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Summary

Mutations in amyloid precursor protein (APP), and presenilin-1

and presenilin-2 (PS1 and PS2) have causally been implicated in

Familial Alzheimer’s Disease (FAD), but the mechanistic link

between the mutations and the early onset of neurodegeneration

is still debated. Although no consensus has yet been reached,

most data suggest that both FAD-linked PS mutants and endoge-

nous PSs are involved in cellular Ca2+ homeostasis. We here

investigated subcellular Ca2+ handling in primary neuronal

cultures and acute brain slices from wild type and transgenic mice

carrying the FAD-linked PS2-N141I mutation, either alone or in the

presence of the APP Swedish mutation. Compared with wild type,

both types of transgenic neurons show a similar reduction in

endoplasmic reticulum (ER) Ca2+ content and decreased response

to metabotropic agonists, albeit increased Ca2+ release induced by

caffeine. In both transgenic neurons, we also observed a

higher ER–mitochondria juxtaposition that favors increased mito-

chondrial Ca2+ uptake upon ER Ca2+ release. A model is described

that integrates into a unifying hypothesis the contradictory

effects on Ca2+ homeostasis of different PS mutations and points

to the relevance of these findings in neurodegeneration and

aging.
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Introduction

A critical role of cellular Ca2+ in neuronal aging was initially proposed in

the late 1980s, in the form of the ‘Ca2+ hypothesis’ of neuronal aging

(Khachaturian, 1987). Accordingly, brain aging is associated to an

increasing dysregulation of Ca2+ homeostasis, which results in a sustained

elevation of intracellular free Ca2+ concentration ([Ca2+]), excitotoxicity

and neuronal loss. It is now clear that during the initial phases of aging,

intracellular Ca2+ dynamics undergo numerous and more subtle changes

that culminate in synaptic dysfunctions and memory impairment, even in

the absence of overt neuronal loss (Toescu & Verkhratsky, 2007). Such

subtle alterations are dramatically increased and anticipated in age of

onset in pathological forms of neurodegeneration and, in particular, in

Alzheimer’s Disease (AD) (Khachaturian, 1994; Toescu & Vreugdenhil,

2010; Camandola & Mattson, 2011). Noteworthy, not only Ca2+ dysregu-

lation is a common feature of the aged and demented brain, but elevated

amyloid deposition, a histological characteristic of AD, can be also found

in normal aged people. The mechanisms that determine the transition

from normal aging to mild cognitive impairment and eventually to overt

dementia are still matter of intense investigation. Understanding the

precocious phases of Ca2+ mishandling in AD mouse models might shed

light on the molecular mechanisms involved in this transition.

The large majority of AD mouse models are transgenic (tg) mice based

on one or two of the three genes that carry the autosomal dominant

mutations found in the familial form of the disease (FAD): that is, APP,

PSEN1, and PSEN2, coding for APP, PS1, and PS2, respectively. FAD repre-

sents less than 5% of AD cases, but the causal link between the disease

and the gene mutations is firmly established. Conversely, all other AD

cases are sporadic, with APOE-e4 and age as major risk factors, but the

pathogenic mechanisms have not been clarified yet.

In mammals, PSs are ubiquitously expressed and constitute the catalytic

core of c-secretases, endoproteases which, in concert with b-secretases,

produce amyloid-b (Ab) peptides from APP (Sisodia & St George-Hyslop,

2002). According to the amyloid hypothesis, mutations in APP and PSs

alter the relative proportion of Ab peptides and promote the generation

of the more aggregation-prone Ab42, thus favouring the early onset of

FAD by amyloid toxicity (Selkoe, 1998). More recently, FAD-linked

mutations (in particular those linked to PS1) have strictly been correlated

with altered Ca2+ signaling (La Ferla, 2002). The key question is whether

alterations in Ca2+ homeostasis are the primary cause of neuronal

dysfunction, are secondary to other molecular defects (especially Ab42

production) or are simply concomitant events that exacerbate the disease.

In cultured model cells, a large body of evidence suggests that PSs regu-

late Ca2+ homeostasis independently of c-secretase activity and toxic Ab
peptide generation. Specifically, it has been suggested that FAD-linked PS

mutations increase endoplasmic reticulum (ER) Ca2+ accumulation, result-

ing in exaggerated ER Ca2+ release (Guo et al., 1996). The so-called Ca2+

overload hypothesis was reinforced in the latest years by data suggesting

that PSs, as holoproteins, may work as endogenous ER Ca2+ leak chan-

nels, whereas FAD-linked PS mutants, by reducing the channel conduc-

tance, favor the ER Ca2+ overload (La Ferla, 2002; Thinakaran & Sisodia,

2006; Bezprozvanny & Mattson, 2008). Along the same line, neurons

from tg mice expressing FAD-linked PS1 mutations over-express the

ryanodine receptor (Ry-R), an intracellular Ca2+ release channel, thus

increasing the likelihood of exaggerated Ca2+ release and neuronal dam-

age (Stutzmann et al., 2007; Camandola & Mattson, 2011). These

conclusions, however, have been challenged by a number of recent stud-

ies, in particular: (i) direct measurements of IP3-R opening probability

reveal that expression of FAD-PS mutants increases the channel sensitivity

to basal IP3 levels (Cheung et al., 2008); (ii) the use of genetically-
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encoded ER Ca2+ sensors demonstrates that different model cells, stably

or transiently expressing FAD-linked PS1 and PS2 mutants, have a normal

or reduced ER Ca2+ level (Zatti et al., 2006; McCombs et al., 2010). In the

case of PS2 mutants, this latter reduction was because of inhibition of

SERCA activity and increase in Ca2+ leak (Brunello et al., 2009); (iii) finally,

in a thorough investigation of wild type (wt) and FAD-mutant

PS1 expressing cells, it was recently demonstrated that neither wt nor PS1

mutants affect ER Ca2+ uptake, leak and steady state level (Shilling et al.,

2012).

