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ABSTRACT: We have investigated the protective effects of ITH91/IQM157, a hybrid 

of melatonin and N,N-dibenzyl(N-methyl)amine, in an in vitro model of AD-like 

pathology that combines amyloid beta (A) and tau hyperphosphorylation induced by 

okadaic acid (OA), in the human neuroblastoma cell line SH-SY5Y. Combination of 

sub-toxic concentrations of A and OA caused a significant toxicity of 40% cell death, 

which mainly was apoptotic; this effect was accompanied by retraction of the cell´s 

prolongations and accumulation of thioflavin-S stained protein aggregates. In this 

toxicity model, ITH91/IQM157 (1-1000 nM) reduced cell death measured as MTT 

reduction; at 100 nM, it prevented apoptosis, retraction of prolongations and βA 

aggregates. The protective actions of ITH91/IQM157 were blocked by mecamylamine, 

luzindol, chelerythrine, PD98059, LY294002 and SnPP.  We show that the combination 

of melatonin with a fragment endowed with AChE inhibition in a unique chemical 

structure, ITH91/IQM157, can reduce neuronal cell death induced by Aand OA by a 

signaling pathway that implicates both nicotinic and melatonin receptors, PKC, Akt, 

ERK1/2 and induction of hemoxygenase-1.  

 

Keywords: SH-SY5Y, Okadaic acid, beta-amyloid, Melatonin, Alzheimer´s disease, 
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INTRODUCTION 

Alzheimer´s disease (AD) is the most common form of dementia. There are 

about 27 millions of patients in the world and this figure could increase to 107 million 

by the year 2050 if no treatment is found to delay the onset or the progression of the 

disease (1). Therefore, the development of an effective treatment is a social, economic 

and political global priority.  

From a histopathological point of view, AD is characterized by two protein 

alterations, namely tau hyperphosphorylation and excessive amyloid beta (Aβ) 

deposition, both related to the neuronal degeneration (2-4.) This neurodegenerative 

process affects the cholinergic system, among others. Therefore, acetylcholinesterase 

inhibitors are the main drugs used today to treat these patients. For later stages of the 

disease, inhibition of NMDA receptors with memantine is also used. A meta-analysis 

for commercially available acetylcholinesterase inhibitors (AChEI) and memantine in 

combination for the treatment of patients with AD revealed only a modest trend 

favoring active treatment over placebo (5). Therefore, the search for new compounds to 

treat this disease is still mandatory.   

The use of multitarget compounds is emerging as an interesting strategy to treat 

different pathologies. These compounds combine, in a single molecule, complementary 

activities over different pathways of the pathophysiological cascade of AD. More 

specifically, our group has become interested in compounds that combine fragments 

derived from an inhibitor of acetylcholinesterase (AChEI) and melatonin for the 

following reasons: (i) AChEI are the drugs mainly used in clinic to treat AD patients; 

their mechanism of action is based on the improvement of cholinergic 

neurotransmission, (ii) the levels of the neurohormone melatonin, endowed with 

antioxidant properties (6), are gradually reduced with age. In the cerebral spinal fluid 
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(CSF), melatonin levels can be reduced by 50% when compared to young subjects; this 

reduction is even greater in AD patients (below 20%)(7-9). It is also worth mentioning 

that hippocampal CA1 and CA3 pyramidal neuronal loss can be reproduced in rats by 

removing their pineal gland, while replacement of melatonin in the drinking water 

recovers such loss (10). Furthermore, melatonin has shown neuroprotective effect in 

several AD models (8, 11-14), and it has also shown beneficial effects in a double blind 

study on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer 

type dementia (15). For all these reasons, melatonin could be beneficial in AD (16)  

and, (iii) previous results from our group have shown that the combination of 

subeffective concentrations of galantamine and melatonin offer a significant 

neuroprotective effect in SH-SY5Y cells against mitochondrial intoxication with 

rotenone and oligomycin A(17). With these ideas in mind, we synthesized several 

melatonin – N,N-dibenzyl(N-methyl)amine hybrids (18); the idea of keeping the  AChEI 

activity, even if modest, was based on the fact that this target  remains clinically valid 

for the majority of drugs (donepezil, rivastigmine and galantamine) used today in AD 

patients. In this study we have focused on ITH91/IQM157 (Fig 1) that shares chemical 

