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ABSTRACT 

CO2 capture in a calcium looping (CaL) system is one of the most promising 

technologies for climate change mitigation. The main reactors in these systems 

(carbonator and calciner) operate in conditions where the reaction of CaO with the SO2 

resulting from the combustion of coal is inevitable. This work reports on the sulphation 

of CaO under a range of variables that are typical of reactors in CaL systems. 

Furthermore it is demonstrated that the number of calcination carbonation cycles 

changes the sulphation patterns of the CaO from heterogeneous to homogeneous in all 

the limestones tested. For 50 carbonation calcination cycles and for particle sizes below 

200 µm, the sulphation pattern is in all cases homogeneous. The sulphation rates were 

found to be first order with respect to SO2, and zero with respect to CO2. Steam was 

observed to have a positive effect only in the diffusion through the product layer 

controlled regime, as it leads to an improvement in the sulfation rates and effectiveness 

of the sorbent. Most of the experimental results of sulfation of highly cycled sorbents 

under all conditions can be fitted by means of the Random Pore Model (RPM) assuming 

that the kinetics and diffusion through the product layer of the CaSO4 are the controlling 

regimes.  
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1. Introduction 

CO2 capture and storage is one of the best options for mitigating CO2 emissions to the 

atmosphere and climate change [1]. Among the technologies developed, the post-

combustion calcium looping (CaL) system is one of the most promising due to the 

economic benefits it offers and experience acquired with similar systems already 

operating at industrial scale [2-7]). One of the main advantages of these emerging CaL 

technologies is the low cost of the sorbent since natural limestone is used as the 

preferred source of CaO. Figure 1 represents one of the possible configurations of a full 

post-combustion CaL system for capturing CO2 consisting of three main reactors 

functioning as CFBs (including in this diagram the CFBC power plant as the source of 

flue gases). In this configuration, coal is burned in air in the CFBC, generating a stream 

of gases that is fed to the CFB carbonator, which operates at around 650 °C. It is here 

that CO2 capture takes place since the CaO reacts with CO2 to form CaCO3. The 

carbonated solids then enter the CFB calciner, where CaO is regenerated to form a rich 

CO2 atmosphere typical of oxy combustion at temperatures of around 900 °C [2]. The 

high temperatures at which both the CFB carbonator and CFB calciner operate allow 

efficient heat integration by generating different streams of solids and gases at high 

temperatures. The rapid development of this technology can be attributed to its 

similarity to existing CFBC power plants.  

The viability of this technology has been demonstrated in several pilot plants including 

La Pereda (Spain) which produces 1.7 MWth and is the largest CaL for CO2 capture 

installed so far [8, 9]. Other pilots that have achieved promising results are the 1 MWth 

pilot plant in Darmstadt (Germany) [10], the 0.3 MWth pilot in La Robla [11], the 0.2 

MWth pilot at Stuttgart University (Germany) [12] and the 1.9 MWth pilot that is being 
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constructed in Taiwan [13], apart from smaller projects that have also reported positive 

results [14-16]. 

 

Figure 1. Principal reactors of a CaL system integrated with a CFBC and its main 
variables. 

 

A synergy can be exploited in this scheme if the purge extracted from the CaL CO2 

capture system is injected into the CFBC to be used as a calcium sorbent in substitution 

for the fresh limestone that is routinely used for desulfurization [17-19]. A recent paper 

[20] illustrates with mass and energy balances the operational and fuel composition 

windows that make this synergy possible. SO2 is produced in the CFBC as well as in the 

oxy CFB calciner due to the combustion of coal. It can also enter into the CFB 

carbonator depending on the power plant’s SO2 removal efficiency. Under the operating 

conditions of all three main CFB reactors, SO2 will react with CaO to form CaSO4 

which will not decompose at these working temperatures due to its thermodynamic 

equilibrium. Furthermore, a certain quantity of CaSO4 in the CaL system is guaranteed 

depending on the amount of fresh makeup limestone and purge. Therefore, SO2 will 

deactivate the CaO available for CO2 capture [21-23]. The deactivation would be 
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enhanced if methods of reactivation like recarbonation [24] or hydration [25] were used 

to reduce the make-up.  