In this study, we focus our attention on Ca2+ dysregulation in tg mouse

models based on a FAD-mutant PS2, that is, the single tg mouse line

PS2.30H, homozygous for PS2-N141I, and the double tg mouse line

B6.152H, homozygous for both PS2-N141I and APP Swedish (APPswe)

K670N, M671L mutant (Ozmen et al., 2009). By employing different

Ca2+ imaging techniques on primary neuronal cultures and acute brain

slices, we demonstrate that Ca2+ homeostasis is similarly altered in both

single and double tg mice; such alterations are qualitatively and quantita-

tively similar to those reported in human FAD fibroblasts and cell lines

over-expressing PS2 mutants (Zatti et al., 2004, 2006). In both tg mice,

neurons have similar reductions in total Ca2+ store content and response

to IP3-generating agonists, albeit different Ab levels in their brains. Fur-

thermore, both tg neurons show increased response to caffeine and

increased Ca2+ excitability. By employing recombinant fluorescent probes

in neuronal cultures from tg mice, we also demonstrate an increased

mitochondrial capability to take up Ca2+, owing to a greater ER–mito-

chondria juxtaposition. In these tg mice, dysregulation of neuronal Ca2+

stores occurs at an early age and appears to depend directly on the

mutant PS2 itself and not on PS2-dependent APP processing or total Ab
levels. A pathogenic model that accounts for the different findings with

PS1 and PS2 mutations and centerd on mitochondria Ca2+ toxicity is

proposed.

Results

PS2 and APP expression levels

In this work, we have taken advantage of single (PS2.30H) and double

(B6.152H) tg mouse lines expressing PS2-N141I, respectively, in the

absence or presence of APPswe; for clarity, these lines were here named

PS2-N141I and PS2APP, respectively. The PS2 mutant is expressed ubiqui-

tously, whereas the APP mutant is expressed in neurons and thymocytes

(Ozmen et al., 2009). Figure 1 shows that, in brain homogenates from

2-week-old tg mice and in primary neuronal cultures at 10–12 DIV, the

amount of total PS2, compared with that of wt mice, was 1.8- to 2.2-fold

larger in both genotypes. Accordingly, to a first approximation, the ratio

wt ⁄ mutated PS2 is approximately 1, that is, similar to that found in FAD

heterozygous patients. Regarding APP, in mouse brains and primary neu-

ronal cultures at 10-12 DIV from double tg mice, its level was at least

twice that of controls (2.3 ± 0.6 a.u., P < 0.03, n = 9 animals, and

2.90 ± 0.14 a.u., P < 0.01, n = 3 cultures, mean ± SEM), while in brains

and cultures from single tg mice, it was indistinguishable from that of wt

animals (not shown).

Ca2+ release induced by IP3-generating agonists

We have shown previously that, in rat primary neurons loaded with

Fura-2, cytosolic [Ca2+] ([Ca2+]c) rises, because of intracellular release, are

substantially increased by a short exposure to KCl (Zatti et al., 2006).

Similarly, when cultured mouse neurons were first challenged with KCl

(30 mM) and then, after extracellular Ca2+ and KCl removal, with the

muscarinic agent charbacol (CCH, 0.5 mM), a net increase in [Ca2+]c was

observed in the majority of neurons; on the contrary, only a minority of

cells responded with a Ca2+ rise when the agonist was added before KCl

(Fig. S1A). The KCl prepulse protocol was therefore adopted to

investigate the amplitude of Ca2+ mobilization from the stores in wt and

tg neurons. In most neurons (of each genotype), the resting [Ca2+]c was

stable with rare spontaneous Ca2+ spikes, which were completely

abolished by removal of Ca2+ from the medium (not shown). Figure 2A

(B)

(A)

Fig. 1 Presenilin-2 (PS2) levels in whole brains and neuronal cultures from tg mice.

(A) 20 lg of brain homogenates (lanes 1,2,3) and neuronal (neu) cultures

(lanes 4,5,6) from wt (1,4), PS2-N141I (2,5) or PS2APP (3,6) mice were blotted and

probed for PS2 expression. (B) Statistics of PS2 expression levels in whole brain

homogenates and neuronal cultures. Values were first normalized by their internal

actin levels and then to those of wt samples. Data are mean ± SEM of nine

independent brain samples for each genotype, or three independent cultures run in

triplicate.

(B) (C)(A)

(D) (E)

Fig. 2 Reduced Ca2+ release in response to IP3-generating agonists in tg mice.

(A) Representative traces of wt and presenilin-2 (PS2)-N141I neurons (10-12DIV)

bathed in mKRB, exposed first to KCl (30 mM) in the same medium and then to

CCH (0.5 mM) in a Ca2+-free, EGTA (0.5 mM)-containing mKRB. (B,C) Bars

represent the average KCl peak and plateau values, above the baseline

(mean ± SEM, n = 86 wt; n = 45 PS2-N141I; n = 34 PS2APP). (D,E) Average peak

and area values, above the baseline, in response to CCH (0.5 mM) (mean ± SEM,

n = 36 wt; n = 20 PS2-N141I; n = 21 PS2APP). Only neurons responding to CCH

were included in this calculation.
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shows that addition of KCl (30 mM) caused a rapid increase in [Ca2+]c that

remained elevated until perfusion with a Ca2+ -free mKRB containing

EGTA (0.5 mM). Figure 2B,C shows that no significant difference was

observed between neurons from wt, PS2-N141I or PS2APP mice in terms

of KCl-induced peaks and plateaus. In contrast, substantial differences

were observed between tg and wt mice upon CCH addition. In wt neu-

rons, the average peak and area for [Ca2+]c rises in response to CCH were

0.37 ± 0.02 DR ⁄ R0 and 7.68 ± 0.45 arbitrary units (a.u) (mean ± SEM,

n = 36), respectively. These values were significantly reduced in neurons

from both tg mice: 52% and 31% decrease in peak and area,

respectively, in single tg, and 44% and 49% decrease in the same

parameters in double tg neurons (Fig. 2D,E). When the metabotropic

glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine (DHPG,

10 lM) was used as a stimulus, peak and area values were similar to those

evoked by CCH in each genotype. Accordingly, in tg neurons also the

response to DHPG was reduced in peak and area values: 34% and 37%

in single tg and 50% and 41% in double tg neurons, respectively.