features of melatonin and the AChEI AP2238, has low toxicity, is capable of crossing 

the blood brain barrier in a predictive model and has an interesting pharmacological 

profile with potential for the treatment of AD. It inhibits human AChE (IC50 = 4.1 µM), 

displaces propidium from the peripheral anionic site of AChE (25% at 1.0 µM), presents 

antioxidant properties (ORAC = 1.5 trolox equiv.) and protects neural cells against 

mitochondrial free radicals (26% at 1.0 µM) (18).  
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Figure 1. Chemical structure of compound ITH91/IQM157, a melatonin – N,N-

dibenzyl(N-methyl)amine hybrid. 

 

As mentioned earlier, there are two characteristic histopathological features in 

postmortem brains of patients suffering AD: senile plaques caused by accumulation of 

 peptide and neurofibrillary tangles composed of hyperphosphorylated tau protein. It 

is also proposed that these alterations are not independent, but are interrelated (19, 20). 

Although there are several in vivo models that combine A pathology with tau 

pathology, such as the double transgenic mice APPswe/TauVLW (21) or the triple 

transgenic PS1M146V, APPswe, and TauP301L (22), virtually no in vitro models 

combine these two alterations. Therefore we have implemented an in vitro model that 

combines beta and tau pathology by combining A25-35 and okadaic acid in the human 

neuroblastoma cell line SH-SY5Y. We have used this model to evaluate the potential 

neuroprotective effects of the melatonin – N,N-dibenzyl(N-methyl)amine hybrid 

ITH91/IQM157. 

 

RESULTS AND DISCUSION 

In order to set up the cytotoxicity model, we first performed concentration-

response curves with Aand okadaic acid in the human neuroblastoma cell line SH-

SY5YOkadaic acid (OA), a phosphatase inhibitor that causes hyperphospholylation of 

tau protein (23),  was more effective to induce cell death than A; in fact, maximum cell 

death achieved with A was near 40 % (10 M  Fig ) while with OA, maximum 
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cell death reach over 80 % (30 nM OA, Fig 2B). Interestingly, when sub-effective 

concentrations of both stimuli (1 M of A and 3 nM of OA) were combined, we 

observed a significantly higher cytotoxic effect compared to each toxin alone (Fig. 2C). 

This result was corroborated in a primary neuronal culture, in which a similar toxicity 

was observed (Supplemental data1). Therefore, this result validates the use of a 

neuronal cell line instead of primary neuronal cultures which “Replaces” the use of 

animals. 

 

Figure 2. βA25-35 (βA) and okadaic acid (OA) reduce cell viability of SH-SY5Y cells: 

combination of subeffective concentrations of βA and OA cause significant cell death. 

Cells were incubated with the toxic stimuli for 20 h and cell viability was assessed by 

the MTT technique. (A) Shows the concentration-response curve with 1 μM, 5 μM and 

10 μM of βA. (B) Concentration-response curve with 3 nM, 10 nM and 30 nM of OA. 

(C) Effect of 1 μM βA, 3 nM OA or their association on SH-SY5Y cell viability. Values 

are expressed as means ± SEM of 5 different cultures, ***P < 0.001, **P < 0.01 

compared to basal; 
###

P < 0.001, 
##

P < 0.01, 
#
P < 0.05 with respect to combination of 

both toxic stimuli. 
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When we analyzed the apoptotic and necrotic populations in SH-SY5Y cells 

exposed to A (1 M) in combination with OA (3 nM) - from now on A /OA-, we 

found that cell death was mainly apoptotic (Fig. 4B). These results are consistent with 

those described in animal models of AD where mutations associated with over-

expression of Aprotein and mutations associated with hyperphosphorylation of tau, 

are combined (22, 24); these animals show greater pathology and functional alterations 

in a more precocious way compared to mono-transgenics. Besides the effects on cell 

death, subtoxic concentrations of A/OA caused neurite retraction (Fig. 5B), an effect 

related to tau hyperphosphorylation, which causes microtubule destabilization, 

cytoarchitecture loss and, consequently, neurodegeneration (3, 23). This degeneration 

and cell death is also reflected in the emergence of more pyknotic nuclei in cells treated 

with A/OA. We also found aggregates of thioflavin S staining as an indication of 

Aaggregation (Fig. 5E). Taken together, by combining subtoxic concentrations of A 

with OA, we have established a cytotoxicity model that displays several pathological 

markers of AD, such as neurite retraction, accumulation of protein aggregates and 

apoptotic cell death. This model could, therefore, serve as a new cytotoxicity model to 

evaluate compounds with potential interest in the screening stage of AD-compounds, 

before moving into the in vivo studies that are more expensive and more time 

consuming.  