There is a large background of literature on the sulphation of CaO particles under 

combustion conditions [26-39]. However, there are several novel features in the CaL 

system of Figure 1 that have not yet been sufficiently dealt with in the literature. The 

main novelty is that the particles of a CaL undergo a certain number of calcination 

carbonation cycles that promote a sintering mechanism characterized by a widening of 

the pores and a reduction of the surface area [40]. This effect could lead to an 

enhancement of SO2 capture as there is more effective space available for housing the 

CaSO4 formed, leading to higher CaO conversions [26, 41]. Another difference is 

related to the operating temperatures of the system schematized in Figure 1. These can 

vary from 650 °C in the CFB carbonator to 930 °C in the oxy CFB calciner, whereas 

most sulphation studies are conducted at temperatures of around 850 ºC (the typical 

temperature in CFBC power plants). The reaction atmosphere also varies from one 

reactor to another: in CFBCs an average CO2 concentration of 10% vol. is usual 

whereas a CO2 concentration higher than 70 % vol. is to be expected in an oxy-fired 

CFB calciner. Finally, the conversions of CaO to CaSO4 predicted by the mass balance 

applied to the CaL system will not exceed 0.1 due to the Ca/S ratio in these systems is 

larger than in a desulfuration system. This will avoid the extensive pore blockage 

typical of sulphation in FB combustors, where the aim is to ensure maximum sorbent 

conversion for sulphation to occur.  

The sulphation of CaO has been extensively investigated and consequently particle 

sulfation models have been developed with the objective of integrating them into larger 

reactor models. These particle models can be basically divided into two types: grain and 

pore models. The original grain models assumed that particles are formed by smaller 
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blocks called grains (sometimes referred to as micro grains) [29, 42]. These grains are 

assumed to be of uniform size, spherically shaped and non-porous. The reaction follows 

the shrinking core model and no structural changes are taken into consideration. Later, 

the grain models evolved, taking into consideration other grain or micro-grain 

geometries such as cylindrical or flat [42, 43], structural changes in the grains [31, 44-

47], and grain size distribution [43, 48].  

The initial pore models assumed that the particles were traversed by pores that are 

usually cylindrically shaped. These pores were supposedly of uniform size and 

randomly intersected [49, 50]. This type of model developed taking into account the 

initial pore structure and its transformation as the reaction proceeds. The pore structure 

in this model was explained in terms of the evolution of the pore size distribution. 

Simons et al. [51] assumed that the distribution is like a complex tree where the pore 

size decreases the further inside the particle the pore is. One of the most widely used 

pore models is the model developed by Bhatia and Perlmutter [52, 53]: the random pore 

model (RPM), which assumes that the particle is traversed by random size cylindrical 

pores with intersecting and overlapping surfaces as reaction proceeds. This model was 

applied successfully to gas solid reactions [54] including the carbonation and sulphation 

of CaO [33, 54-57]. 

The present work focuses on the modelling of the sulphation rates and retention 

capacities of CaO in the three main reactors involved in CaL, taking into account the 

special features of these systems and the fact that the sorbent is composed of particles 

with a specific number of cycles.  

2. Experimental 

Three different limestones with particle sizes of 36-63 µm, 63-100 µm, 100-200 µm and 

400-600 µm were used to study the sulphation reaction of the CaO particles under 
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different conditions. Their chemical composition was measured by optical induced 

coupled plasma mass spectrometry (optical ICP-MS) and it is shown in Table 1. 

Table 1. Chemical composition (wt %) of the limestones used in this work 

 Al2O3 CaO Fe2O3 K2O MgO Na2O SiO2 TiO2 

Compostilla 0.16 89.7 2.5 0.46 0.76 <0.01 0.07 0.37 

Enguera 0.18 98.9 <0.01 0.03 0.62 0.00 0.43 0.02 

Brecal 0.00 98.4 0.10 0.00 0.78 0.00 0.69 0.00 

 

Enguera and Brecal are high purity limestones whereas Compostilla is the limestone of 

lowest purity. The most prominent of impurities are Fe2O3, K2O and TiO2. 

For the sulphation tests, the thermogravimetric analyzer system illustrated in Figure 2a 

was used. It consists of a microbalance from CI Instruments, which continuously 

measures the weight of the sample suspended on a flat platinum pan inside a quartz 

tube. A special characteristic of its design is the two-zone furnace that can be moved up 

and down by means of a pneumatic piston. This allows a rapid change between 

carbonating and calcining temperatures when performing calcination carbonation 

cycles. The movement of the piston can be synchronized with changes in the gas fed to 

the TGA by means of mass flow controllers. The temperature of the sample is measured 

with a thermocouple located very close to the platinum basket and is continuously 

recorded, as is the weight of the sample by a computer.  

A preliminary study was conducted in order to avoid external diffusional effects. The 

superficial gas velocity was set at 0.06 m/s (650 °C) for both the sulphation and 

carbonation reactions since experiments performed at half of this superficial gas 

velocity had no effect on the rates measured. It is well known that the initial sample 
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mass influences the external diffusional effects. A sample mass of 2-3 mg was small 

enough to neutralise the diffusional effects as no appreciable changes were detected in 

the initial sulphation rate, as can be seen in Figure 2b. 