Ca2+ release from ryanodine-sensitive intracellular

Ca2+ stores

Ca2+ release from stores in neurons depends not only on IP3-Rs, but also

on Ry-Rs. Figure 3 shows that, in wt neurons, the average peak and area

in response to caffeine (20 mM) were 0.14 ± 0.01 DR ⁄ R0 and

1.90 ± 0.23 a.u. (mean ± SEM, n = 15), respectively. Despite the

reduced response to IP3 producing agonists, neurons from both tg mice

exhibited a significant increase in Ca2+ release upon caffeine stimulation,

that is, the average percentage increases in peak and area were 38% and

96%, respectively, in single tg, and 38% and 76%, respectively, in dou-

ble tg neurons (Fig. 3A–C). It is worth noting that, on average, in wt neu-

rons the peak [Ca2+]c elicited by caffeine was about half that caused by

CCH or DHPG and, as expected, it was completely inhibited by 1 h

pre-incubation with ryanodine (20 lM) (not shown).

Total Ca2+ content of intracellular stores

The reduced response to IP3-generating agonists in tg mouse neurons

could be due to reduced IP3 generation, reduced IP3-R density ⁄ sensitiv-

ity or reduced Ca2+ content in the stores (or a combination of these

mechanisms). To evaluate the total Ca2+ content of intracellular stores

in the cultured neurons, we took advantage of the Ca2+ ionophore

ionomycin that releases Ca2+ from all, non acidic, intracellular stores,

independently of IP3 generation. When ionomycin (1 lM) was added in

a Ca2+-free, EGTA-containing medium after KCl treatment, the average

peak and area of wt cortical neurons were 0.65 ± 0.03 DR ⁄ R0 and

23.0 ± 1.35 a.u. (mean ± SEM, n = 16), respectively (see Fig. 3D). In

neurons from single and double tg mice, the Ca2+ response to ionomy-

cin was significantly reduced (about 35% and 28% for peak ampli-

tudes, and 28% and 22% for areas, respectively; Fig. 3E,F). Compared

with wt, neurons from PS2-N141I tg mice also lose faster the accumu-

lated Ca2+, as revealed by applying ionomycin in Ca2+ -free, EGTA-con-

taining mKRB at different times after KCl treatment (Fig. S1B). The

reduction in store Ca2+ concentration was finally confirmed by directly

monitoring the ER Ca2+ level with a D4ER cameleon: after the KCl

treatment, the D4ER initial fluorescence ratio value (YFP ⁄ CFP), reflecting

the steady-state ER Ca2+ concentration ([Ca2+]ER), was significantly

reduced in neurons from single tg mice compared with controls

(Fig. 3G). Addition of EGTA resulted in a slow decrease in [Ca2+]ER that

was strongly accelerated by addition of the ER Ca2+ ATPase blocker

cyclopiazonic acid (CPA, 20 lM); further addition of ionomycin (1 lM)

caused only a small drop (Fig. 3G), indicating that CPA was sufficient to

completely empty the ER Ca2+ content, as observed in other cell types

(Shilling et al., 2012). The drop caused by EGTA plus CPA was signifi-

cantly reduced in tg neurons, a result that is perfectly consistent with

the Fura-2 data (Figs 3H and S1B).

Ca2+ stores in wt and tg mouse neurons in situ

Cultured neurons do not reflect the complexity of the brain architecture

where interactions among neurons and glial cells occur in their proper

environment. Wt and tg neurons were thus compared in situ, using acute

hippocampal (CA1) slices, loaded with the fluorescent Ca2+ indicator

Oregon Green 488 BAPTA-1. Neurons and glial cells were distinguished

by both their morphology and functionality, as previously described (Fellin

(B) (C)(A)

(E)

(G) (H)

(F)
(D)

Fig. 3 Ca2+ release induced by caffeine is increased in neurons from tg mice

despite the reduction in the total store Ca2+ content. Representative traces of wt

and presenilin-2 (PS2)-N141I neurons (10-12 DIV) bathed in mKRB, exposed first to

KCl (30 mM) in the same medium and then to caffeine (20 mM) (A) or ionomycin

(1 lM) (D) in a Ca2+-free, EGTA (0.5 mM)-containing mKRB. Average peak and area

values, above the baseline in response respectively to caffeine (B,C) or ionomycin

(E,F). Values are expressed as mean ± SEM (n = 15 wt; n = 9 PS2-N141I; n = 12

PS2APP for caffeine and n = 16 wt; n = 14 PS2-N141I; n = 12 PS2APP for

ionomycin, respectively). (G) Representative traces of wt and PS2-N141I neurons

expressing D4ER. Changes in YFP ⁄ CFP ratio values were monitored in neurons

during the last 2 min of the standard KCl (30 mM) treatment. Upon a 2-min

perfusion in Ca2+-free, EGTA containing mKRB, full ER depletion was obtained by

addition of CPA (20 lM), followed by ionomycin (1 lM) (H) Statistics of ER Ca2+

depletion induced by EGTA and CPA treatment (mean ± SEM, n = 24 wt; n = 20

PS2-N141I).
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et al., 2004). As noticed in cultured neurons, rare spontaneous Ca2+

