The main function of the GDL is to 

transport the reactants and products to and away the catalytic layer. On the other hand, 

the fuel (e.g. H2) generates protons at the anode that flow trough the polymeric 

membrane towards the cathode to form water with oxygen (pure or from the air), while 

the produced electrons flow through an external circuit. However, if an organic 

molecule (e.g. CH3OH) is used as fuel, several intermediates and by-side products (e.g. 

carbon monoxide, formaldehyde and formic acid) can be formed in addition to protons 

and carbon dioxide. In this sense, the GDL is a very important topic in the PEMFCs due 

to its great importance for delivering reactants to the catalysts and for liberating 

catalytic sites by removing in an appropriated way the products and by-side products. 

Moreover, a suitable GDL becomes necessary in order to avoid the flooding in the GDE 

when the PEMFC is under operational conditions. 

 

In the last years, catalyst development for PEMFCs has concerned many investigations 

[1-14] and many characterization techniques have been reported elsewhere [1,6,8,15-

17]. However, in most cases these techniques evaluate the catalytic activity in different 

conditions from those in real fuel cells (i.e. a catalyst powder onto a glassy carbon disk 
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[8,18,19] or onto a gold-covered tantalum strip [20]). Therefore, it becomes necessary to 

seek other strategies to investigate the catalytic and diffusion properties of GDEs in fuel 

cells conditions under operating conditions. For this purpose, recently our research 

group has developed a novel differential electrochemical mass spectrometry (DEMS) 

cell, which allows the study of GDEs. This configuration provides further information, 

such as reaction product distribution, interaction with the diffusion layer and the 

diffusional properties of the reactants and products within this layer. Therefore, with 

this technique, catalytic and diffusion properties can be evaluated at the same time. 

Moreover, DEMS provides more information than a simple electrochemical technique, 

allowing the detection of volatile and gaseous products and intermediates generated in 

the electrochemical reactions with excellent sensitivity [20-22]. Thus, CO2 conversion 

efficiencies, as well as reactants/products diffusion can be evaluated during the alcohol 

(e.g. methanol) oxidation reaction. 

 

In this work, the new DEMS cell configuration was tested through the hydrogen 

evolution reaction. After that, two important reactions in the fuel cell field were 

examined: adsorbed CO (COad) and methanol electrooxidation at different Pt catalysts 

supported on Vulcan XC-72R. The relative yields of both CO2 and HCOOH, during the 

methanol electrooxidation, were measured to determine the CO2 conversion efficiency. 

The Pt catalysts supported on Vulcan XC-72R were prepared by two different methods, 

with the finality of studying and comparing the influence of the synthesis method on the 

performance of the catalysts. In addition, electrochemical properties of both catalysts 

were compared with that of a commercial Pt/Vulcan XC-72R catalyst (E-TEK). 
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On the other hand, the diffusional properties of the GDEs were evaluated by the new 

DEMS cell configuration, using for this purpose different GDLs (i.e. increasing the 

amount of the carbon + PTFE ink) and compared with a commercial GDL 

(Hydro2Power). 

 

2. Experimental 

 

2.1 Synthesis of the carbon-supported Pt electrocatalysts 

 

The carbon-supported Pt electrocatalysts were prepared by two different methods, 

using: i) sodium borohydride as reducing agent (BM); and ii) ethylene glycol (EGM) as 

solvent and reducing agent. Appropriate amounts of metal precursor were employed to 

obtain a theoretical platinum loading of 20 wt. % on the carbon material, Vulcan XC-

72R, supplied by Cabot. Chloroplatinic acid (8 wt. % H2PtCl6·6H2O solution, Sigma–

Aldrich) was used as metal precursor. 

 

In the BM reduction method, catalyst was prepared by impregnating the carbon with the 

metal precursor solution. Subsequently, the metal was reduced with a 26.5 mM sodium 

borohydride (99%, Sigma–Aldrich) solution, which was slowly added to the precursor 

one under sonication. [23]. 

