

brought to you by CORE

A New Access to 4*H*-Quinolizines from 2-Vinylpyridine and Alkynes Promoted by Rhodium-N-Heterocyclic Carbene Catalysts

Ramón Azpíroz,^[a] Andrea Di Giuseppe,^[a] Ricardo Castarlenas,^{*[a,b]} Jesús J. Pérez-Torrente,^[a] and Luis A. Oro^{*[a]}

N-bridgehead heterocycles are prevalent in many natural and synthetic biologically active alkaloids.^[1] The development of efficient synthetic methodologies for the preparation of these intricate structures has been the focus of intense research,^[2] among which transition metal catalysts have played a preeminent role.^[3] However, derivatives based on the quinolizine skeleton have received little attention, probably due to their instability, and are mainly limited to quinolizidine,^[4] quinolizinium salts^[5] or quinolizinone^[6] compounds. Indeed, 4H-quinolizines are very scarce,^[7] particularly the 4-unsubstituted counterparts,^[8] and are usually involved in a tautomeric equilibrium with the corresponding butadienylpyridine derivatives (Scheme 1).^[9] Interestingly, we have now observed that the process can be shifted towards the quinolizine tautomer depending on the presence and position of certain substituents on the dienyl fragment. However, a straightforward and general method for the preparation of butadienylpyridines is still an important challenge for which organometallic catalysts emerge as a crucial node, as they can potentially achieve this task from 2-vinylpyridine and alkynes through sequential C-H activation and C-C coupling reactions.^[10] Particularly, we have been interested in the design of rhodium catalysts based on N-heterocyclic carbenes (NHCs)^[11] for new C-C and C-X bond forming reactions.^[12] Now, we have discovered that rhodium catalysts bearing NHC ligands give access to the elusive 4H-quinolizines with total atom economy under mild conditions.

+i i-quinolizine

Scheme 1. Tautomerization of 4H-quinolizines.

Our research group has recently reported that isolable mononuclear Rh-NHC species can be obtained by N-donor ligand promoted bridge cleavage reaction of the corresponding dimer.^[12c] Similarly, we have now observed that the treatment of [Rh(μ -Cl)(NHC)(η^2 -coe)]₂ (NHC = IPr (1), IMes (2); coe = cyclooctene; IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2carbene; IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2carbene) with 2-vinylpyridine afforded RhCl(NHC)(κ -N, η^2 -CH₂=CHC₅H₄N) (NHC = IPr (3), IMes (4)) in good yields (see Supporting Information for synthetic details and NMR data). The chelating coordination of vinylpyridine is corroborated by an upfield shift for the olefinic protons (3.39-2.13 ppm) and the occurrence of J_{C-Rh} coupling for the carbon atoms of the alkenyl fragment (16-12 Hz) in the ¹H and ¹³C{¹H} NMR spectra, respectively.

It has been previously described that rhodium-phosphane catalysts promote efficiently the C-C coupling between alkenylpyridines and olefins,^[13] though the coupling with alkynes has not been reported up to date. Now, we have discovered that the introduction of an NHC ligand in complexes **3** and **4** allow for the straightforward preparation of butadienylpyridines from 2-vinylpyridine and alkynes (Scheme 2). Indeed, it is noticeable the ability of **3-4** to involve terminal alkynes in these type of transformation without the observation of competitive dimerization or polymerization processes.

Scheme 2. C-C coupling reactions mediated by Rh-NHC catalysts.

Dipl.-Chem. R. Azpíroz, Dr. A. Di Giuseppe, Dr. R. Castarlenas, Prof. J. J. Pérez-Torrente, Prof. L. A. Oro Departamento Química Inorgánica – Instituto Síntesis Química y Catálisis Homogénea Universidad de Zaragoza – CSIC Pl. S. Francisco S/N 50009 Zaragoza E-mail: : <u>rcastar@unizar.es</u>, oro<u>@unizar.es</u>

[b] Dr. R. Castarlenas ARAID Foundation Researcher

[a]

Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author.