spikes were observed also in neurons in situ. Puff application of DHPG

(100 lM), in Ca2+ -containing ACSF, resulted in a clear and rapid increase

in [Ca2+]c in both wt and tg neurons (Fig. 4A). However, peak and area of

the Ca2+ responses were significantly reduced in neurons of both tg mice

(Fig. 4B,C). On average, the estimated reduction was statistically indistin-

guishable in the two tg lines, about 30% and 50% for peak and area,

respectively. In brain slices, metabotropic agonists, such as DHPG, could

affect neuronal Ca2+ either directly, by causing IP3 formation, or indi-

rectly, by inducing Ca2+ mobilization in astrocytes followed by glutamate

release and finally activation of neuronal ionotropic receptors (Fellin

et al., 2004). To check whether the Ca2+ rise in neurons was directly

dependent on activation of metabotropic receptors expressed in their

membranes, the slices were pre-incubated for 5 min with the ionotropic

receptor inhibitors 2-amino-5-phosphonopentanoic acid (D-AP5, 25 lM)

and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo (f) quinoxaline-7-sulfon-

amide (NBQX, 5 lM), together with tetrodotoxin (TTX, 1 lM) to prevent

action potential generation. Although this treatment slightly decreased

the peak amplitude and area of neuronal Ca2+ rises induced by DHPG,

the difference between wt and tg neurons was unaffected (see Table 1).

On the other hand, slice perfusion with ACSF containing NiCl2 (100 lM),

to inhibit Ca2+ -permeable channels, had no effect on a subsequent

DHPG application (not shown). Furthermore, when the DHPG-induced

Ca2+ response was tested in Ca2+ -free, EGTA-containing medium, the

obtained results were consistent with those reported above (see Table 1).

Similar findings were obtained when the amplitude of DHPG-induced

Ca2+ peaks was monitored in astrocytes, that is, the average peak ampli-

tude of the Ca2+ rises induced by DHPG was larger in wt than in both tg

mice (Fig. S2 and Table 1).

No difference in the expression level of IP3-Rs or SERCA-2 was observed

in the brains of the three genotypes (not shown), supporting the conclu-

sion that in neurons and astrocytes of tg mice the reduced response to

metabotropic receptor stimulation is primarily due to a reduction in the

store Ca2+ content [see previous sections and (Zatti et al., 2006; Brunello

et al., 2009)].

The data in cultured neurons indicate that, while in cells from tg mice

activation of IP3-Rs results in an attenuated Ca2+ peak, the response to

Ry-Rs is increased. It has been demonstrated that in other AD mouse

models based on PS mutants, the expression level of Ry-Rs is enhanced

compared with wt animals (Lee et al., 2006; Stutzmann et al., 2007).

Ry-R2 expression was thus verified by Western blot and found to be

up-regulated in the brains of both tg mice, compared with controls

(Fig. S3); a similar result was observed in cultured neurons (not shown).

Based on these results, we thus tested the effect of caffeine in hippo-

campal slices. Perfusion with caffeine (20 mM) caused no rapid elevation

of cytosolic Ca2+ but, after a lag of 5-8 min, it caused a dramatic increase

in spontaneous Ca2+ spikes. When caffeine was added in the presence of

TTX, no rapid increase in [Ca2+]c nor augmentation in spike activity were

observed, suggesting that the latter event is likely due to an effect of caf-

feine on adenosine receptors (Ribeiro & Sebastiao, 2010). However, a

DHPG puff, elicited after 10 min of treatment with caffeine and TTX,

resulted in no increase in [Ca2+]c. The total store Ca2+ content of neurons

in slices could not be assessed by the use of ionomycin, as acute applica-

tion of the ionophore caused a hardly detectable [Ca2+]c increase in both

neurons and astrocytes, probably because of the inefficient penetration

of this highly hydrophobic drug into slices.

Mitochondria implication

Both PSs have been found in mitochondria-associated membranes,

domains of tight interaction between mitochondria and ER (Area-Gomez

(A)

(B) (C)

Fig. 4 DHPG-induced Ca2+ release is reduced in tg hippocampal slices. (A) Right,

representative traces of cells responding to a puff (arrow) of DHPG (100 lM) for wt

and presenilin-2 (PS2)-N141I mice. Left, representative CA1 regions in a wt mice

before (1, upper panel) and during (2, lower panel) the puff. Pipette position is

marked by the void arrow. Scale bar, 25 lm. (B,C) Average [Ca2+]c peak and area

values, measured above the baseline and expressed as DF ⁄ F0 in response to DHPG

(mean ± SEM, n = 8–11 for each genotype).

Table 1 Summary of DHPG-induced Ca2+ response in acute slices from wt or tg mice

Dpeak (F ⁄ Fo) Area Dpeak (F ⁄ Fo)

ACSF ACSF + inh ACSF no Ca2+ ACSF ACSF + inh ACSF no Ca2+

Neurons

wt 0.5 ± 0.03 0.36 ± 0.036 0.46 ± 0.05 2.63 ± 0.26 1.21 ± 0.46 2.32 ± 0.55

PS2-N141I 0.35 ± 0.02*** 0.27 ± 0.04* 0.26 ± 0.01*** 1.64 ± 0.21* 0.88 ± 0.14 0.75 ± 0.18**

PS2APP 0.33 ± 0.04*** 0.26 ± 0.03* 0.31 ± 0.02*** 1.5 ± 0.45* 0.62 ± 0.12 0.88 ± 0.15**

Astrocytes

wt 0.62 ± 0.06 0.65 ± 0.05 0.56 ± 0.05 2.65 ± 0.42 2.77 ± 0.38 2.33 ± 0.38

PS2-N141I 0.41 ± 0.03*** 0.47 ± 0.04*** 0.33 ± 0.04* 2.03 ± 0.32 2.22 ± 0.57 1.13 ± 0.27

PS2APP 0.38 ± 0.03*** 0.34 ± 0.04*** 0.41 ± 0.07 1.66 ± 0.3 1.44 ± 0.26 1.68 ± 0.46

Data are expressed as mean ± SEM of 8–11 slices from three different animals per genotype. Inh (5 lM NBQX, 25 lM D-AP5, 1 lM TTX). One-way ANOVA s followed by

Tukey’s HSD test show that values are statistically different from wt, *P < 0.05, **P < 0.01, ***P < 0.001.
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et al., 2009). Mitochondrial dysfunctions (either metabolic, structural or

genetic) have widely been documented in aging and AD (Swerdlow et al.,

2010); moreover, endogenous as well as mutant PS2, but not PS1, have

recently been shown to favor the physical and functional connection

between these two organelles (Zampese et al., 2011). We first

investigated the energetic state of isolated brain mitochondria from

three-month-old PS2APP mice compared with wt mice. No differences

were found in classical parameters, for example, respiration rate (state 3

and state 4) and Ca2+ retention capacities (Fig. S4), indicating that, at this

age, mitochondria from even double tg mice are not appreciably compro-

mised. Of note, no difference in membrane potential, as measured by

tetramethyl rhodamine methyl ester in intact cells, was observed in

primary cortical neurons from tg and wt mice (not shown).

