Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Antileishmanial activity of sp²-iminosugar derivatives

Elena M. Sánchez-Fernández,^{a,1} Verónica Gómez-Pérez,^{b,1} Raquel García-Hernández,^b José Manuel García Fernández,^c Gabriela B. Plata,^d José M. Padrón,^d Carmen Ortiz Mellet,^{*a,2} Santiago Castanys,^{*b,2} Francisco Gamarro^{*b,2}

^{*a*} Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 553, E-41071, Spain.

^b Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016-Granada, Spain.

^c Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain.

^d BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, 38206, La Laguna, Spain..

¹Both authors contributed equally to this manuscript

² Equal senior investigators in this study

List of Contents

. General Procedure for the Glycosidase Inhibition Assay	S2
2. Lineweaver-Burk and Double Reciprocal Analysis Plots of 2α , 5, 7, 8	S3-S4
3. Spectroscopic Data of 13β and 2β	S5
4. Copies of ¹ H and ¹³ C NMR Spectra of 2-8 and 13-19	S6-S21

1. General Procedure for the Glycosidase Inhibition Assay

Inhibitory potencies were determined by spectrophotometrically measuring the residual hydrolytic activities of the glycosidases against the respective o- (for β -glucosidase/ β galactosidase from bovine liver and β -galactosidase from *E. coli*) or *p*-nitrophenyl α - or β -D-glycopyranoside, in the presence of the corresponding inhibitor. Each assay was performed in phosphate buffer at the optimal pH for each enzyme. The K_m values for the different glycosidases used in the tests and the corresponding working pHs are listed herein: α -glucosidase (yeast), $K_m = 0.35$ mM (pH 6.8); isomaltase (yeast) $K_m = 1.0$ mM (pH 6.8), β -glucosidase (almonds), $K_m = 3.5 \text{ mM}$ (pH 7.3); β -glucosidase/ β galactosidase (bovine liver), $K_m = 2.0 \text{ mM}$ (pH 7.3); β - galactosidase (E. coli), $K_m =$ 0.12 mM (pH 7.3); α -galactosidase (coffee beans), $K_m = 2.0$ mM (pH 6.8); trehalase (pig kidney), $K_m = 4.0 \text{ mM}$ (pH 6.2); amyloglucosidase (Aspergillus niger), $K_m = 3.0$ mM (pH 5.5); β -mannosidase (*Helix pomatia*), $K_m = 0.6$ mM (pH 5.5); α -mannosidase (jack bean), $K_m = 2.0 \text{ mM}$ (pH 5.5); naringinase (Penicillium decumbens, β glucosidase/β-rhamnosidase activity). The reactions were initiated by addition of enzyme to a solution of the substrate in the absence or presence of various concentrations of inhibitor. After the mixture was incubated for 10-30 min at 37 °C or 55 °C the reaction was quenched by addition of 1 M Na₂CO₃. The absorbance of the resulting mixture was determined at 405 nm or 505 nm. Each experiment was performed in duplicate using [I] = 2, 0.4, 0.08, 0.04 y 0.02 μ M and [S] nearly K_m value. In those cases were K_i values lower that 10 μ M were obtained by this procedure (2 α , 5, 7 and 8 against yeast α -glucosidase), refined K_i values and the enzyme inhibition mode were determined from the slope of Lineweaver-Burk plots and double reciprocal analysis (Figures S1-S4).

2. Lineweaver-Burk and Double Reciprocal Analysis Plots

Figure S1. Lineweaver-Burk Plot for K_i determination (1.3 μ M) of **2** α against α -glucosidase (baker yeast) (pH 6.8).

Figure S2. Lineweaver-Burk Plot for K_i determination (14.3 μ M) of **5** against α -glucosidase (baker yeast) (pH 6.8).

Figure S3. Lineweaver-Burk Plot for K_i determination (11.8 μ M) of **7** against α -glucosidase (baker yeast) (pH 6.8).

Figure S4. Lineweaver-Burk Plot for K_i determination (6.4 μ M) of **8** against α -glucosidase (baker yeast) (pH 6.8).