Catalytic reactions were carried out in an NMR tube in C_6D_6 using a 1:1 pyridine:alkyne ratio. Preliminary tests with phenylacetylene under the optimized conditions, 40 °C at 5 mol % catalyst loading, showed that **4** was slightly more active than **3** (see table S1 in supporting information). Initially, it was observed the formation of (1Z,3E)-2-(4-phenylbuta-1,3-dien-1-yl)pyridine (Figure 1), however, unexpectedly it was accompanied with a new set of resonances that were unequivocally ascribed to 3-phenyl-4*H*-quinolizine (see below). The formation of this product may arise from a 6π electrocyclization involving the two conjugated double bonds and one C=N of the pyridine moiety within an undetected (1Z,3gem)-butadienylpyridine species. Similar transformation has been previously observed for conjugated imines^[14] or oximes^[15] but dearomatization of a pyridine moiety is considerably more challenging.^[16] The similar initial rate for the formation of both organic products points out to a lack of regioisomeric preference in the C-C coupling process, but the (1Z,3E)-butadienylpyridine product smoothly isomerizes to produce the (1E,3E) derivative. A conversion of 97% was reached after 4 h with a $TOF_{1/2}$ value of 35 $h^{\text{-1}}$ calculated at 50 % conversion of vinylpyridine. It is noticeable that the formation of not 4-phenyl-4*H*-quinolizine was detected. Both butadienylpyridine isomers isolated by column were chromatography methods but, unfortunately, the quinolizine derivative could not be recovered despite several attempts under different conditions.^[14c]

Figure 1. Monitoring of the reaction between 2-vinylpyridine and phenylacetylene catalyzed by 4 in C_6D_6 at 40 °C.C-C coupling reactions mediated by Rh-NHC catalysts.

The nature of the new organic product as 3-phenyl-4Hquinolizine was confirmed by multinuclear NMR experiments. A striking feature of the ¹H NMR spectrum is an unusual set of resonances at higher field (6.6-4.9 ppm) compared to that corresponding to aromatic protons, which is fully consistent with the presence of non-aromatic bicyclic system. The 4H-quinolizine structure was further confirmed by HSQC and HMBC ¹H-¹³C experiments. Remarkably, the methylene fragment at 4-positon of the quinolizine skeleton was observed as a singlet at 4.38 ppm. Moreover, long range HSQC ¹H-¹⁵N correlation confirms the presence of a N-bridgehead heterocycle (Figure 2) with a δ ⁽¹⁵N) of 117.5 ppm, which falls within the typical range for a trisubstituted amine. In sharp contrast, the (1E,3E)butadienylpyridine compound was observed at 309.8 ppm.

Figure 2. ¹H-¹⁵N NMR correlation spectrum for a 4*H*-quinolizine.

Catalyst **4** is a versatile precursor for coupling reactions between 2-vinylpyridine and diverse terminal and internal alkynes (Table 1). Aromatic terminal alkynes reacted faster than aliphatic ones and with higher selectivity to 4H-quinolizine (entries 1-3 vs 4-6). Isomerization of the internal double bond from Z to E occurred also faster for aromatic than aliphatic substituted dienyl derivatives. The presence of an electron-withdrawing substituent on the phenyl ring increased the rate whereas selectivity to the Nbridgehead heterocycle decreased for both, electron-donating or withdrawing groups (entries 1-3).

Table 1. Coupling reaction between 2-vinylpyridine and alkynes^a

Entry	substrate	t(h)	$4H-q^{o}$	$Z-E^c$	$E-E^c$	Z - g^a	E - g^a	vipy ^e	$TOF_{1/2}(h^{-1})$
1	<=	4	48	3	46	-	-	3	35
2	F ₃ C-	∎ 1	43	2	48	-	-	7	51
3	MeO-	≡ 6	36	16	31	8	-	8	29
4	≡	5	7	37	-	45	10	1	26
5		9	9	39	-	38	11	3	23
6	$\rightarrow =$	20	7	74	2	14	-	2	4
7	–}si–≡	14	16	47	-	-	-	37	3
8	/=∕	14	51	36	12	-	-	1	15
9 🌾		12	23	69	6 ^{<i>f</i>}	-	-	2	3
10	-=-	3	45^g	25^h	23^h	-	-	6	18

^{*a*}0.5 mL of C₆D₆ with 5 mol % of catalyst at 40 °C; [subs] = 1M. ^{*b*}4H quinolizine; ratio of ¹H NMR integration. ^{*c*}2-(buta-1,3-dien-1-yl)pyridine. ^{*d*}gem ^{*c*}unreacted 2-vinylpyridine. ^{*f*}E-Z isomer. ^{*g*}4-methyl. ^{*h*}4-phenyl.