Having set the experimental conditions of toxicity induced A/AO, we evaluated 

the potential cytoprotective effect of melatonin, the acetylcholinesterase inhibitor 

donepezil and the association of sub-effective concentrations of both. The experimental 

protocol consisted of pre-incubating SH-SY5Y cells for 24 hours with increasing 

concentrations of the neuroprotective compounds prior to the addition of the toxic 

stimuli (A /OA) and, maintaining the protective compounds for an additional 20 h 
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period together with the toxins (see protocol on top of Fig. 3). Melatonin showed a 

significant protective effect at the concentration of 3 nM (35.8 % protection), and this 

protection increased in a concentration-dependent manner, being maximum at 10 nM 

(73 % protection) (Fig. 3A). We also evaluated the potential neuroprotective effect of 

donepezil; the range of concentrations was selected based on previous data from our 

group (Arias y col., 2005). As represented in Fig. 3B, donepezil was protective at 

concentrations ranging from 0.3 to 3 M; however, a concentration-dependent effect 

was not observed.  

 

Figure 3. Combination of sub-effective concentrations of melatonin and donepezil 

provide synergic against βA/OA-induced toxicity. On the top part of the figure, a 

schematic representation of the protocol used is represented. Cells were exposed for 20 

h to 1 βM βA plus 3 nM OA (βA/OA). When the neuroprotective compounds melatonin 

or donepezil were used, they were pre-incubated 24 h before adding the toxics. Effect of 

increasing concentrations of melatonin (A) and donepezil (B) on the cell viability of 

SHSY5Y cells exposed to the combination of βA/OA, measured as MTT reduction. (C) 

Synergic neuroprotective effect afforded by the association of sub-effective 

concentrations of both compounds. Data represent the mean ± SEM from 7 different 

cultures, ***P < 0.001 compared to basal, 
###

P < 0.001, 
##

P < 0.01, 
#
P < 0.05 compared 

with βA/OA group. 
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To test the hypothesis that a significant neuroprotective effect could be achieved 

with the combination of sub-effective concentrations of melatonin and an AChEI, we 

used 1 nM of melatonin plus 10 nM of donepezil in the A/OA toxicity model; indeed 

the drug combination afforded significant protection (57% protection) compared to the 

drugs alone (Fig. 3C). 

Next, we evaluated the potential neuroprotective effect of the melatonin – N,N-

dibenzyl(N-methyl)amine hybrid ITH91/IQM157. Compared to melatonin or the 

acetylcholinestarase inhibitor donepezil, the neuroprotective actions found with 

ITH91/IQM157 were achieved at lower concentrations; at 1 nM, ITH91/IQM157 

already offered maximum protection (Fig. 4A). This hybrid improved the 

neuroprotective activity in comparison to the combination strategy of subeffective 

concentrations of melatonin (1 nM) and donepezil (10 nM); protection was 75 % with 1 

nM ITH91/IQM157 vs 57% with the combination strategy (Fig. 3C). This finding 

agrees with our previous observation that combination of subeffective concentrations of 

melatonin and the AChEI galantamine offers significant neuroprotection (17).  

There are several potential advantages for a multifunctional molecule vs 

combination of different drugs covering the same mechanisms. First, association of 

several drugs may have different pharmacodynamics and pharmacokinetics; however, 

when a single molecule is developed, these properties can be optimized.  Second, when 

two or more drugs are combined, frequently, there are complex pharmacological 

interactions that modify the effect of the other, giving increased secondary effects or 

reducing the effectiveness of one or more of the combined molecules. Finally, drugs 

directed to a single target might not always modify complex systems, even if they act in 

the way they are expected to precede. It is very common in the cell to have “back-up” 

systems yielding the same effect such as gene expression, protein synthesis, receptors 
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response and protein degradation. Proteins and intermediates involved in these back-up 

systems can be completely different and therefore, drugs targeting primary pathways 

will have no effect over this back-up pathway, an effect known as redundancy. Multi 

target therapeutics can be more efficacious making the biological system more sensitive 

to the action of a drug with two or more targets simultaneously, thereby, mitigating the 

redundancy effect. Therefore, the complexity of interactions in the drug-combination 

approach has led to the hypothesis that one single molecule, acting on several targets at 

the same time, might be more effective for the drug development in complex diseases 

like AD.  