 

In the EGM reduction method, the metal precursor was dissolved in ethylene glycol 

(1mL EG/1mg Pt) under sonication and the pH was adjusted to 11 adding 1 M NaOH 

solution. After that, the carbon support was added and the resulting mixture was treated 
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at 195 ºC for 2 h and subsequently quickly cooled in a cold water bath. The pH was 

measured and adjusted to 1 using HCl (37%, Sigma–Aldrich) [24]. 

 

The catalysts were named as Pt/Vulcan-BM, Pt/Vulcan-EGM and E-TEK for the 

commercial one.  

 

2.2 Preparation of working electrodes 

 

GDEs were used as working electrodes (7 mm of diameter). The working electrodes 

were prepared depositing a layer of 2-3 mg/cm
2
 of diffusion ink onto both sides of a 

carbon cloth and a layer of the catalyst ink onto one side.  

 

The gas diffusion ink was prepared mixing Vulcan XC-72R, ultrapure water (Millipore 

Milli-Q system), isopropanol (Merck, p.a.) and a PTFE dispersion (60 wt. %, Dyneon) 

until resulting in a 20 wt.%  PTFE mixture. Carbon cloth was painted with this diffusion 

ink, and subsequently, was treated at 320 ºC for 1 h.  

 

Catalyst inks were prepared by mixing the respective electrocatalysts with Nafion 

dispersion (5 wt.%, Sigma-Aldrich) and ultrapure water (1:5:10 wt.) and deposited onto 

one side of the GDE. Final metal loading of the working electrodes was of 0.4 mg 

Pt/cm
2
 electrode. 

 

 

In the case of the commercial catalyst, E-TEK, with the purpose of evaluating the 

diffusion properties of the electrodes, three different electrodes were prepared changing 
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the diffusion conditions, using: i) a layer of 2-3 mg/cm
2
 of diffusion ink onto both sides 

of the carbon cloth; ii) the same layer but onto only one side of the carbon cloth; and iii) 

a commercial diffusion layer (20 wt.% PTFE onto one side of the carbon cloth, 

Hydro2power). The electrodes were named E-TEK, E-TEK 1GDL and E-TEK 

commercial GDL. Tab. 1 summarizes the nomenclature used for all the gas diffusion 

electrodes prepared.  

 

2.3 Physicochemical characterization 

 

Catalysts were also characterized by energy dispersive X-ray analysis (EDX) to 

determinate the real metal load and X-ray diffraction (XRD) to evaluate the 

crystallographic properties of the materials. Metal content of the electrocatlysts was 

obtained using a Hitachi S-3400N microscope coupled to a Röntec XFlash analyzer. X-

Ray diffraction (XRD) patterns were recorded using a Bruker AXS B8 Advance 

diffractometer with θ–θ configuration and using Cu Kα radiation.  

 

2.4 DEMS set-up 

 

A scheme of the developed DEMS cell is shown in Fig. 1. As can be seen, the working 

electrode (WE) is fixed between a PTFE membrane (Scimat) and a carbon glassy rod, 

which is connected to a Au wire to keep the electrical contact. The cell was designed to 

follow “in-situ” the electrochemical and diffusional properties of electrodes prepared by 

different methods, and simultaneously, to detect the gaseous and volatiles species 

produced on the electroactive surface through mass spectrometry. In this way, the 

experimental set-up allows the simultaneous acquisition of mass spectrometric cyclic 
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voltammograms (MSCVs) for selected m/z (mass to charge) ratios and conventional 

voltammograms (CVs) or simultaneous mass spectrometric current transients (MSCTs) 

and conventional current transient curves (CTs). Additionally, the cell permits to 

exchange the electrolyte under control of the WE potential.  

 

2.5 Mass spectrometric and electrochemical measurements 

 

DEMS experiments were carried out in a three electrodes electrochemical cell, at room 

temperature and atmospheric pressure. The counter electrode was a high surface area 

carbon rod and the reference electrode was a reversible hydrogen electrode (RHE) 

placed inside a Luggin capillary. All potentials in the text are referred to this electrode. 