The presence of bulky substituents in aliphatic alkynes reduced the activity (entries 6-7). It is noticeable that the key (1Z,3gem)-butadienylpyridine isomers were detected for aliphatic alkynes, and consequently, the conversion to 3-R-4*H*-quinolizine is lower, which suggests that the tautomerization is disfavored in these cases.^[17] Monitoring of the reaction showed that the initially formed *Z*-gem-butadienylpyridine isomerizes to *E*-gem derivatives and tautomerizes to the 4*H*-quinolizine compounds (Figure 3). It is worthy of note that for aliphatic alkynes the isomerization of 1*Z*,3*E* to 1*E*,3*E* butadienylpyridines was not detected under catalytic conditions.^[18] Internal alkynes reacted smoothly (entries 8-10). The configuration of the conjugated double bonds of the butadienyl products was confirmed by ¹H-NOE NMR experiments (see Supporting Information). In the case of 3-hexyne, the formation of the 1*Z*,3*E* derivative was initially observed with subsequent isomerization to 1*E*,3*E* and 4*H*-quinolizine compounds. However, diphenylacetylene behaved somewhat different. The initial rate for the 4*H*-quinolizine formation was higher but the N-heterocycle experimented a reopening to afford the (1*Z*,3*E*)-2-(3,4-diphenylbuta-1,3-dien-1-yl)pyridine derivative with both phenyl groups disposed mutually *trans* (Figure 4). Dissymmetric 1-phenyl-1-propyne gave exclusively 4-methyl-3-phenyl-4*H*-quinolizine and 2-(3-methyl-4-phenylbuta-1,3-dien-1-yl)pyridine.

Figure 3. Monitoring of the reaction between 2-vinylpyridine and 3-phenyl-1-propyne catalyzed by 4 in C_6D_6 at 40 °C.

Figure 4. Monitoring of the reaction between 2-vinylpyridine and diphenylacetylene catalyzed by **4** in C_6D_6 at 40 °C. DFT calculated ΔG (Kcal.mol⁻¹) for the tautomerization butadienylpyridine \leftrightarrow 4*H*-quinolizine.

Scheme 3 shows a plausible mechanism for the formation of the 3-R-4*H*-quinolizine compounds. Initially, the activation of a terminal C-H bond of the 2-vinylpyiridine to generate rhodium-alkenyl-hydride species is proposed.^[19] The subsequent coordination of the alkyne, migratory insertion and reductive elimination should generate both (1Z,3E)- or (1Z,3gem)-butadienyl-pyridine products depending on the regioselectivity. In

both cases, the Z configuration of the internal double bond is kinetically favored if a concerted insertion mechanism is assumed. Then, formation of 4H-quinolizine skeletons can be rationalized via a metal-mediated or thermal electrocyclization. To shed light on this point, a solution of pure Z-gem isomer, (Z)-2-(3benzylbuta-1,3-dien-1-yl)pyridine, in C₆D₆ was heated at 60 °C. Monitoring of the reaction by NMR evidenced the smoothly formation of the 4H-quinolizine isomer, thus, pointing to a thermal activated cyclization process. In fact, an equilibrium mixture of 75/25, butadienylpyridine/heterocycle, was reached after 3 h, which was corroborated by the exchange peaks observed in the ¹H-NOE NMR spectrum at 80 °C. It is noticeable that the formation of the E-gem regioisomer was not observed indicating that metal catalyst accounts for the Z to E isomerization of the internal double bond. A cisoidal configuration of the conjugated double bonds is essential for the electrocyclic reaction to take place, thus isomerization of the internal double bond a handicap to be overcome. A similar equilibrium mixture was observed after heating the (1Z, 3E)-butadienylpyridine obtained from 3-hexyne, but in this case the equilibrium is further shifted to the quinolizine compound in 60/40 molar ratio.