Pneumatic 
piston 

Air purge 

Air 

Gas out 

CO2 

SO2 

Position A

Position B

Thermocouple Gas in

Microbalance
a

0.00

0.05

0.10

0.15

0.20

0 100 200 300 400 500

X
C

aO

t (s)

10 mg
5.5 mg
3 mg
2 mg

b

 

Figure 2. Schematic of the experimental setup used in this work (a). Effect of the initial 
sample mass on the experimental sulphation rate (b); particles of 63-100 µm, 500 ppmv 
SO2 in air, 650 °C, with sulphation occurring after only one calcination (N = 1). 

 

In the experimental procedure employed in this study before the sulphation tests the 

sample was subjected to the desired number of calcination carbonation cycles. The 

carbonation of the samples was carried out in an atmosphere of 10% vol. CO2 in air, at 

650 °C, and the calcination was conducted in air at 930 °C (a blank test confirmed that 

the use of pure CO2 is unnecessary during calcination to obtain a specific texture linked 

to a certain cycle number). Each stage of calcination or carbonation was 10 minutes 

long as these conditions enable comparable sorbent morphologies to those expected in 

the system of Figure 1 [58]. Finally, after the temperature had stabilized, the sulphation 

stage was initiated. The conversion of CaO to CaSO4 was calculated from the weight 

gain of the samples. 
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Table 2. Porous structural parameters for the limestones used in this work. 

 S0 (m2/m3) x 107 ε L0 (m/m3) x 1014 dpm (nm) 

ψ 

Compostilla 4.58 0.40 4.79 33.0 1.7 0.32 

Enguera 3.90 0.45 3.29 40.7 1.5 0.39 

Brecal 4.37 0.42 4.12 35.6 1.6 0.35 

 

In order to obtain the initial pore parameters of the materials shown in Table 2, a 

mercury porosimeter Autopore IV 9500 by Micromeritics was used. The samples were 

previously calcined in a furnace in air at 930 °C. All the sorbents were mesoporous, 

with the average pore size ranging from 33 to 40.7 nm. The measured porosities 

indicate that all the sorbents underwent shrinkage during calcination. It was this 

shrinkage that gave place to a maximum sulphation conversion in the interior of the 

particles of 0.32 to 0.39, as calculated from the mass balance equation (1) [33]: 

( )( )11 0

0*

−−
=

Z
X CaO ε

ε                               (1) 

Being Z the ratio between the volume of solid phase after reaction to that before 

reaction. It was estimated as VMCaSO4/VMCaO. Some samples were selected to examine 

the CaSO4 distribution in the particles. For this purpose a Quanta FEG 650 scanning 

electron microscope (SEM) coupled to an energy dispersive X ray (EDX) analyser 

Ametek EDAX equipped with an Apollo X detector was used. The samples were 

embedded in a Recapoli 2196 resin, cross sectioned and polished. 
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3. Description of the reaction model  

In order to determine the sulphation pattern of the CaO particles, a SEM-EDX analysis 

was conducted on selected samples. Back scattered electrons (BSE) were used because 

they show differences in chemical composition by displaying higher molecular weight 

compounds in brighter colours than lower molecular weight compounds. The BSE-SEM 

photographs (left side) are supported by EDX mapping to show the sulphur distribution 

(right side). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. SEM EDX for (a) lime with a CaSO4 conversion of 0.12 sulphated after one 
calcination, showing an unreacted core sulphation pattern (b) lime with a sulphation 
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conversion of 0.32 after 50 calcination-carbonation cycles and (c) lime with a 
conversion of 0.25 after 50 calcination-carbonation cycles showing homogeneous 
CaSO4 distributions.  

 

 

Figure 3a shows particles obtained from a calcined limestone sulphated under a CFB 

calciner conditions. BSE-SEM shows that the CaSO4 is concentrated on the external 

surface (brightest colours), as is confirmed by EDX, the sulphur spots being more thinly 

scattered in the centre of the particles. The sulphation pattern follows the unreacted core 

pattern. However, for sulphated particles after 50 cycles (Figure 3b-c) there are no 

appreciable differences in colours in the BSE-SEM, and the EDX indicates a 

homogeneous distribution of the sulphur throughout the particles. These semi-

quantitative results reveal that the sulphation pattern is of the unreacted core type when 

the number of cycles is low and close to 1 and homogeneous when the number of cycles 

is sufficiently high.  

In order to provide a reasonable interpretation of the experimental results and scalable 

information on the kinetic parameters derived from the experiments conducted in this 

study, a discussion of the sulphation patterns and key model assumptions is presented. 