The potenciostat-galvanostat used was an Autolab PGSTAT302 (Ecochemie). The cell 

was directly attached to the vacuum chamber of the mass spectrometer (Balzers 

QMG112) with a Faraday cup detector. Argon (N50) was used to deaerate all solutions 

and CO (N47) was employed for the adsorption experiences. Sulphuric acid (0.5 M, 

Merck p.a.) and methanol (0.1 M, Merck p.a.) were used for the preparation of the base 

electrolyte (0.5M H2SO4) and the working solutions, respectively.  

 

First, several potential cycles between 0.025 and 0.9 V in 0.5 M H2SO4 during 

electrolyte exchange, previously deaerated with Ar, were recorded, at 100 mVs
-1

, to 

clean and activate the electrode surface. After that, in situ DEMS experiments were 

carried out.  

 

CTs and the corresponding MSCTs for hydrogen evolution for each electrode were 

recorded in 0.5 M H2SO4 at the beginning of the experiments, with the purpose of 
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calculating the delay or detection time of the novel cell setup. The potential was stepped 

from 0.4 V to 0.0 V and then switched back to 0.4 V after 60 s. Other authors have used 

this technique to estimate the response time of the spectrometer [25-27]. In addition, 

CVs and MSCVs for hydrogen for each electrode at different scan rates (10, 20, 50 and 

100 mVs
-1

) in 0.5 M H2SO4, were also registered to evaluate the detection time of the 

cell set-up.  

 

Electrochemical active areas of the electrodes were estimated from CO-stripping 

voltammograms by the integration of an adsorbed CO monolayer (COad) oxidation, 

assuming a charge of 420 μC cm
−2

 involved in the oxidation of a monolayer of linearly 

adsorbed CO. These electroactive areas have been used to calculate the current densities 

J (A cm
-2

) given in the text. CO was adsorbed on electrode surfaces by bubbling this gas 

through the electrolyte for 10 min at 0.10 V. The excess of CO was then flushed from 

the electrolyte with Ar during 30 min and the potential was cycled between 0.025 and 

1.000 V at 0.005 V s
−1

 for three complete cycles. During CO-stripping experiments, 

mass signals of H2 (m/z = 2) and CO2 (m/z = 44) were followed. 

 

Methanol oxidation reaction (MOR) was studied by cyclic voltammetry and 

chronoamperometry. CVs were recorded in 0.5 M H2SO4 + 0.1 M CH3OH solution 

between 0.025 and 1 V at a scan rate of 0.005 V s
−1

. Current transients were recorded in 

the same solution at 0.55 V (a typical value for the anode of PEMFCs under operational 

conditions) during 600 s. In the course of methanol oxidation experiments, mass signals 

of CO2 (m/z = 44) and formic acid (followed through methylformate formation, m/z = 

60) were recorded.  
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2.6 DEMS calibration  

 

The calculation of the efficiency for methanol conversion to CO2 by DEMS requires a 

previous determination of the m/z = 44 calibration constant (
2CO

K ). With this purpose, 

faradic (
2CO

fQ
) and ionic m/z = 44 (

2CO
iQ

) charges were obtained from CO stripping and 

related according to the equation: 















2

2

2 2
CO
f

CO
iCO

Q
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K

. The factor 2 refers to the number of 

electrons needed for formation of one CO2 molecule from COad. This constant has to be 

determined before each experiment because it depends of several variables (membrane 

electrode gap, flow rate, temperature and pressure in the mass vacuum line) and it has to 

be fixed during the experience. 

 

Then, the current efficiency E  for methanol electrooxidation to CO2 is determined from 

the subsequent expression:
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, where 6 are the electrons involved in 

the complete oxidation reaction, 

T

fQ
is the charge associated to all faradic processes 

occurring at the surface during methanol electrooxidation (obtained from the current 

transient) and 2CO
iQ is the charge associated to the m/z = 44 signal recorded during the 

MOR.  

 

3. Results 

 

3.1 Physicochemical characterization of the electrocatalysts  
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EDX analysis showed that all catalysts presented a metal content similar to the nominal 

value of 20 %. 