 

Figure 4. ITH91/IQM157 is neuroprotective against βA/OA toxicity by an anti-

apoptotic mechanism. (A) Effect of increasing concentrations of ITH91/IQM157 on the 

cell viability of cells exposed to βA/OA. (B) Percentage of alive, apoptotic, and necrotic 

cells, measured by flow cytometry in control cells or cells exposed to βA/OA alone or 

in the presence of ITH91/IQM157 at 100 nM. Data correspond to the mean ± SEM of 

four different cell batches; ***P < 0.001 significantly different from basal apoptotic cell 

death. 
###

P < 0.001, 
##

P < 0.01 significantly different from βA/OA-induced apoptotic 

cell death. 
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Concerning the neuroprotective mechanism of action of ITH91/IQM157, both 

melatonin and nicotinic receptors seem to be implicated since both luzindole (a 

melatonin receptor antagonist) and mecamylamine (a nicotinic receptor antagonist) 

significantly reduced its protective effect (Fig. 6A). The involvement of nAChRs has 

also been implicated in the protective effects of other AChE inhibitors like galantamine 

and donepezil (25-27). The neuroprotective effect of ITH91/IQM157 was accompanied 

by the recovery of the cytoarchitecture and a reduction of thioflavin-S aggregates (Fig. 

5C and F). The reduction of protein aggregates can be related to actions of the 

melatonin substructure, since it is reported that melatonin can directly interact with 

Aand prevent its aggregation (28, 29) and it can also interfere with APP processing 

(30-32). Furthermore, we previously reported that compound ITH91/IQM157 displaces 

propidium iodide from the peripheral acetylcholinesterase site, which is known to 

participate in A aggregation (33). Interaction with MT2 receptors can stimulate 

phospholipase C and activate protein kinase C (PKC) via diacylglycerol, which in turn 

phosphorylates and inactivates GSK-3β, whose participation in APP synthesis (34, 35) 

and tau hyperphosphorylation are well documented; this could be an additional 

mechanism for compound ITH91/IQM157. In fact, the protective mechanism of 

ITH91/IQM157 was partially inhibited by the PKC inhibitor chelerythrine (Fig. 6B).  



 

12 
 

 

Figure 5. ITH91/IQM157 recovered cytoskeletal alterations and thioflavin-S aggregates 

induced by exposure of SH-SY5Y cells to βA/OA. Top part shows images of SH-SY5Y 

cells double stained with Hoechst 33342 (nuclei in blue) and phalloidin (cytoskeleton in 

red) under basal conditions (A) , treated with Aβ/OA in the absence (B) or presence of 

100 nM of ITH91/IQM157 (C). Bottom figures show of SH-SY5Y cells double stained 

with Hoechst 33342 (nuclei in blue), phalloidin (cytoskeleton in red) and Thioflavin-S 

(βA aggregates in green) under basal conditions (D) or treated with βA/OA in the 

absence (E) or presence of 100 nM of ITH91/IQM157 (F). Images are representative of 

others obtained in 3 different cell batches. 

 

Our group and others have shown that activation of melatonin and nicotinic 

receptors can promote survival pathways such as those related to PI3K/Akt and ERK1/2 

(17, 36) 37). Indeed, ITH91/IQM157 increased phosphorylation of ERK1/2 and Akt 

(Fig. 7A and 7B) and its protective actions were prevented in the presence of inhibitors 

of these kinases (Fig. 6B). Akt can phosphorylate GSK-3 at position Ser-9, 

inactivating it (38-40) and can improve neuronal survival by: (i) contributing to 

reduction of  and tau pathology as mentioned above and/or (ii) promoting the nuclear 
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translocation of Nrf2 (nuclear factor E2-related factor 2) to increase the cell´s defense 

mechanisms (41). 