Several different sulphation patterns have been described in relation to the CaSO4 

distributions in the particles [41]. There are three basic sulphation patterns. The 

unreacted core pattern is characterized by external pore blockage of the surface due to 

differences in the molar volumes of the CaSO4 and CaO (52.2 and 16.9 cm3/mol 

respectively). This pore blockage hinders further sulphation of the inner core of the 

particles, thus inhibiting the conversion of CaO to CaSO4. The unreacted core pattern is 

characteristic of sorbents with micro-pores that have no fractures, so only the external 

surface becomes sulphated, the inner part of the particles remaining unsulphated or only 

slightly sulphated. The network pattern is characteristic of particles of sorbent with an 
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interconnected network of micro-fractures that allows SO2 to penetrate inside the 

particles and to form sulphate inside them in the proximity of the fractures. In this 

pattern, the particles are divided by the fractures into blocks, each block behaving like 

an unreacted core since only the external surface, corresponding to the fractures, 

achieves a high degree of sulphation. Finally, the homogeneous pattern is typical of 

small particles with wide pores and interconnected fractures. The SO2 can reach all the 

surfaces, ensuring a uniform sulphation of the particles. All of these patterns were found 

in the sulphation of fresh calcined limestones depending on the initial structural 

properties of the calcined sorbent [26, 41, 59]. However, in a postcombustion CaL 

system, there are other factors that can change the expected sulphation pattern. One of 

these factors is the number of calcination-carbonation cycles since they modify the 

initial porous structure of the particles. Cycling of the sorbent produces sintering: a 

reduction of the surface area and an enlargement of the pore size [40]. Another factor is 

the temperature at which the reaction takes place since each reactor has a different 

temperature. High temperatures increase the diffusional resistance of the reactant in the 

pores, and as a consequence pore blockage is more likely to occur. Another limitation is 

the particle size, since the higher the particle size is, the more likely it is that a core 

sulphation pattern will occur. Therefore, unreacted core sulphation patterns are more 

likely for low numbers of calcination carbonation cycles and in the calciner, whereas 

pseudo or homogeneous sulphation patterns are more likely to occur with highly cycled 

particles and in the carbonator, as shown in Figure 4.  
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Figure 4. Schematic of the distribution of CaSO4in the particles as a function of the 
number of calcination carbonation cycles (N), the temperature (T) and the particle 
diameter (dp). 

 

From the above qualitative discussion of sulfation patterns it is clear that the Random 

Pore Model is a suitable model for fitting the kinetic parameters and for developing the 

mathematical expressions to predict the experimental conversion curves of CaO to 

CaSO4 in the range of operation of the three main reactors involved in post combustion 

CaL systems. The main reactions to be considered are: 

CaCO3  CaO + CO2        (1) 

CaO + SO2 + 1/2O2  CaSO4       (2) 

CaO + CO2  CaCO3        (3) 
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where reactions (1) and (2) take place in the CFBC and in the oxy CFB calciner, while 

reactions (2) and (3) occur in the CFB carbonator, as shown in Figure 1.  

Further assumptions for the RPM are that:  

-The particles are isotherm.  

-The diffusional effects in the pores are negligible (no radial concentration profiles). 

-The sulphation reaction is first order with respect to the SO2 concentration. 

In these conditions, the expression of the RPM model that is valid for the kinetic control 

and diffusional control of the reactant SO2 through the product layer of CaSO4 is [53]:   

( ) ( )

( ) ( )( )⎥
⎦

⎤
⎢
⎣

⎡
−−−+−

−−−
=

11ln111
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XXSCk
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ψ
ψ
βε

ψ
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where ψ is the internal structure parameter that accounts for the internal structure of the 

particle and is expressed as: 

2

)1(4
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L επψ −
=                 (3) 

and β is: 
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−
=                 (4) 

There are two extreme cases for equation (2) where the kinetic equation can be further 

simplified. Under the fast kinetic regime (i.e.  β = 0) [52]: 

( )
( )ε

ψ
−

−−−
=

1
1ln1)1( CaOCaOSsCaO XXCSk

dt
dX                    (5) 

which, when integrated, yields an explicit expression for the kinetic regime: 
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                                                                         (6) 
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At the other limit, under diffusion through the product layer regime: 

 ( )( ) 111ln1 >>−−− CaOXZ ψ
ψ
β               (7) 

which allows the equation (2) to be integrated to: 
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ψ 21

11ln1
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−
=−−−

           (8) 

The reaction rate parameters, ks and Dp, can be obtained by fitting equations (6) and (8) 

to the experimental data for each regime. 