 

Fig. 2. shows the XRD pattern for Pt/Vulcan-EGM catalyst as example. As can be seen, 

a peak around 2θ = 25º was observed, which is associated to the graphite (002) 

diffraction line. This peak is attributed to the turbostratic structure of the primary 

particles of the support, Vulcan XC-72R. It can be also observed the five characteristic 

diffraction peaks of platinum at 2θ = 40, 47, 67, 81 and 85º.  These peaks are associated 

to the (111), (200), (220), (311) and (222) crystallographic planes, indicating that the 

platinum present the typical face-centered cubic (fcc) structure. All the samples present 

similar diffractograms.  

 

3.2 Estimation of the detection time 

 

The current transient curve (black line) and the corresponding mass signal for hydrogen 

(m/z = 2) (red line), in 0.5 M H2SO4, for E-TEK electrode prepared with 2GDLs are 

shown in Fig. 3. CTs associated with MSCTs are the most appropriate way to analyse 

the necessary time for detection of volatile products into the mass spectrometer. The 

potential was steeped from 0.4 V, where hydrogen evolution is not produced, to 0.0 V, 

where a clear molecular hydrogen formation is produced onto the working electrode. As 

can be seen in Fig. 3, the mass signal for hydrogen evolution follows the cathodic 

current immediately. Comparing both curves is possible to estimate the time delay of 

the cell set-up for the detection of molecular hydrogen formation. Therefore, as the 

cathodic current peak becomes apparent at 30.422 s and the m/z = 2 signal indicating 

the beginning of hydrogen formation at 31.172 s., the delay in the detection of hydrogen 
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molecules is ca. 0.75 s. In this sense, it is important to know that a typical DEMS 

apparatus has a delay detection time around 0.50 s. Therefore, the new cell set-up has an 

optimum design to study the catalytic and diffusion properties of GDE usually 

employed at PEMFCs.  

After that, with the purpose of studying the effect of the GDL onto the hydrogen 

diffusion, the same experiments were performed using the same catalyst (Pt/C 20% wt., 

E-TEK ), but with different diffusion conditions: with only one diffusion layer (Fig. 4A) 

and with a commercial diffusion layer (Fig. 4B). It is observed that with one diffusion 

layer the detection time is negligible (less than the data acquisition time of the 

potentiostat), while with the commercial GDL is ca. 0.70 s. Therefore, it is important to 

remark that, the new DEMS cell configuration can discriminate properly the diffusional 

properties of the diverse GDLs utilized. 

 

In order to verify these results under potentiodinamic conditions, CVs and the 

corresponding MSCVs for hydrogen were recorded for each electrode. The upper panels 

of Fig. 5 show the CV recorded at 0.01 Vs
-1

 in 0.5 M H2SO4 for the electrodes prepared 

with two GDLs. In all the cases, a good definition of the hydrogen 

adsorption/desorption region, as well as the hydrogen evolution feature can be observed. 

The middle and bottom panels of Fig. 5 display the current density and the mass signal 

for hydrogen (m/z = 2) vs. time obtained from a complete CV and MSCV, respectively, 

for each electrode. Comparing both curves is possible to estimate the delay between the 

ionic and faradaic current associated to molecular hydrogen formation. For example, for 

the Pt/Vulcan-BM electrode, the faradaic and ionic current peaks appear at 187.781 s 

and 188.593 seconds, respectively, so the delay time needed for a volatile molecule of 

hydrogen to be detected by the spectrometer is less than 1 second. Similar results were 
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obtained for the other electrodes. Also, it is noticeable the fast decay of the m/z = 2 

signal. So, it is confirmed that no diffusion problems are detected during the hydrogen 

evolution reaction. 

 

Due to the low delay time of the present cell set-up, higher scan rates can be used to 

follow the hydrogen evolution. Fig. 6 presents the CVs for a selected electrode, E-TEK 

with one GDL, at different scan rates (0.01, 0.02 and 0.05 V s
-1

). As it can be seen, 

higher scan rates lead to an increase in the detection delay time, but even for the highest 

value, 0.05 Vs
-1

, the detection delay is less than 2.5 seconds. Additionally, Fig. 7 shows 

the results obtained using the same electrode recorded at very slow scan rate, such as 

0.005 Vs
-1

. It is remarkable that, even at this slow scan rate it is not observed any 

complication (e.g. ohmic drop) related to the cell set-up. 