 

Figure 6. Neuroprotection elicited by ITH91/IQM157 involves melatonin receptors, 

nicotinic acetylcholine receptors, PI3K/Akt, ERK1/2, PKC and induction of HO-1. (A) 

The melatonin receptor antagonist luzindole (3 μM) and the nAChR antagonist 

mecamylamine (10 μM) partially block the protective action of ITH91/IQM157. Both 

antagonists per se had no effect on cell death caused by βA/OA. (B) The protective 

effect of ITH91/IQM157 is prevented by the PKC inhibitor chelerythrine (1 μM), the 

PI3K/Akt antagonist LY294002 (10 μM), the ERK1/2 antagonist PD98059 (10 μM) and 

the HO-1 inhibitor Sn(IV) protoporphyrin IX dichloride (SnPP) (10 μM). The 

antagonists per se had no effect on cell death caused by βA/OA. Values are means ± 

SEM of 7 experiments.***P < 0.001 significantly different from untreated cells; 
###

P < 

0.001, 
##

P <0.01 in comparison to βA/OA; 
$$$

P < 0.001, 
$$

P < 0.01, 
$
P < 0.05 with 

respect to ITH91/IQM157 treated cells. 
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Hemoxygenase-1 (HO-1) can be transcribed by Nrf2, it is an enzyme related to 

antioxidant, antineuroinflammatory and neuroprotective actions. Compound 

ITH91/IQM157 was capable of inducing per se HO-1 (Fig 7C), and, most interesting, 

its protective actions were prevented when an inhibitor of this antioxidant enzyme 

(SnPP) was added to the cells (Fig. 6B). These results indicate that part of its 

neuroprotective actions can be attributed to induction of HO-1 as already described for 

other neuroprotective drugs that interact with melatonin or nicotinic receptors (36, 42, 

43). 

 
Figure 7. ITH91/IQM157 increases ERK1/2 and Akt phosphorylation and induces the 

antioxidant enzyme HO-1. ERK1/2 phosphorylation with respect to total-ERK1/2 (A) 

and Akt phosphorylation with respect to total-Akt (B) was analyzed, by western blot, in 

SH-SY5Y cells treated for 60, 30 or 15 min with 100 nM ITH91/IQM157. The top part 

of the figures shows a representative immunoblot and the histogram below shows the 

mean densitometric quantification of both kinases. (C) HO-1 induction in cells treated 

for 24 h with ITH91/IQM157 at 100 nM. The top part of the figure illustrates a 

representative immunoblot and the bottom part an histogram with the densitometric 

quantification of HO-1 induction normalized with respect to β-Actin, under basal 

conditions or exposed to melatonin. Values correspond to the mean ± SEM of 5 

experiments. ***P < 0.001, **P < 0.01, *P < 0.05 significantly different from untreated 

cells. 
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As a multifunctional drug, ITH91/IQM157 is endowed with different 

complementary mechanisms of action that could be useful to limit the complex 

physiopathological cascade of AD. One of those complementary actions, besides ACE 

inhibition and A aggregation could be induction of HO-1 as part of its neuroprotective 

mechanism. In this study we have focused on HO-1 because this enzyme seems to 

participate in the protective action of drugs that have a similar mechanism to compound 

ITH91/IQM157, for example, melatonin or nicotinic agonists (Parada et al., 2013a; 

Parada et al., 2013b). Also induction of HO-1 by the ACEI galantamine has been related 

to protection of microvascular endothelial cells (Nakao et al., 2008). We see in this 

study that ITH91/IQM157 can induce HO-1 and that its protective actions are lost in the 

presence of the HO-1 inhibitor SnPP; this effect does not exclude the drug from having 

ACE inhibitory actions that could improve cognition or from reducing beta-amyloid 

aggregation that could contribute to reduce neuroinflammation and protecting neurons 

adjacent to the beta-amyloid plaques. 