The mitochondria-ER Ca2+ cross talk was then investigated in wt and

single tg neurons expressing a cameleon probe targeted to the mitochon-

drial matrix (4mtD1cpv) (Palmer et al., 2006). To simultaneously follow

cytosolic Ca2+ rises in the very same cell, the neurons were cotransfected

with a nuclear Ca2+ probe (H2BD1cpv) (Giacomello et al., 2010). The

nucleoplasmic Ca2+ concentration very rapidly equilibrates with the cyto-

sol, while its signal can be easily distinguished from the mitochondrial

one (Zampese et al., 2011). Single neurons coexpressing both probes

were imaged for Ca2+ experiments and challenged with a mixture of IP3-

generating stimuli (500 lM CCH, 100 lM glutamate and 100 lM ATP)

after Ca2+ chelation by EGTA (2.5 mM) addition. Upon stimulation, the

nuclear Ca2+ rises (nucDR ⁄ R0) of responding neurons ranged from 0.08

to 0.86 and from 0.04 to 0.37 for wt and single tg neurons, respectively,

with a 50 ± 5.1% reduction in the average value of tg neurons

(nucDR ⁄ R0: 0.32 ± 0.05, n = 22 and 0.16 ± 0.02, n = 25 mean ± SEM

for wt and tg mice, respectively, P < 0.01), in agreement with the

reduced Ca2+ content of intracellular stores, as measured by Fura-2.

However, for similar nuclear Ca2+ rises in the range of 0.1–0.4 nucDR ⁄ R0,

the mitochondrial responses of tg neurons were larger than those

obtained in controls (Fig. 5A). Thus, the ratio between mitDR ⁄ R0 and

nucDR ⁄ R0 values, measured within this interval, was significantly higher

in tg neurons with respect to wt ones (1.18 ± 0.11, n = 13 and

1.63 ± 0.1, n = 19 for wt and tg neurons, respectively; mean ± SEM,

P < 0.01). Furthermore, with respect to controls, a closer apposition

between ER and mitochondria was observed in single tg neurons tran-

siently expressing ER- and mitochondria-targeted GFP ⁄ RFP variants

(Fig 5B,C). The Manders coefficient for signal colocalization, calculated

on Z stacks, was 0.43 ± 0.01 for wt neurons (n = 40) and 0.48 ± 0.01

for PS2-N141I neurons (n = 50), with a significant increase (11 ± 0.02%,

P < 0.01) in the latter. Similar results were obtained in neurons from dou-

ble tg mice (not shown). Consistently, after in vivo fixation, followed by

immunolabelling with antibodies against mitochondrial (CoxIV) and ER

(Grp78-Bip) markers, similar findings were obtained in both tg mice

(Fig. S5A). Compared with controls, the Manders coefficient of signal col-

ocalization and the area of close apposition between the two organelles

were larger in tg mice of 12–15 days (11 ± 3.8% and 14 ± 4.3%

increase in single and double tg mice, respectively; mean ±

SEM, n = 50, three mice for each genotype, P < 0.05; Fig. S5B,C).

Neuronal Ca2+ excitability

In brain slices or cultured neurons, spontaneous Ca2+ spikes are very rare.

However, such spontaneous spike activity can be drastically increased in

frequency upon removal of GABA-A inhibition. In particular, cultured

neurons show numerous synchronous Ca2+ spikes upon addition of the

GABA-A antagonist picrotoxin (PTX, 50 lM). In both tg neurons, the fre-

quency, but not the peak amplitude, of synchronous Ca2+ spikes in

response to PTX was significantly increased (about 60%), compared with

wt neurons (Fig. 6). In the three genotypes, the pattern of synchronous

Ca2+ activity was not modified by 1 h pretreatment with either thapsigar-

gin (1 lM) or ryanodine (50 lM) (not shown). These Ca2+ spikes were

generated by glutamate release because they were fully abolished by the

AMPA receptor antagonist NBQX (5 lM) (data not shown), while peak

amplitude and duration of Ca2+ spikes were strongly reduced by the

noncompetitive NMDA receptor antagonist MK-801 (10 lM) (Fig. S6A).

Furthermore, these Ca2+ oscillations were inhibited by blocking presynap-

tic Ca2+ channels through acute application of x-agatoxin IVA (0.2 lM), a

blocker of P ⁄ Q type Ca2+ channels (Fig. S6B).

(A)
(B) (B’)

(C’)

(C)

Fig. 5 Increased endoplasmic reticulum (ER)–mitochondria Ca2+ cross talk and colocalization in presenilin-2 (PS2)-N141I neurons. (A) Wt (blue squares) or PS2-N141I (red

diamonds) neurons co-expressing H2BD1cpv and 4mtD1cpv were bathed in mKRB and exposed to mixed stimuli (500 lM CCH, 100 lM glutamate, 100 lM ATP) 2 min after

addition of EGTA (2.5 mM). The peak of mitochondrial [Ca2+] (DR ⁄ R0) is plotted as a function of the corresponding peak in the nuclear (cytosolic) [Ca2+] (DR ⁄ R0). Only data

from wt and tg neurons with comparable nuclear peaks (0.1 < DR ⁄ R0 < 0.4) are shown. (B,C) ER–mitochondria juxtapositions were visualized by confocal microscopy in wt

(B) and PS2-N141I (C) neurons expressing mitRFP (red) and erGFP (green); yellow pixels indicate close proximity between the two organelles. Scale bar: 10 lm. (B’, C’)

Enlarged details.