3. Spectroscopic Data of 13β and 2β

(1*S*)-2,3,4-Tri-*O*-acetyl-1-dodecylthio-5*N*,6*O*-oxomethylidenenojirimycin (13β): Column chromatography (1:5 → 1:2 EtOAc:cyclohexane). Yield: 33 mg (6%). White solid. R_f 0.67 (1:1 EtOAc-cyclohexane). [α]_D +4.9 (*c* 1.0 in DCM). ¹H NMR (500 MHz, CDCl₃) δ 5.19 (dd, 1 H, *J*_{4,5} = 10.5 Hz, *J*_{3,4} = 7.0 Hz, H-4), 5.13 (t, 1 H, *J*_{1,2} = *J*_{2,3} = 4.0 Hz, H-2), 5.02 (dd, 1 H, H-3), 4.62 (d, 1 H, H-1), 4.33 (dd, 1 H, *J*_{6a,6b} = 8.8 Hz, *J*_{5,6a} = 7.7 Hz, H-6a), 4.08 (t, 1 H, *J*_{5,6b} = 8.8 Hz, H-6b), 3.90 (ddd, 1 H, H-5), 2.87-2.74 (m, 2 H, SCH₂), 2.08-1.98 (3 s, 9 H, MeCO), 1.65-1.10 (m, 20 H, CH₂), 0.81 (t, 3 H, ³*J*_{H,H} = 7.0 Hz, CH₃). ¹³C NMR (125.7 MHz, CDCl₃) δ 169.8-168.7 (MeCO), 156.0 (CO), 73.6 (C-3), 73.3 (C-2), 72.7 (C-4), 67.1 (C-6), 59.2 (C-1), 53.9 (C-5), 34.3 (SCH₂), 31.9-22.7 (CH₂), 20.8-20.6 (*Me*CO), 14.1 (CH₃). ESIMS: *m*/*z* 538.4 [M + Na]⁺. Anal. Calcd for C₂₅H₄₁NO₈S: C 58.23, H 8.01, N 2.72, S 6.22. Found: C 57.86, H 7.73, N 2.63, S 6.47.

(1*S*)-1-Dodecylthio-5*N*,6*O*-oxomethylidenenojirimycin (2β): Yield: 18 mg (91%). R_{*f*} 0.80 (1:5 MeOH-EtOAc). [α]_D -9.0 (*c* 1.3 in DMSO). ¹H NMR (400 MHz, DMSO-d₆) δ 4.29 (dd, 1 H, $J_{6a,6b}$ = 8.6 Hz, $J_{5,6a}$ = 7.0 Hz, H-6a), 4.21 (d, 1 H, $J_{1,2}$ = 8.0 Hz, H-1), 4.05 (dd, 1 H, $J_{5,6b}$ = 4.6 Hz, H-6b), 3.60 (dd, 1 H, $J_{4,5}$ = 10.0 Hz, H-5), 2.73-2.62 (m, 2 H, SCH₂), 1.52 (quint., 1 H, ³ $J_{H,H}$ = 7.0 Hz, SCH₂CH₂), 1.40-1.20 (m, 18 H, CH₂), 0.86 (t, 3 H, ³ $J_{H,H}$ = 7.0 Hz, CH₃). ¹³C NMR (75.5 MHz, DMSO-d₆) δ 156.0 (CO), 77.6-72.6 (C-3, C-4), 74.7 (C-2), 65.8 (C-6), 62.5 (C-1), 57.9 (C-5), 33.3 (SCH₂), 31.3-22.2 (CH₂), 14.0 (CH₃). ESIMS: *m*/*z* 412.3 [M + Na]⁺. Anal. Calcd for C₁₉H₃₅NO₅S: C 58.58, H 9.06, N 3.60, S 8.23. Found: C 58.32, H 8.88, N 3.39, S 7.85.

4. Copies of ¹H and ¹³C NMR Spectra

Figure S5. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 13α

Figure S6. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 13β

Figure S7. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CD₃OD) of 2α

Figure S8. ¹H and ¹³C NMR spectra (400 MHz and 75.5 MHz, DMSO-d₆) of 2β

Figure S9. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 14

Figure S10. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 15

Figure S11. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CD₃OD) of **3**

Figure S12. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CD₃OD) of 5

Figure S13. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 16

Figure S14. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 17

Figure S15. ¹H and ¹³C NMR spectra (500 MHz and 75.5 MHz, CD₃OD) of 4

Figure S16. 1 H and 13 C NMR spectra (500 MHz and 125.7 MHz, DMSO-d₆) of 6

Figure S17. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 18

Figure S18. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CDCl₃) of 19

Figure S19. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, CD₃OD) of 7

Figure S20. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, DMSO-d₆) of 8