 

3.3 CO electrooxidation  

 

CO-stripping voltammetry can be used to characterize the catalyst surface, as well as, to 

establish their tolerance towards CO poisoning. CO stripping voltammograms were 

performed for all the catalysts used in the present work at room temperature in 0.5 M 

H2SO4 (Fig. 8). It is observed that the peak associated to CO oxidation for all the 

catalysts occurs at practically the same potentials, in the 0.78 – 0.81 potential range, in 

accordance with the bibliography [28, 29]. However, the onset for CO oxidation shifts 

to more negative potential for Pt/Vulcan catalysts than for the electrode prepared with 

the E-TEK material, demonstrating an improved condition for CO elimination from 

these catalyst surfaces. However, no significant differences were observed between the 

Pt/Vulcan electrodes synthesized by BM and EGM. 
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Fig. 9A displays the CO stripping voltammogram for an E-TEK electrode with two 

GDLs, and the corresponding MSCV for CO2 (m/z = 44). It is observed from the 

faradaic (middle panels) and ionic (bottom panels) current signals versus time that the 

time response is similar to the observed with the hydrogen evolution experiment (Fig. 

6). Nevertheless, the m/z = 44 signal decay is very slow compared to the hydrogen 

experiment. The latter behaviour is mainly related to two effects: the high CO2 quantity 

produced at the working electrode and consequently introduced into the mass chamber; 

and principally, the slower CO2 diffusion compared with that of hydrogen. So, it is not 

associated to the cell design, as it was corroborated before through the hydrogen 

experiments. Moreover, this is the first time for our knowledge that a gas diffusion 

electrode with a standard catalyst quantity used in PEMFCs is tested by DEMS. 

 

In order to study the GDL effect on the CO2 diffusion, CO stripping experiments were 

performed with the same catalyst (Pt/C 20% wt., E-TEK), but with different diffusion 

conditions (i.e. different GDLs). For this purpose, the COad oxidation reaction was 

performed on GDEs prepared with 1GDL (Fig. 9B), 2GDL (Fig. 9A) and a commercial 

GDL (Fig. 9C). First of all, it is observable similar mass detection time (less than 1 s. 

delay) at the onset of COad oxidation for all the GDEs. However, it is noticeable a 

different behaviour during the ionic current decay. Thus, in Fig. 9A and 9B, the ionic 

current tail after the mass signal peak decreases faster due to the lower diffusion path 

CO2 has to flow, whereas in Fig. 9C the commercial diffusion layer presents the slower 

ionic current decay, i.e. CO2 needs more time to arrive to the mass spectrometer 

chamber due to a longer diffusion path. Therefore, it is important to remark that with 

this novel configuration, DEMS allows the evaluation of the catalytic and diffusion 

properties of GDEs at the same time.  
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3.4 Methanol electrooxidation  

 

Fig. 10 shows the CVs for methanol electrooxidation at Pt/Vulcan-BM, Pt/Vulcan-EGM 

and commercial (E-TEK) catalysts with 2 GDLs. All GDEs present similar features to 

those reported in bibliography [9,30-32], i.e. a rise in the faradaic current is apparent 

around 0.40-0.45 V (onset potential) during the positive-going potential scan, 

developing an anodic peak whose position depends on the catalyst. After the anodic 

peak, the current decreases due to the Pt oxide formation, which is not catalytic for the 

methanol oxidation reaction (MOR). At the negative-going potential scan, a new anodic 

contribution is observed. The latter occurs at more negative potentials than the Pt oxide 

reduction, and consequently, re-adsorption and electrooxidation of methanol can happen 

again [9,30].  