In conclusion, the melatonin–N,N-dibenzyl(N-methyl)amine hybrid 

ITH91/IQM157 reduces cell vulnerability as well as A aggregates and disruption of 

the cytoskeleton in an in vitro AD-related model. The mechanism of action of 

ITH91/IQM157 involves melatonin and nicotinic receptors, activation of a signaling 

cascade that includes PKC, ERK1/2, PI3K/Akt and induction of the antioxidant and 

antineuroinflammatory enzyme HO-1; all of these actions can contribute to promote cell 

survival and, thereby prevent neurodegeneration. 
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MATERIALS AND METHODS 

Materials 

Amyloid beta (A25-35), okadaic acid (AO), chelerythrine, PD98059 (2-(2-

amino-3-methoxyphenyl)-(4H-1-benzopyran-4-one)) and LY294002 (morpholino-4-yl-

8-phenylchromen-4-one), mecamylamine, were from Tocris scientific/ Biogen, Madrid, 

Spain. Tin protoporphyrin (IV) from Frontier Scientific Europe, Lancashire, UK.  

Donepezil and melatonin was obtained from Sigma Aldrich, Madrid, Spain and 

ITH91/IQM157 was synthesized by the group of Dr. Rodríguez-Franco from the 

Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-

CSIC). 

 

Culture of the human neuroblastoma cell line SH-SY5Y 

SH-SY5Y cells were maintained in culture medium containing 10 % inactivated 

fetal bovine serum, 15 nonessential aminoacids, 1 mM sodium pyruvate (Invitrogen, 

Madrid, Spain), F12 nutrient medium (Ham12), MEM medium (Eagle's minimum 

essential medium) (Sigma Aldrich, Madrid, Spain), NaHCO3, 100 U/ml penicillin and 

100 µg/ml streptomycin (Invitrogen, Madrid, Spain) in H20 miliQ. Cells were grown 

initially in a flask and sub-cultured in 48-well plates at a density of 1x10
5
 cells/well. 

Cells were maintained in an incubator in a humid atmosphere at 37°C with 5 % CO2; 

they were used between 4-12 passages. 

 

Measurement of cell viability using the MTT method  

 Cell viability was assessed by the detection of mitochondrial activity in living 

cells using the colorimetric analysis of Blue Tetrazolium Bromide Thiazolyl (MTT) 

(Sigma-Aldrich, Spain), previously described by Denizot.(44). Upon completion of the 
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experiments, 50 l of reagent MTT was added to each well to achieve a final 

concentration of 0.5 mg/ml; then, the cells were kept for 2 h in an incubator at 37 ºC 

with 5% CO2 and 95 % air. Finally, 200 l of dimethyl sulfoxide (DMSO) was added to 

each well to dissolve the formazan salt and absorbance was measured in an ELISA 

reader at 540 nm. The absorbance obtained in basal conditions was taken as 100 % cell 

viability. 

 

Measurement of apoptosis and necrosis with annexin V–phycoerythrin (PE) and 7-

amino-actinomycin-D (7-AAD) by flow cytometry 

 Apoptosis was determined by flow cytometry using an annexin V–PE 

(phycoerythrin) and 7-AAD double staining kit (BD Bioscience, Madrid, Spain) 

according to the manufacturer's instructions. Briefly, at the end of the experiment, cells 

were collected after centrifugation and resuspended in a solution containing 100 μl of 

1× binding buffer, 5 μl annexin V–PE and 5 μl 7-AAD. Cells were incubated at room 

temperature for 15 minutes in darkness and 100 μl of 1× binding buffer was added. 

Cells were then subjected to FACS analysis (Beckman Coulter, Madrid, Spain). 

Annexin V +/7-AAD− cells were considered as early apoptotic cells, annexin V +/7-

AAD + as late apoptotic cells, and annexin V -/7-AAD− as viable cells. 

 

 

Double staining of SH-SY5Y cells with phalloidin and Hoechst  

We used phalloidin-rhodamin staining to detect the cellular cytoskeleton in our 

experimental conditions. Hoechst staining was concomitantly used to detect the nuclei.  

At the end of the experiment, SH-SY5Y cells were washed 3 times with PBS (NaCl 9 

g/L, 10 mM NaH2PO4, 10 mM K2HPO4) and fixed with 2 % paraformaldehyde 
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dissolved in PBS for 15 min, permeabilized with 0,1% Triton in PBS for 1 min and 

stained with phalloidin-rhodamine in PBS 1:1000 (Sigma-Aldrich, Madrid, Spain) for 

20 minutes. Later, the cells were washed 3 times with PBS every 5 min; staining of the 

nuclei with Hoechst (5μg/ml) was performed during the second wash (Invitrogen, 

Madrid, Spain). Finally, the slides were covered with coverslips adding glycerol-PBS 

(1:1 vol/vol) and imaged with a confocal microscope (TCS SPE, Leica, Wetzlar, 

Germany). 