The structural parameters at different cycle numbers were calculated following a 

method similar to that presented in previous works [54, 56]. This methodology allows 

the structural parameters of cycled sorbents to be estimated as a function of those 

corresponding to the fresh calcined limestone and the maximum CO2 conversion after 

cycling. These values can then be used to calculate the specific surface area (SN) and the 

length of the porous system (LN) associated with every mixture of particles by means of 

the following equations: 

                                                                                                          (9) 

                                                                                                       (10) 

 

The maximum carrying capacity of CO2 (XN) can be calculated using the following 

equation proposed by Grasa et al. [60] 
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if the deactivation constant (k) and the residual conversion (xr) for the limestones are 

known. Moreover, assuming that the sulfation is homogeneous, it is possible to 

calculate the product layer thickness from the conversion to CaSO4 using the following 

expression [53]: 

( ) ( )( )11ln1
12

−−−
−

=Δ CaOX
S

Z ψ
ψ

ε                                                                     (12) 

Equations (6)-(12) will be applied to fit the experimental results following the 

methodology of section 2.  

4. Results and Discussion 

The effect of the different variables on the sulphation rates in the CaL reactors have 

been studied previously [19, 56, 61, 62], including an investigation of the sulphation of 

the purges from a pilot [19], with the samples being taken from the calciner of the CaL. 

In these studies it was concluded that the number of calcination carbonation cycles is a 

variable of special interest. In the present study the experimental work has been 

broadened to include more limestones and ranges of variables, while the number of 

calcination carbonation cycles has been strictly controlled in the TG, since it affects the 

sulphation pattern (surface area, diameter of the pores), in contrast with the previous 

studies [19, 62]. In the following paragraphs the effect of the main variables (i.e. the 

SO2 concentration, the number of calcination carbonation cycles, the reaction 

temperature, the average particle size, and the presence of other gases such as CO2 or 

steam) is described. 

The concentration of SO2 varies depending on the reactors of the CaL system. For 

example, the SO2 concentration of the flue gas fed to the carbonator will depend on the 

sulphur content of the coal being burned in the CFBC as well as on the efficiency of the 

SO2 removal process. On the other hand, the maximum SO2 concentration in the oxy 
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CFB calciner depends on the composition of the coal burned to achieve the high 

calcination temperatures. A typical range of inlet concentrations of SO2 in the entire 

CaL system can change by about one order of magnitude between 500-3000 ppmv. In 

the literature [33, 34] a variety of reaction orders generally in the range 0.6-1 have been 

reported depending on the experimental parameters, although there is relatively general 

consensus about an apparent first order reaction with respect to the SO2 reactant. Figure 

5a is an example of sulfation experiments carried out with highly cycled materials 

(N=50) to investigate the effect of the SO2 concentration at the calciner conditions. As 

can be seen, as the SO2 concentration in the bulk gas increases from 500 to 3000 ppmv, 

there is a proportional effect on the initial slope of sulphation as well as certain impact 

on the final conversion of CaO to CaSO4. The effect of the SO2 concentration on the 

initial reaction rate for the limestones studied at the relevant conditions of all reactors is 

the CaL is shown in Figure 5b. As it is shown there is an apparent reaction order of 1 at 

CaL conditions for cycled sorbents.  

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

X C
aO

t (s)

500 ppm
1000 ppm
2000 ppm
3000 ppm

a

0

1

2

3

0 1 2 3 4

dx
/d
t,
 (s

‐1
) x
 1
03

PSO2, (at), x 103

Brecal, N = 50, 650  °C

Compostilla, N = 50, 930 °C

Enguera, N = 50, 650  °C

Compostilla, N = 1, 650  °C

Compostilla, N = 50, 650 °C

b

 

Figure 5. Effect of SO2 concentration on sulfation of cycled CaO particles. a) 
conversion curves of Enguera (dp=63-100 µm, 930 °C, N=50) (b) effect of SO2 
concentration on the initial reaction rates for different limes, at two stages of sintering 
(N = 1,50) and two temperatures (650, 930 °C)  

As discussed previously, the number of calcination carbonation cycles, N, has a strong 

influence on the pore structure of the CaO particles and hence on the sulphation pattern. 
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It is therefore very important to understand and to be able to quantify the impact of N on 

the kinetics of the sulphation reactions. The results of experiments conducted for this 

purpose are represented in Figure 6, which shows the sulphation curves obtained for 

Enguera lime, cut to a size of 63-100 µm, sulphated under two different sulphation 

atmospheres. The experiments were carried out with 500 ppm SO2 in air at 650 ºC for 

CFB carbonator conditions and 500 ppm SO2 and 10% vol. CO2 at 850 ºC for the CFBC 

conditions. 
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Figure 6. Comparison of the experimental XCaO values of Enguera lime with different 
numbers of calcination carbonation cycles under the conditions of a CFB carbonator (a) 
and a CFBC (b). The solid lines correspond to the predictions of the model. 