(B) (C)
(A)

Fig. 6. Increased Ca2+ excitability in tg neurons. Synchronous Ca2+ spikes were

induced in neurons at 17-19 DIV by a 10-min perfusion with PTX (50 lM) in mKRB.

(A) Representative traces of wt and presenilin-2 (PS2)-N141I neurons. Bars show the

average number of Ca2+ spikes per min (B) and peak amplitude calculated over the

entire period (C) for the three genotypes. Values are expressed as mean ± SEM

(n = 19 wt; n = 21 PS2-N141I; n = 18 PS2APP).
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In acute brain slices, perfusion of Mg2+ -free ACSF supplemented with

PTX (50 lM) leads to interictal like activity in neurons of the CA1 region

(Gomez-Gonzalo et al., 2010). The frequency of the interictal discharges,

measured as Ca2+ transients, was doubled in both tg slices compared

with wt ones (mean ± SEM spikes per min: 1.26 ± 0.24 n = 10;

2.34 ± 0.42, n = 19 P < 0.05; 2.94 ± 0.60, n = 17, P < 0.05, respec-

tively, in wt, PS2-N141I and PS2APP slices from 5 to 6 mice per genotype),

a finding consistent with the result obtained in cultured neurons.

It should be stressed that all the Ca2+ defects described previously do

not result in overt neuronal toxicity. In particular, when the apoptotic

index of neuronal cultures was measured at rest and in the presence of

stressors acting through ER Ca2+ release, such as hydrogen peroxide or

ceramide – added either alone or together with DHPG – a trend to a

higher vulnerability, albeit not significant, was found in neurons from the

tg animals (not shown).

Role of Ab

Both FAD-linked PS1 and PS2 mutations have been associated with

altered Ab peptide generation, resulting in increased Ab42 ⁄ Ab40 ratios

(Borchelt et al., 1996). The PS2APP mice were reported to produce similar

levels of both peptides, whose content increases from 0.1 to 10 ng mg)1

brain (wet tissue) from the third to the sixth month of age, that is, when

the first amyloid deposits are detectable in the cortex and hippocampus

(Richards et al., 2003; Ozmen et al., 2009). Conversely, the PS2-N141I

line (not previously tested) is expected to have a much reduced total Ab
load compared with the PS2APP line. The question thus arises as to

whether the effects on the ER ⁄ mitochondria Ca2+ handling and excitabil-

ity depend primarily on the mutant PS2 or on the Ab production. We thus

measured the amount of total Ab load in the brain of tg mice at 2 weeks

of age (i.e., when brain slices were prepared for Ca2+ measurements).

Compared with controls, the Ab42 levels were 4 and 40 times larger in

single and double tg mice, respectively (Fig. S7A), ranging from 4 to

40 pg mg)1 wet tissue (1–10 pmol g)1), at least 102 times smaller than

that found at 6 months of age in amyloid seeding brains (Ozmen et al.,

2009). Moreover, while in double tg mouse brains the Ab42 ⁄ Ab40 ratio

was close to one, as expected (Ozmen et al., 2009), in the single tg

animals it was higher than in wt, but well below one (Fig. S7B).

Discussion

The mechanisms underlying neuronal dysfunction in the so-called spo-

radic AD cases is still debated and clearly involve genetic predisposition,

environmental components and, primarily, age factors. A major limitation

for research on sporadic AD is the lack of suitable animal models. In con-

trast, major breakthroughs in understanding the disease pathogenesis

have been obtained from studies based on the rare FAD cases linked to

autosomal dominant mutations in APP and PSs. Although no consensus

has yet been reached, many studies suggest that alterations of neuronal

Ca2+ homeostasis characterize normal brain aging as well as several

neurodegenerative disorders; though, it remains unknown whether such

modifications of Ca2+ handling are a late consequence or a primary cause

of neuronal dysfunction (Toescu & Verkhratsky, 2007; Toescu & Vreug-

denhil, 2010). Of note, the fact that PSs play a regulatory role in ER Ca2+

uptake and release has received much attention in the AD field (Thinaka-

ran & Sisodia, 2006). Evidence accumulated for many years has

established a strong relationship between FAD-linked PS mutations and

dysregulation of intracellular Ca2+ homeostasis (Camandola & Mattson,

2011). The issue is still quite confusing at the moment, as contradictory

results have been obtained by different laboratories using different

approaches. A key problem for solving these discrepancies is the choice

of the experimental models. The most relevant ones are probably tg mice,

as they express mutant PS at quasi-normal levels. Moreover, they can be

analyzed before the onset of any neurological defect, thus clarifying

whether alterations of Ca2+ signaling anticipate, are concomitant or fol-

low the other pathological signs, such as increase in Ab load and plaque

deposition, synapse restructuring, astrogliosis and neuronal loss.

Here, we have taken advantage of two tg mouse lines: PS2.30H,

expressing only the PS2-N141I, and B6.152H, expressing also the

APPswe. Of note, both lines have PS2 levels quite similar to those found

in wt animals. We have studied the characteristics of the Ca2+ response

both in primary neuronal cultures, obtained from neonatal pups, and in

acute brain slices from 2-week-old mice. At this age, total Ab levels are

still very low, but already detectable and higher in the double tg line. As

to the choice of tg mice carrying a FAD-linked PS2 mutant, rather than

one of the most commonly employed PS1 mutant, it is based on two

considerations: (i) we have extensively characterized a number of PS2

mutants in cell lines or human FAD fibroblasts with consistent and repro-

ducible findings; (ii) the phenotypic characteristics of FAD patients

bearing mutations in PS1 or PS2 are practically indistinguishable, but for

milder aggressiveness and later onset, usually, in PS2-linked FAD cases.