Interestingly, Pt/Vulcan electrodes synthesized by BM and EGM methods achieved a 

similar current density values during the MOR. However, the catalytic activity towards 

this reaction developed by the commercial catalyst is appreciably lower than the 

observed by synthetized materials. In this sense, it is well known that the MOR is 

surface dependent, i.e. first methanol has to adsorb onto a suitable Pt surface (at least 

three Pt neighbours atoms are needed for this step), afterward it may suffer several 

dehydrogenation steps, in which reaction intermediates (e.g. COad) and by-side products 

(e.g. formic acid and formaldehyde) can be formed, and last oxidation step should be 

the removal of reaction intermediates by adsorbed oxygenated species (e.g. OHad) [30]. 

Therefore, the low catalytic activity developed by the commercial catalyst may be 

related to a low methanol adsorption, i.e. this catalyst does not present an optimized 

atomic arrangement on the surface. On the other hand, the Pt/Vulcan-EGM electrode 

presents the methanol oxidation peak at higher potentials than the others catalysts. The 
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latter may be associated with certain difficulty of producing adsorbed oxygenated 

species (i.e. OHad) on the Pt/Vulcan-EGM surface. 

With the purpose of evaluating the performance of the different electrodes as possible 

anodes for DMFCs, current transients were recorded at 0.55 V (a potential similar to 

that obtained during operating conditions in a fuel cell using only Pt as catalytic 

material) at room temperature in 0.5 M H2SO4 + 0.1 M CH3OH. In these experiments, 

the potential was steeped from 0.1 V (a potential where the methanol oxidation is 

negligible) to 0.55 V. As can be seen in Fig. 11, the synthesis method has an important 

influence on the electrocatalytic activity towards the MOR.  The electrode prepared by 

BM is the most active and develops a stationary current of ca. 3,2 μAcm
-2

, which is 

around twice higher than the observed at the electrode Pt/Vulcan-EGM (1.8 μAcm
-2

) 

and the commercial catalyst (1.9 μAcm
-2

). In this sense, it is important to note that 

similar results were obtained by cyclic voltammetry (Fig. 10), in which the onset 

potential for methanol oxidation follows the same behaviour than the observed by the 

current transients (Fig. 11). Moreover, these results support the explanation suggested 

before, whereas the methanol adsorption and the formation of adsorbed oxygenated 

species on the commercial and Pt/Vulcan-EGM catalysts are inhibited, respectively.  

In the course of methanol oxidation experiments, mass signals of CO2 (m/z = 44) and 

formic acid (followed through methylformate formation m/z = 60) were registered by 

the mass spectrometer with the purpose of calculating the CO2 conversion efficiency. 

Fig 12 shows the faradic current transients (black line) and the corresponding ionic 

current transients for m/z = 44, for a selected electrode (E-TEK with 2 GDLs). Also it is 

included the faradic current expected for 100 % efficient conversion of methanol to CO2 

calculated from the m/z = 44 signals after the calibration procedure (red line).  
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The CO2 value for the conversion efficiency was close to 100 % in agreement with 

previous reported DEMS analysis for carbon supported catalysts [9]. Under restricted 

diffusion conditions, like in the carbon-supported catalysts, the soluble by-products can 

interact again with the surface and be fully oxidized. As a consequence, the amount of 

adsorbed CO or other adsorbed species increases during the complete oxidation 

processes and, accordingly, the CO2 efficiency. The other electrodes presented similar 

results, with a CO2 conversion efficiency close to 100 %, except for the electrode 

synthesized by the EG method, whose efficiency was of 86 %.(see Tab. 2)  

With the purpose of studying the GDL effect during the methanol oxidation reaction in 

a typical potential value for PEMFC in operation, several chronoamperometry 

experiments were carried out and the reaction intermediates and products were followed 

by in-situ DEMS. Fig. 13 shows the faradaic current transients (black line) and the 

corresponding ionic current transients for CO2 (m/z = 44) production (red line) recorded 

during the methanol oxidation on an E-TEK catalyst with different diffusion conditions 

(i.e. 1GDL, 2GDL, commercial GDL). It is proved that the mass detection times are 

similar to those observed during the hydrogen evolution experiments (Fig. 3 and Fig. 4), 

i.e. the DEMS cell setup works appropriately and the delay for detecting a volatile 

molecule is less than 1 s. (even working with the commercial GDL). On the other hand, 

the mass signal decay (i.e. after switch the working potential from 0.55 to 0.1 V) is 

slower compared to the H2 experiments. As in the case of CO electrooxidation, this 

effect can be explained in terms of the slow CO2 diffusion away from the GDE, which 

contrasts with the fast hydrogen diffusion. This suggestion is clearly observed in Fig. 