 

In the carbonator conditions (Figure 6a) it can be seen that as the number of calcination 

carbonation cycles increases, the sulphation rates and the final conversion of the CaO to 

CaSO4 at the end of the sulphation test decrease. Maximum sulphation capacity is 

achieved after one calcination with a XCaO at approximately 0.34 which is very close to 

the maximum possible sulphation conversion for this sorbent, 0.39. This effect could be 

due to the reaction surface reduction associated with the increase in the number of 

calcination carbonation cycles. However, when the reaction temperature increases to 

850 ºC, Figure 6b, the trend is quite the opposite despite the reduction in surface area. 

This is consistent with the pore blockage mechanism as the sulfation conversion after 
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only one calcination is only 0.17 compared with maximum sulfation conversion. As the 

pore structure opens up due to the effect of the number of cycles, the inner surface 

becomes accessible for the reaction to occur and the sulphation conversion increases. 

Another example of the effect of the number of calcination carbonation cycles on the 

sulphation curves is shown in Figure 7 for Brecal limestone under the conditions of the 

CFB carbonator (Figure 7a) and the oxy CFB calciner (Figure 7b). The sulphation in the 

oxy CFB calciner conditions takes place at 500 ppm SO2, 70% vol. CO2 in air at 930 ºC. 

Under the CFB carbonator conditions (Figure 7a) the initial reaction rate as well as the 

final sulphation conversion is almost the same after one cycle and after 50 cycles, 

despite the fact that the surface area has been reduced by around six times after this high 

number of cycles. This suggests that there is an unreacted core sulphation pattern for the 

fresh calcined sorbent. As in the previous example, when the reaction temperature 

increases (CFB calciner conditions), Figure 7b, the sulphation conversion increases 

when the number of calcination carbonation cycles increases because the pattern tends 

to become more homogeneous. However, when the cycle number increases to a number 

as high as 150 cycles, the reduction in surface area predominates over the opening up of 

the structure, and as a consequence the sulphation conversion is lower than that 

achieved after 50 cycles.  
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Figure 7. Comparison of XCaO experimental values of Brecal lime with different 
numbers of calcination carbonation cycles in the conditions of a CFB carbonator (a) and 
a CFB calciner (b). The solid lines correspond to the predictions of the model. 

 

To summarize, the increase in temperature tends to favour the unreacted core type due 

to an increase in the internal pore diffusion resistance to the reactant SO2. By contrast, 

the carbonation/calcination number tends to favour the homogeneous pattern due to the 

sintering of the surface that promotes opened-structures. 

The RPM was applied to the experimental data yielding the rate constants presented in 

Table 3. However, cycle 1 was not used for this calculation as this is not typical in a 

CaL system. The kinetic constants (ks) were obtained by fitting equation (6) to the 

experimental XCaO vs time data, in the fast stage of the reaction, whereas the diffusional 

coefficients through the product layer (Dp) were obtained by fitting equation (8) to the 

slow regime of the sulphation curves.  

Table 3. Kinetic and diffusional constants for the three limestones tested. 

  T (°C) ks (m4/mol s) Dp (m2/s) EaK 
(kJ/mol) k0 (m4/mol s) EaD (kJ/mol)*/** Dp0 (m2/s)*/** 

650 4.48E-09 3.53E-12 

850 8.23E-09 4.14E-12 Compostilla 

930 9.90E-09 6.08E-12 

26.2 1.36E-07 120/53.96 2.18E-5/1.34E-9 

650 5.75E-09 4.03E-12 

850 1.03E-08 7.82E-12 Enguera 

930 1.08E-08 1.72E-11 

21.9 1.01E-07 120/110.7 2.49E-5/1.1E-6 

650 3.76E-09 1.51E-12 

850 5.15E-09 2.84E-12 Brecal 

930 8.96E-09 8.32E-12 

24.9 9.18E-08 120/150.9 9.34E-6/2.97E-5 

*/** Below/Above Tammann temperature 

 

For the diffusion through the product layer regime, we applied the Arrhenius equation 

above 850 ºC but below 850 ºC separately because a slight variation in the EaD fitted 

under these conditions was detected. This effect has been reported elsewhere in relation 

with the carbonation reaction of lime [57]. The explanation given in that case was that 
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above the Tammann temperature (861 ºC [63]), there is a change in the properties of the 

solid CaSO4 formed, which affects the diffusivity of SO2 through the product layer, and 

therefore the EaD. The critical point of regime change is characterized by an 

experimental XCaO. Consequently, this value was employed in equation (12) to estimate 

the product layer thicknesses of the regime change, (see Table 4). Although the product 

layer thicknesses vary in a narrow range at 650 ºC for the three sorbents (i.e. 29.1 nm to 

34.3 nm), the range of the estimated thicknesses increases at the other reaction 

temperatures without a clear tendency. This is due to the difficult in the determination 

of the critical point of regime change. The change from the fast stage to the diffusional 

regime control stage is softened as temperature increases and the critical point 

determined is less accurate.  