Thus, if an alteration in Ca2+ homeostasis is causal in the disease, the

prediction is that it should be, at least qualitatively, similar for both PS1

and PS2 mutants.

The data here presented demonstrate unambiguously that what was

observed in transiently expressing cell lines and neurons does not depend

on artefacts of protein over-expression, but represents an intrinsic specific

action of FAD-mutant PS2 in modulating Ca2+ handling. In particular, the

reduction in ER Ca2+ content (as assayed indirectly from the cytosol by

discharging the organelle Ca2+ with ionomycin or IP3-generating agon-

ists, and directly from inside the organelle by measuring Ca2+ levels with

a specific ER probe) is of similar entity to that previously estimated in cell

lines transiently over-expressing the same mutant PS2 at high levels (Zatti

et al., 2006; Zampese et al., 2011). Most important, the same extent of

reduction was found in neurons of acute brain slices. Thus, the altered

Ca2+ handling caused by mutant PS2 revealed in cultured cells is main-

tained in the more physiologically relevant in situ model. It needs also

stressing that a reduction in IP3-mobilizable Ca2+ in slices from both tg

mice is observed not only in neurons, but also in astrocytes. Since mutant

APP is expressed only in neurons while PS2-N141I in both cell types, the

fact that astrocytes show similarly altered Ca2+ dynamics in the double tg

mice further suggests that the mutant PS2 is the only culprit. Last, but not

least, the similarity (qualitatively and quantitatively) between Ca2+ dysre-

gulation in the two tg mouse lines confirms that expression of mutant

APP, per se, has no primary effect on the store Ca2+ content, at least at

2 weeks of age (Stieren et al., 2010). Taken together these findings point

out to an ‘all or none’ effect of mutant PS2 that may be related to the

amount of its possible interacting partners.

In spite of the reduced store Ca2+ content, Ca2+ release induced by

caffeine in cultured tg neurons was increased, a finding common not only

to other AD mouse models based on different FAD-linked PS mutations

(Chan et al., 2000; Smith et al., 2005), but also a possible biomarker of

aging neurons (Thibault et al., 2007; Toescu & Verkhratsky, 2007; Toescu

& Vreugdenhil, 2010). Most likely this larger response to caffeine

depends on the increased level of Ry-Rs in brains and cultured neurons

from both tg mice, as compared to wt. Much to our surprise, no rapid

Ca2+ mobilization could be triggered in slices by caffeine, when applied

either as a puff or by perfusion. However, the drug was effective on

Ry-Rs, as it induced a complete emptying of Ca2+ stores after a prolonged

incubation, while blocking Ca2+ spikes with TTX. Taken together, these
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data suggest that the penetration of caffeine inside the cells is too slow to

rapidly reach a sufficiently high concentration capable of triggering fast

Ca2+ mobilization via Ry-Rs, but it is enough to slowly and completely

discharge the ER Ca2+ content.

We have recently reported that over-expression of mutant PS2

increases the contact sites between ER and mitochondria in cell lines, as

well as in primary rat cortical neurons (Zampese et al., 2011). From the

functional point of view, this structural change is also responsible of an

increased efficiency of Ca2+ uptake by mitochondria because of an

increased number of Ca2+ microdomains (formed at the outer mito-

chondrial membrane upon ER Ca2+ release) (Zampese et al., 2011).

ER–mitochondria contact sites were significantly increased also in tg

neurons of primary cultures and brain slices, as compared to wt neurons.

As to ER–mitochondria Ca2+ transfer, because of the strong reduction in

the ER Ca2+ content in PS2-N141I neurons, the maximal nuclear (cyto-

solic) and mitochondrial increases were observed in the wt neurons. How-

ever, if one considers only wt and tg neurons with comparable nuclear

(cytosolic) responses, the rise in mitochondrial Ca2+ was significantly

larger in the latter cells.

An extensive body of literature suggests that Ab peptides may affect

Ca2+ homeostasis (Thinakaran & Sisodia, 2006). We here show that, in

the brains of 2-week-old tg mice, the level of total Ab42 and the

Ab42 ⁄ Ab40 ratio were rather low but yet substantially higher in

the PS2APP mice. Given that the reduction in the store Ca2+ content, the

increase in Ry-R expression and the augmented ER–mitochondria cross

talk, are all very similar in the two tg lines, the simplest explanation is that

Ab42 and Ab40 peptides do not play a major role in these processes. It

may be argued that the Ab increase observed in PS2 tg mice is sufficient

to cause the Ca2+ alterations we observed and that the additional larger

Ab rise observed in the PS2APP mice has no additional effect. We believe

that this possibility is unlikely, because qualitatively and quantitatively

similar effects on Ca2+ stores and ER–mitochondria coupling were found

in cell lines and neurons expressing the loss-of-function PS2-D366A (Bru-

nello et al., 2009; Zampese et al., 2011). We cannot exclude, on the con-

trary, that the increase in Ca2+ spikes upon GABA-A receptor blockade is

already maximal at the very low levels of Ab42 found in single tg mice.

Similarly, it is likely, [and actually important evidence has recently been

obtained along these lines (Busche et al., 2012)], that toxic Ab peptides,

at the higher levels reached in older mice, will per se cause modifications

in neuronal Ca2+ homeostasis. Altogether, our data are in agreement

with the idea that increased neuronal Ca2+ excitability is a precocious

event shared by both AD and brain aging (Gleichmann et al., 2012).

The final and most important question is whether the altered Ca2+

homeostasis – here revealed in neurons (and astrocytes) from tg mice

bearing the PS2-N141I – has a role in the pathogenesis of the disease.

Our data clearly demonstrate that the so-called ‘Ca2+ overload’ mecha-

nism (La Ferla, 2002) is untenable in FAD caused by mutations in PS2.