13, whereas the CO2 diffusion time decreases in the following order: commercial GDL 

> 2 GDLs > 1 GDL, being 43, 33 and 28 s, respectively, the time necessary for 

achieving a decrease in the faradic current density of 70 %. It is remarkable, that these 
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results are in concordance with those obtained during CO stripping and H2 evolution 

experiments.  

 

4. Conclusions 

 

A new configuration of the DEMS cell has been developed to characterize gas diffusion 

electrodes for fuel cells prepared with catalysts synthesized by different methods. This 

design has demonstrated to be appropriated for simultaneous evaluating of the catalytic 

and the diffusion properties of GDEs. In this way, it is possible to determinate the 

reaction products during CO and methanol electrooxidation reactions at carbon 

supported Pt catalysts used in GDEs. In addition, with the aid of DEMS calibration, it is 

possible to evaluate the efficiency for CO2 conversion.  

 

Problems associated to the detection time of the spectrometer are not been found along 

the experiments, being the response time for the CO and methanol oxidation products 

similar to the observed with the hydrogen evolution experiment. 

 

On the other hand, it is observed that the diffusion of CO2 formed during the CO 

stripping experiments or during the MOR was slower than that of hydrogen. It was 

observed that with two gas diffusion layers and with the commercial layer the diffusion 

time of the products was slower, but with only one diffusion layer (i.e. shorter diffusion 

path), results improved indicating that it is possible to control the diffusion properties of 

the electrodes.  
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CVs and MSCVs recorded during the CO stripping oxidation showed an enhanced CO 

tolerance of Pt/Vulcan catalysts compared with the commercial E-TEK material. 

However, no significant differences were observed between the Pt/Vulcan electrodes 

synthesized by BM and EGM. Thus, CO stripping experiments seem to bring up the 

similarities of Pt/Vulcan (BM and EGM) electrodes towards the water dissociation (i.e. 

production of oxygenated species), which is favoured on these surfaces compared with 

that of the commercial catalyst. 

 

Conversely, the behaviour of the catalysts for methanol oxidation was significantly 

different, being the electrode prepared by the BM the most catalytic. It is observed that 

all the electrodes presented similar CO2 conversion efficiencies (~100 %), except for the 

electrode synthesized by the EG method, whose efficiency was of 86 %. The high 

values of CO2 conversion efficiencies are related to the re-adsorption and re-oxidation 

of by-side products. Nevertheless, the electrode synthesized by the EGM shows the 

lowest CO2 conversion efficiency, which is associated to a higher formation of by-side 

products (e.g. formic acid and formaldehyde). 

 

 In conclusion, methanol study shows the importance of a suitable surface towards 

methanol adsorption and dehydrogenation. In fact, Pt/Vulcan (BM and EGM) materials 

present similar behaviour towards CO oxidation, nevertheless the catalytic activity 

towards the methanol oxidation is completely different, i.e. both catalysts present 

similar activity sites towards water dissociation, but their surfaces for methanol 

adsorption and oxidation are different. 
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Tables, Figures and Captions. 

 

Table. 1. Nomenclature of the gas diffusion electrodes.  