Table 4. Estimated thicknesses corresponding to the regime changes. 

  650 (°C)  850 (°C)  930 (°C) 
Compostilla  34.3 nm  13.4 nm  35.4 nm 
Enguera  29.3 nm  42.1 nm  20.3 nm  
Brecal  29.1 nm  32.2 nm  17.5 nm 

 

As can be seen from Figures 6 and 7, the RPM predicts reasonably well all of the 

sulphation curves under all the CaL conditions when the cycle number is higher than 20. 

As might be expected, for cycle 1, the RPM overpredicts the experimental results due to 

the sulphation pattern and the limitation of our model proposal.  

The effect of the particle size is directly related to the sulphation pattern. If the particle 

size increases, the pore diffusion resistance also increases and consequently unreacted 

core sulphation patterns are more likely to occur. However, as the number of 

carbonation calcination cycles changes the pore structure, two samples from Enguera 

limestone after 20 and 50 cycles were selected to perform the corresponding sulphation 

tests under two extreme conditions. In addition, the experimental results obtained for 
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Compostilla after a single calcination in the conditions of an oxy CFB calciner are 

shown for comparison purposes. After 20 calcination carbonation cycles the sulphation 

pattern of Enguera was homogeneous for particle sizes below 100 µm sulphated under 

the conditions of a CFB carbonator, as is shown in Figure 8a. Moreover, both sulphation 

curves for the two lower cuts are almost identical. However, when the particle size 

increases to 400-600 µm the sulphation rate clearly decreases, indicating an unreacted 

core type sulphation pattern for this size. As expected, as the reaction temperature 

increases, this effect for the sulfation pattern to become non-homogeneous becomes 

more evident, as in the case of the sulphation reaction under oxy CFB calciner 

conditions (Figure 8b). The model predicts reasonably well the experimental results 

corresponding to the three smaller particle sizes, where the pattern is homogeneous. 

Figure 8c shows an unreacted core pattern, as can be seen from the different XCaO vs 

time curves obtained for the three different particle sizes of Compostilla lime. This 

result was to be expected, since the higher particle sizes give rise to a maximum XCaO 

that is lower than that indicated by its porosity: a value of 0.34 should have been 

obtained in the absence of pore diffusion resistances. 
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Figure 8. Comparison of the experimental XCaO values of cycled Enguera lime for 
different particle sizes in the conditions of a CFB carbonator (a) and of a CFB calciner 
(b). Also the effect of the particle size on the sulphation of Compostilla lime after a 
single calcination is shown in the conditions of an oxy CFB calciner (c). The solid lines 
correspond to the predictions of the model. 

 

The effect on the sulphation rates of the CO2 and H2O contents in the gas feed was also 

taken into consideration when there is no competition between carbonation and 

sulfation reactions. Under CFBC conditions, a typical CO2 concentration of around 10% 

vol. was used whereas a CO2 concentration of 70% vol. under the oxy CFB calciner was 

selected. CO2 is a very effective sintering agent [64], so it might affect the internal pore 
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structure available for sulphation, depending on the time of exposure and the 

temperature. However, as the sorbent in a CaL will have undergone several cycles of 

calcination carbonation, the effect of further sintering will be negligible. To test the 

effect of the CO2 on the sulphation XCaO vs time curves, two cycled (N = 50) limes were 

selected and sulphated in CFBC and oxy CFB calciner conditions, with 10% vol. and 

70% vol. CO2 respectively, and 500 ppm SO2 in air, and compared to the corresponding 

curves with 0% CO2. The particle size was 63-100 µm, (see Figure 9). No relevant 

effects of the CO2 concentration on the initial sulphation rates of the cycled sorbent can 

be observed indicating that CO2 does not affect the sulphation of the cycled lime. 
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Figure 9. Effect of the CO2 concentration on the XCaO vs time curves for Enguera and 
Compostilla limes after 50 cycles of calcination carbonation in the conditions of (a) a 
CFBC and (b) a CFB calciner. 