Along the same line, a thorough, very recent, study by Foskett and

coworkers reveals that a number of PS1 mutations neither decrease nor

augment ER Ca2+ levels (Shilling et al., 2012). In support of data previ-

ously obtained in cells and neurons over-expressing FAD-linked PS2

mutants, we here show, both in primary cultures and in situ, that neurons

from tg mice carrying the PS2-N141I mutation have a lower ER Ca2+ con-

tent, but the number of contacts sites between mitochondria and ER is

increased. In contrast, PS1 mutations do not cause a major change of ER

Ca2+ levels and do not modify ER–mitochondria tethering (Zatti et al.,

2006; Zampese et al., 2011; Shilling et al., 2012). Both FAD-PS1 and PS2

mutations increase the expression of Ry-Rs and the sensitivity of IP3-Rs to

IP3 (Cheung et al., 2008). A revised version of the Ca2+ overload hypothe-

sis that takes into consideration all the above data would rather point to

an increased transfer of Ca2+ from the ER to the mitochondria as a causa-

tive event: with PS2 mutations, the increased IP3-R sensitivity and Ry-R

number, coupled to a higher ER–mitochondria juxtaposition, may lead to

a larger Ca2+ uptake through the mitochondrial Ca2+ uniporter, despite

the reduced overall ER Ca2+ content. In the long run, this chronic over-

transfer of Ca2+ to mitochondria may eventually lead to mitochondrial

functional impairment and neuronal damage. In this context, the

increased Ca2+ excitability of tg neurons, here revealed, may represent a

further stressor. In the case of PS1 mutations, the ER Ca2+ level is unper-

turbed (or possibly increased) and the ER–mitochondria tethering is nor-

mal, but the IP3-R sensitivity and the Ry-R number are both increased as in

mutated PS2 models. In the end, in neurons bearing PS1 mutations, the

effect on ER–mitochondria Ca2+ transfer may be similarly enhanced. In

addition, the possibility should be considered that the Ca2+ handling

alterations here reported may be more directly correlated with modifica-

tions in synaptic functions rather than to overt cell death. Indeed, mito-

chondrial Ca2+ dysregulation has been linked to altered synaptic plasticity

in normal aging (Toescu & Verkhratsky, 2004) and, possibly, to the synap-

tic dysfunctions precociously observed in different AD mouse models.

Noteworthy PS1 has recently been shown to influence dendritic spine

plasticity in an in-vivo model, independently of its c-secretase activity, but

possibly linked to an effect on Ca2+ homeostasis (Jung et al., 2011).

Our proposed model takes into account findings by different laborato-

ries and provides a rationale that accommodates divergent data into a

unifying hypothesis centred on mitochondrial Ca2+ toxicity. How altered

ER ⁄ mitochondria Ca2+ cross talk then modifies synaptic plasticity and

causes early dysfunctions is a matter of intense study. Briefly, we can first

cite altered mitochondria trafficking at the synaptic level and, conse-

quently, reduced ATP supply and Ca2+ buffering capacity at the site of

highest demand, all conditions which can be worsened by the increased

excitability.

Obviously, the model proposed is clearly oversimplified as it does not

consider other key pathogenic factors that are essential in AD, that is, Ab
load and plaques, hyperphosphorylated tau and astrogliosis. However,

the fact that, in different AD mouse models, the presence of PS mutations

accelerates the onset of neuronal dysfunctions and cognitive defects,

reinforces the idea that subtle changes in Ca2+ handling, owing to PS

mutants, render the neurons more vulnerable to other insults, such as Ab
oligomers, reactive oxygen species and excitotoxicity.

Experimental procedures

Animal handling and care

The transgenic mouse lines PS2.30H and B6.152H were kindly donated

by Dr. L. Ozmen (F. Hoffmann-La Roche Ltd, Basel, Switzerland) (Richards

et al., 2003; Ozmen et al., 2009; Rhein et al., 2009). Both lines have the

background strain of C57BL ⁄ 6 mice, which were used as wt controls and

purchased from Charles River (Lecco, Italy). All procedures were carried

out in strict adherence to the Italian regulations on animal protection and

care and with the explicit approval of the local veterinary authority

(CEASA Nr 56880).

Primary neuronal cultures

Primary neuronal cultures were obtained from cortices dissected from 0

to 1 day newborn mice as previously described (Zatti et al., 2006). Cells

were seeded on poly-L-lysine (100 lg mL)1) coated coverslips at a density

of 300.000 cells cm)2 in MEM Gibco containing glucose (20 mM), L-glu-

tamine (0.5 mM), N2 supplement (1%), B27 supplement (0.5%), biotin
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(3.6 lM), pyruvic acid (1 mM), penicillin (25 lg mL)1), streptomycin

(25 lg mL)1), neomycin (50 lg mL)1) and horse serum (10%). After

24 h plating, the complete MEM was replaced with serum and antibiotic

free Neurobasal medium containing B27 (2%) and L-glutamine (2 mM),

unless otherwise stated. Fresh medium was added (1 ⁄ 5 of total volume)

every 4th day.

Ca2+ measurements in primary neuronal cultures

Cytosolic and organelle (mitochondria, nuclear and ER) Ca2+ levels were

monitored by different approaches (see Data S1).

Data analysis

Data were analyzed using Origin 7.5 SR6 (OriginLab Corporation, North-

ampton, MA, USA) and Microsoft Excel 2003 (Microsoft Corporation,

Redmond, WA, USA). Traces are averages of 40–60 cells and are repre-

sentative of 20–40 independent experiments. Values are expressed as

mean ± SEM (n = number of independent experiments). Statistical signif-

icance was evaluated by unpaired two-tailed Student’s t-test. Analysis of

the differences between categories was carried out by one-way ANOVA fol-

lowed by Tukey’s HSD (Honestly Significantly Different) multiple compari-

son tests with a confidence interval of 95%, *P < 0.05, **P < 0.01,

***P < 0.001.
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