Insert Scheme 3

Scheme 3. Plausible mechanism for the formation of 4H-quinolizine derivatives mediated by 4.

Theoretical calculations (DFT/m06-2x/Kcal-mol⁻¹) for the thermodynamics of the tautomerization process were performed. In full agreement with experimental results, it was found that 3-phenyl-4*H*-quinolizine is 1.83 Kcal-mol⁻¹ more stable than *Z*-gembutadienylpyridine whereas the formation of 4-phenyl-4*H*-quinolizine from the (1*E*-3*Z*)-butadienylpyridine isomer is disfavored by 2.04 Kcal-mol⁻¹ (Figure 5). On the other hand, the calculated energies for diphenylacetylene were also in agrement with the experimental results. Although the 4*H*-quinolizine is 3.24 Kcal-mol⁻¹ more stable than the (1*Z*,3*Z*)-butadienylpyridine isomer, not detected in the catalytic reaction, tautomerization to the (1*Z*,3*E*) counterpart is also slightly favored (-0.68 Kcal-mol⁻¹), thus explaining the smoothly tautometization observed experimentally (Figure 4).

Figure 5. Thermodynamic DFT-calculated free energies (Δ G, Kcal-mol⁻¹) for the tautomerization butadienylpyridine \leftrightarrow quinolizine.

In conclusion, we have described the outstanding catalytic performance in C-C coupling reactions of new Rh-NHC catalyst leading to the formation of 4*H*-quinolizine derivatives under mild conditions with total atom economy. We have shown that the thermal 6π electrocyclization process leading to the formation of

N-bridgehead heterocycles is favored for internal- versus terminal-substituted butadienylpiridine derivatives. The design of improved catalysts for selective Z-gem-butadienylpyridine formation and reduced Z to E isomerization of the internal double bond is ongoing in our laboratories.

Experimental Section

Synthesis of catalysts. 3: A yellow solution of 1 (300 mg, 0.235 mmol) in 10 mL of toluene was treated with 2-vinylpyridine (50 μ L, 0.470 mmol) and was stirred at room temperature for 1 h. After filtration through Celite the solvent evaporated to dryness. Addition of hexane caused precipitation of a yellow solid, which was washed with hexane (3 x 4 mL) and dried in vacuo. Yield: 250 mg (84%). Anal. Calcd. for C₃₄H₄₃N₃ClRh: C, 64.61; H, 6.86; N, 6.65. Found: C, 64.92; H, 6.89; N, 6.62. 4: The complex was prepared as described for 3 starting from 2 (300 mg, 0.271 mmol) and 2-vinylpyridine (58 μ L, 0.542 mmol). Yield: 260 mg (87%). Anal. Calcd for C₂₉H₃₅N₃ClRh: C, 61.38; H, 5.70; N, 7.67. Found: C, 61.05; H, 5.80; N, 7.26.

Standard procedure for the catalytic C-C coupling between 2-vinylpyridine and alkynes. A NMR tube containing a solution of 0.025 mmol of catalyst in 0.5 mL of C_6D_6 was treated with 0.5 mmol of 2-vinylpyridine and 0.5 mmol of the alkyne and heated at 40°C. The reaction course was monitored by NMR and the conversion determined by integration of the corresponding resonances in the ¹H NMR spectra of 2-vinylpyridine and the products.

Acknowledgements

Financial support from the MICINN of Spain Project CTQ2010-15221), the Diputación General de Aragón (E07), the ARAID Foundation under the program *"Jóvenes Investigadores"*, and CONSOLIDER INGENIO-2010, under the Project MULTICAT (CSD2009-00050) are gratefully acknowledged.