The experimental data presented until now on the sulphation of CaO were obtained 

without considering steam. However, steam is a common component of the gas streams 

produced in power generation. Recently some works [65, 66] have been published that 

take into account the influence of steam on the sulphation of CaO. They found an 

enhancement of the sulphur carrying capacities of the limes tested because of an 

improvement in the rates of diffusion through the product layer. Nevertheless, no 

appreciable effects were observed on the initial fast step of sulphation. This 

improvement in the sulphation of CaO is often attributed to a change in the mechanism 
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of reaction or to a reduction in the resistance to diffusion through the product layer. In 

this work, the effect of steam was tested using two limestones, Enguera and 

Compostilla. The CFBC conditions (Figure 10a) were simulated using a mixed gas 

consisting of 10% vol. CO2, 500 ppm SO2, 15 and 30% vol. H2O in air at 850 ºC. Under 

oxy CFB calciner conditions (Figure 10b) two reaction mixtures were used:  49% vol. 

CO2, 15% vol. H2O, 500 ppm SO2 in air, and 36% vol. CO2, 30% vol. H2O, 500 ppm 

SO2 in air at 930 ºC. The particle size was 63-100 µm and the sulphation tests were 

performed after 50 calcination carbonation cycles. From the Figure 10a it can be seen 

that the concentration of steam did not have any effect on the sulphation rates of any of 

the sorbents. The slopes are essentially the same with and without steam. A slight effect 

could be noticed for the highest steam concentration used (30%) and Enguera lime at 

the end of the diffusional regime. The effect is clearer under the oxy CFB calciner 

conditions. During the first step of reaction where the kinetic controlled regime was 

predominant (Figure 10b), the steam content had no effect on sulphation conversion 

during the fast stage, which is consistent with the data reported by other authors [65, 

66]. However, the maximum XCaO achieved increased with the steam content. It must be 

concluded therefore that steam enhances the mechanism of diffusion through the 

product layer of CaSO4. The XCaO value at which the sulphation rate starts to increase 

due to the steam is well above 0.1 which is considered as the maximum for CaL 

systems. Thus in these systems the effect of steam will be negligible. 
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Figure 10. Effect of the H2O concentration on the XCaO vs time curves for Enguera (○) 
and Compostilla (□) limes after 50 cycles of calcination carbonation under the 
conditions of a CFBC (a) and a CFB calciner (b). 

 

5. Conclusions 

The reaction order with respect to SO2 of the sulphation reaction of CaO is always 1 

regardless of the reactor conditions in a CaL system. The number of calcination 

carbonation cycles changes the sulphation pattern becoming more homogeneous as 

increases. The reaction temperature increase has the opposite effect as the sulphation 

pattern tends to be unreacted core type due to an increase in diffusional resistance in the 

pores. The increase in the particle size leads to non-homogeneous sulphation patterns 

since the length of the pores increases, as does pore diffusional resistance. Nevertheless, 

for particle sizes below 200 µm and highly cycled sorbents a homogeneous sulphation 

pattern can be expected at any temperature up to 930 ºC. Dependence on the CO2 

concentration is negligible considering the low conversions to CaSO4 achieved and the 

high number of cycles to which the sorbent has been subjected. The presence of steam 

improves the sulphation rates in the slow regime of reaction presumably due to an 

enhancement of the diffusion through the product layer. The Random Pore Model was 
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found to be valid for predicting the experimental sulphation rates and capacities of a 

sorbent sulphated according to a homogeneous pattern.  
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7. Notation 

  
a,b  stoichiometric coefficients for the sulphation reaction 
CS  concentration of SO2, kmol/m3 

DP  effective product layer diffusivity, m2/s 
DP0  diffusional pre-exponential factor, m2/s 
dpm  mean pore diameter, nm 
Eak  activation energy for the kinetic regime, kJ/mol 
EaD  activation energy for the diffusion through the product layer regime, 
kJ/mol 
∆  product layer thickness, nm 
k  sorbent deactivation constant 
kS  rate constant for surface reaction, m4/mol s 
kS0  kinetic pre-exponential factor, m4/mol s 
L  total length of the pore system, m/m3 

M  molecular weight, kg/kmol 
N  number of calcination/carbonation cycles 
rpN  radius of the pore after N cycles, m 
S  reaction surface per unit of volume, m2/m3 

t  reaction time, s 
VM  molar volume, m3/kmol 
XN  Maximum CaO molar conversion to CaCO3 
XCaO  CaO molar conversion to CaSO4 

  Maximum CaO molar conversion to CaSO4 
Z  volume fraction ratio before and after reaction 
 
 Greek letters 
β Modified Biot modulus 
ε porosity 
ρ density, kg/m3 
ψ Internal structure parameter 
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