 

Triple staining of SH-SY5Y cells with Thioflavin-S, Hoechst and phalloidin  

 SH-SY5Y cells were fixed with 2 % paraformaldehyde dissolved in PBS for 15 

min and washed 3 times with PBS every 5 min. Later, they were permeabilized with   

0,1 % Triton for one minute and washed 3 times with PBS before staining them with 

Thioflavin-S 0.5 % for 10 minutes. Then, 3 consecutive washes with ethanol 80 %, 

mili-Q H2O and PBS were performed.  Later, cells were stained with phalloidin-

rhodamine in PBS 1:1000 (Sigma-Aldrich, Madrid, Spain) for 20 minutes, followed by 

3 washes with PBS every 5 min; staining of the nuclei with Hoechst (5μg/ml) was 

performed during the second wash (Invitrogen, Madrid, Spain). Finally, the slides were 

covered with coverslips adding glycerol-PBS (1:1 vol/vol) and imaged with a confocal 

microscope (TCS SPE, Leica, Wetzlar, Germany). 

 

Measurement of protein expression by Western-Blot 

 SH-SY5Y cells were lysed with 100 l of cold lysis buffer containing: 1 % 

Nonidet P-40, 10 % glycerol, 137 mM NaCl, 20 mM Tris-HCl, pH 7.5, 1 mg/ml 

leupeptin, 1 mM phenylmethylsulfonyl fluoride, 20 mM NaF, 1 mM sodium 

pyrophosphate and 1 mM Na3VO4. Once the amount of protein was quantified using 
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the BCA Protein Assay Kit Reagent  (Fisher Scientific, Madrid, Spain), electrophoresis 

was performed running 30 g of proteins in polyacrylamide gels (PAGE) for 2 hours at 

constant amperage. Proteins were transferred to PVDF membranes (Millipore Ibérica 

SA, Madrid, Spain) for 2 hours at 70 mA. Later on, membranes were blocked for two 

hours with TTBS + 4 % albumin (Sigma-Aldrich, Madrid, Spain), incubated with anti-

P-Akt, anti-total Akt (Santa Cruz Biotechnology, Santa Cruz, CA , USA), anti-P-ERK, 

anti-total ERK, anti-HO-1 (1:1000) (Chemicon, Temecula, CA, USA) and anti-β actin 

(1:10,000) (Sigma-Aldrich, Madrid , Spain) for 2 hours. After washing several times 

with TTBS, the corresponding secondary antibodies (1:100,000) were added (Santa 

Cruz Biotechnology, Santa Cruz, CA, USA) for 45 minutes. Finally, the membranes 

were revealed using ECL Advance Western Blotting Detection Kit (GE Healthcare, 

Barcelona, Spain) and quantified by Scion-Image software. 

 

Statistical analysis 

 Data are presented as means ± SEM. Differences between groups were 

determined by applying a one-way ANOVA followed by a Newman–Keuls post hoc 

analysis. The level of statistical significance was taken at p < 0.05. 
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SUPPORTING INFORMATION 

SI-1-  Effect of 1 µM A, 3 nM OA or their association on primary neuronal cell 

culture viability. Values are expressed as means ± SEM of 4 different cultures, 
***

P < 

0.001 compared to basal; 
###

P < 0.001, 
##

P < 0.01, with respect to both toxic stimuli 

combined. This information is available free of charge via de internet at 

http://pubs.acs.org/ 

SI-2- Concentration response curves of compounds ITH90/IQM156 and 

ITH91/IQM157 on the viability of SH-SY5Y cells exposed to A/OA. Values are 

expressed as means ± SEM of 4 different cultures, 
***

P < 0.001 compared to basal; 
###

P 

< 0.001, 
##

P < 0.01, 
#
P < 0.05 with respect to both toxic stimuli alone. As shown, 

compound ITH91/IQM157 (compound 4 in the former JMC paper by López-Iglesias et 

al. 2014) showed a higher potency than compound ITH90/IQM156 (compound 3 in the 

former  JMC paper by López-Iglesias et al. 2014), so we selected compound 

ITH91/IQM157 instead of ITH90/IQM156 :This information is available free of charge 

via de internet at http://pubs.acs.org/ 
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