Keywords: quinolizine • N-heterocyclic carbene • C-C coupling • C-H activation • Electrocyclization

- a) J. P. Michael, Nat. Prod. Rep. 2008, 25, 139; b) H. -F. Ji, L. Shen, Molecules 2011, 16, 6732; c) R. A. Saporito, M. A. Donelly, T. F. Spande, H. M. Garraffo, Chemoecology 2012, 22, 159.
- a) S. F. Martin, Pure Appl. Chem. 2009, 81, 195; b) Modern Heterocyclic Chemistry, Vol. 4 (Eds: J. Alvarez-Builla, J. J. Vaquero, J. Barluenga), WILEY-VCH, Weinheim, 2011; c) H. T. Pham, I. Chataigner, J.-L. Renaud, Curr Org. Chem. 2012, 16, 1754.
- [3] a) J. A. Varela, C. Saa, *Chem. Rev.* 2003, 103, 3787; b) I. Nakamura, Y. Yamamoto, *Chem. Rev.* 2004, 104, 2127; c) D. M. D'Souza, T. J. J. Müller, *Chem. Soc. Rev.* 2007, 36, 1095; d) S. Perreault, T. Rovis, *Chem. Soc. Rev.* 2009, 38, 3149.
- [4] a) W. E. Doëring, R. A. N. Weil, J. Am. Chem. Soc. 1947, 69, 2461; b) K. A. Tehrani, M. D'hooghe, N. De Kimpe Tetrahedron 2003, 59, 3099; c) C. Tsukano, A. Oimura, I. Enkhtaivan, Y. Takemoto, Org. Lett. 2012, 14, 1902; d) L. Liu, L. Zhang, Angew. Chem. Int. Ed. 2012, 51, 7301.
- [5] a) B. S. Thyagarajan, Adv. Heterocycl. Chem. 1965, 5, 291; b) C. Sotiriou-Leventis, A. -M. M. Rawashdeh, W. S. Oh, N. Leventis, Org. Lett. 2002, 4, 4113; c) A. Nuñez, B. Abarca, A. M. Cuadro, J. Alvarez-Builla, J. J. Vaquero, J. Org. Chem. 2009, 74, 4166; d) M. Tian, H. Ihmels, S. Ye, Org. Biomol. Chem. 2012, 10, 3010.
- [6] a) V. Boekelheide, C. -T. Liu, J. Am. Chem. Soc. 1952, 74, 4920; b) A. Schwartz, Z. Pál, L. Szabo, K. Simon, I. Hermecz, Z. Mészáros, J. Heterocycl. Chem. 1987, 24, 645; c) M. Hagimori, S. Matsui, N. Mizuyama, K. Yokota, J. Nagaoka, Y. Tominaga, Eur. J. Org. Chem. 2009, 5847; d) S. Mochida, N. Umeda, K. Hirano, T. Satoh, M. Miura, Chem. Lett. 2011, 39, 744.