Electrode Synthesis method Diffusion conditions 

Pt/Vulcan-BM BM 2 GDLs 

Pt/Vulcan-EGM EGM 2 GDLs 

E-TEK -- 2 GDLs 

E-TEK 1GDL -- 1 GDL 

E-TEK Commercial GDL -- Commercial GDL 

 

 

 

 

Table. 2. CO2 conversion efficiency for methanol oxidation on Pt electrodes obtained at 

0.55 V under no flow conditions. 

 

Electrode CO2 conversion efficiency (%) 

Pt/Vulcan-BM 98  

Pt/Vulcan-EGM 86 

E-TEK 93 
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Fig. 1. Scheme of the DEMS cell 
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Fig. 2. XRD pattern of Pt/Vulcan-EGM catalyst. 
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Fig. 3. (black line) CT and (red line) MSCTs for hydrogen, m/z = 2 from 0,4 V to 0 V 

vs. RHE onto E-TEK electrode with two gas diffusion layers. 0.5 M H2SO4. 
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Fig. 4. (black line) CT and (red line) MSCTs for hydrogen, m/z = 2 from 0,4 V to 0 V 

vs. RHE onto E-TEK electrode with one gas diffusion layer (A) and with a commercial 

gas diffusion layer (B). 0.5 M H2SO4.  

20 40 60 80 100

-200

-100

0

100

200

300

20 40 60 80 100

0

2

4

6

8

 

30.48 s

0.40 V

 

0.40 V 0.0 V

30.48 s

A

 

 

F
a
ra

d
a

ic
 C

u
rr

e
n
t 

/ 

A

 c
m

2

time / s

 Io
n
ic

 C
u

rre
n
t / a

.u
.

33.62 s

B

34.33 s

0.40 V

  m/z = 2

 

0.40 V 0.0 V 

 Faradaic current

 

 

 

 

 

 

 

 

 

 

 

 



 29 

Fig. 5. (upper panel) CV, (middle panel) current density and (bottom panel) mass signal 

for H2 (m/z = 2) vs. time on Pt/Vulcan-BM, E-TEK and Pt/Vulcan-EGM electrodes. ν = 

0.01 Vs
-1

, 0.5 M H2SO4. 
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Fig. 6. (upper panel) CV, (middle panel) current density and (bottom panel) mass signal 

for H2 (m/z = 2) vs. time on E-TEK electrode with one diffusion layer at different scan 

rates (ν = 0.01, 0.02 and 0.05 Vs
-1

), 0.5 M H2SO4. 
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Fig. 7. (upper panel) CV, (middle panel) current density and (bottom panel) mass signal 

for H2 (m/z = 2) vs. time on E-TEK electrode with one diffusion layer at 0.005 Vs
-1

, 0.5 

M H2SO4. 
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Fig. 8. CO stripping voltammograms on Pt/Vulcan electrodes with two gas diffusion 

layers at 0.005 Vs
-1

, 0.5 M H2SO4. 
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Fig. 9. (upper panel) CO stripping voltammogram, (middle panel) current density and 

(bottom panel) mass signal for CO2 (m/z = 44) vs. time on E-TEK electrode with 

different diffusion conditions (2GDL, 1 GDL and a commercial GDL) at 0.005 Vs
-1

, 0.5 

M H2SO4. 
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Fig. 10. CVs on Pt electrodes with 2 gas diffusion layers at 0.005 Vs-1, 0.5 M H2SO4 + 

0.1 M CH3OH. 
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Fig. 11. CTs on Pt electrodes with 2 gas diffusion layers from 0.1 V to 0.55 V, 0.5 M 

H2SO4 + 0.1 M CH3OH. 
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Fig. 12. (black line) CTs and MSCTs for CO2 (m/z = 44) from 0.1 to 0.55 V vs. RHE 

onto E-TEK electrode with 2GDL and (red line) current calculated from CO2 signal 

(m/z = 44), 0.5 M H2SO4 + 0.1 M CH3OH. 

 

200 400 600

0

1

2

0

2

4

6

8

 

 F
a

ra
d

a
ic

 C
u

rr
e

n
t 
/ 

A

c
m

-2

Time / s

m/z =44

ef = 93 %

 

 

Io
n

ic
 c

u
rr

e
n

t 
/ 
a

.u
.

 

 

 

 



 37 

Fig. 13. (black line) CTs and (red line) MSCTs for CO2 (m/z = 44) from 0.1 to 0.55 V 

vs. RHE onto E-TEK electrode with different diffusion conditions (2GDL, 1 GDL and a 

commercial GDL), 0.5 M H2SO4 + 0.1 M CH3OH. 
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