- a) O. Diels, K. Alder, *Liebigs Ann. Chem.* 1932, 498, 16; b) R. M. Acheson,
 G. A. Taylor, J. Chem. Soc. 1960, 1691; c) W. K. Gibson, D. Leaver, J. Chem. Soc. 1966, 324; d) T. N. Grant, C. L. Benson, F. G. West, Org. Lett. 2008, 10, 3985.
- [8] R. M. Acheson, S. J. Hodgson, R. G. M. Wright, J. Chem. Soc., Perkin Trans. 1 1976, 1911.
- a) V. Boekelheide, W. G. Gall, J. Am. Chem. Soc. 1954, 76, 1832; T. Miyadera, E. Ohki, I. Iwai, Chem. Pharm. Bull. 1964, 12, 1344; c) T. Miyadera, Y. Kishida, Tet. Lett. 1969, 25, 397; d) G. G. Abbot, D. Leaver, K. C. Mathur, J. Chem. Res. 1978, 224
- [10] a) F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826; b) V. Ritleng, C. Sirling, M. Pfeffer, Chem. Rev. 2002, 102, 1731; c) Y. J. Park, J. -W. Park, C. -H. Jun, Acc. Chem. Res. 2008, 41, 222; d) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624; e) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147; f) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879.
- a) W. Hermann, Angew. Chem. Int. Ed. 2002, 41, 1290; b) S. Würtz, F. Glorius, Acc. Chem. Res. 2008, 41, 1523; c) J. M. Praetorius, C. M. Crudden, Dalton Trans. 2008, 4079; d) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
- [12] a) M. V. Jiménez, J. J. Pérez-Torrente, V. I. Bartolomé, V. Gierz, F. J. Lahoz, L. A. Oro, Organometallics 2008, 27, 224; b) A. Di Giuseppe, R. Castarlenas, J. J. Pérez-Torrente, F. J. Lahoz, V. Polo, L. A. Oro, Angew. Chem. Int. Ed. 2011, 50, 3938; c) L. Palacios, X. Miao, A. Di Giuseppe, S. Pascal, C. Cunchillos, R. Castarlenas, J. J. Pérez-Torrente, F. J. Lahoz, P. H. Dixneuf, L. A. Oro, Organometallics 2011, 30, 5208; d) A. Di Giuseppe, R. Castarlenas, J. J. Pérez-Torrente, M. Crucianelli, V. Polo, R. Sancho, F. J. Lahoz, L. A. Oro, J. Am. Chem. Soc. 2012, 134, 8171; e) G. Lázaro, M. Iglesias, F. J. Fernández-Alvarez, P. J. Sanz-Miguel, J. J. Pérez-Torrente, L. A. Oro, ChemCatChem, In press DOI:10.1002/cctc.201200309.
- [13] a) N. Fujii, F. Kakiuchi, N. Chatani, S. Murai, *Chem. Lett.* **1996**, *25*, 939; b)
 Y. -G. Lin, J. -B. Kang, Y. H. Kim, *Chem. Commun.* **1996**, 585; c) N. Fujii, F. Kakiuchi, A. Yamada, N. Chatani, S. Murai, *Chem. Lett.* **1997**, *26*, 425; d) Y. -G. Lin, J.-B. Kang, K. Lee, Y. H. Kim, *Heteroatom Chem.* **2002**, *13*, 346; e)
 P. Buskens, D. Giunta, W. Leitner, *Inorg. Chim. Acta* **2004**, *357*, 1969.
- [14] a) I. Hasan, F. W. Fowler, J. Am. Chem. Soc. 1978, 100, 6696; b) C. Cao, Y. Li, Y. shi, A. L. Odom, Chem. Commun. 2004, 2002; c) D. A. Colby, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 3645; d) T. Kobayashi, K. Takeushi, J. Miwa, H. Tsuchikawa, S. Katsumura, Chem. Commun. 2009, 3363; e) H. Wei, Y. Wang, B. Yue, P. -F. Xu, Adv. Synth. Catal. 2010, 352, 2450; f) K. Tanaka, K. Fukase, S. Katsumura Synlett 2011, 2115; g) S. Duttwyler, C. Lu, A. L. Rheingold, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2012, 134, 4064.
- [15] a) M. L. Meketa, S. M. Weinreb, Y. Nakao, N. Fusetani, J. Org. Chem. 2007, 72, 4892; b) K. Parthasarathy, M. Jeganmohan, C. -H. Cheng, Org. Lett. 2008, 10, 325; c) K. Kohno, S. Azuma, T. Choshi, J. Nobuhiro, S. Hibino, Tet. Lett. 2009, 50, 590; d) R. M. Martin, R. G. Bergman, J. A. Ellman, J. Org. Chem. 2012, 77, 2501.
- [16] a) H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am. Chem. Soc. 2010, 132, 13217; b) S. P. Roche, J. A. Porco Jr., Angew. Chem. Int. Ed. 2011, 50, 4068.
- [17] Although other metal catalysts promote the formation of Z-Z butadienylpyridines, the presence of quinolizine tautomers has not been detected: a) Y. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448; b) Y. Kuninobu, Y. Fujii, T. Matsuki, Y. Nishina, K. Takai, Org. Lett. 2009, 11, 2711.
- [18] A pure sample of 2-((1Z,3E)-5-phenylpenta-1,3-dien-1-yl)pyridine in the presence of 5 mol% of 4 gave 33 mol% of the (*E,E*) isomer after 16 h at 80 °C.
- [19] a) G. Jia, D. W. Meek, G. C. Galluci, *Organometallics* **1990**, *9*, 2549; b) R. Castro-Rodrigo, M. A. Esteruelas, S. Fuertes, A. M. López, S. Mozo, E. Oñate, *Organometallics* **2009**, *28*, 5941.