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HIGHLIGHTS 

 Novel ultrathin electrospun fibres of amaranth protein and pullulan were 

developed 

 Surfactant was needed to obtain defect-free fibres for high protein content blends 

 FTIR can be unequivocally used to distinguish between defect-free and beaded 

fibres 

 Thermal stability of the blends slightly improved with respect that of pure 

protein 

 Water sensitivity of the fibres was highly dependent on blend composition 

*Highlights (for review)
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Abstract 16 

In this work, novel ultrathin electrospun fibers from different blends of amaranth protein 17 

isolate (API) and the carbohydrate polymer pullulan, with or without the surfactant 18 

Tween80, have been developed and characterized. The solution properties and molecular 19 

organization of the electrospun structures were studied and correlated with the morphology 20 

of the obtained fibers. The presence of pullulan in the blends resulted in increased viscosity 21 

and lower conductivity of the solutions, related to a better chain entanglement and decrease 22 

in the polyelectrolyte protein character, respectively, both factors needed for fiber 23 

formation. Infrared spectral changes indicated that defect-free fibers were correlated with 24 

extended α-helical protein structures, which for the blends with greater protein contents, 25 

was only obtained upon surfactant addition. The thermal stability of the hybrid fibers was 26 

better than that of pure API and slightly increased upon surfactant addition, while the water 27 

stability of the blends was highly dependent on fiber composition. These structures have a 28 

great potential for the encapsulation of bioactives for functional food applications. 29 

 30 

 31 

Keywords 32 

Electrospinning, amaranth protein, pullulan, encapsulation, ultrathin fibers 33 
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Abbreviations 35 

API: Amaranth protein isolate36 
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 37 

1. Introduction 38 

In today’s world, nutraceutical food is considered not only a source of nutrients but also as 39 

having to contribute to the health of consumers. However, the effectiveness of nutraceutical 40 

products in preventing diseases depends on preserving the bioavailability of the active 41 

ingredients (Bell, 2001). In this regard, the range of applications for micro- and 42 

nanoencapsulation in the food industry has been increasing because of the many advantages 43 

that these technologies can confer to the encapsulated material. These include enhancing 44 

the stability under conditions encountered in food processing (temperature, oxygen, light) 45 

or in the gastrointestinal tract (pH, enzymes). Even though there are various types of 46 

encapsulation technologies, the production of nanofibers through the electrospinning 47 

technique has received much attention lately. Electrospinning is a process that produces 48 

continuous polymer fibers with diameters in the submicrometer range through the action of 49 

an external electric field imposed on a polymer solution or melt (Reneker & Chun, 1996). 50 

Applications of electrospun nanofibers for food and agricultural systems are relatively 51 

scarce. This is probably because fibers are made primarily from synthetic polymers. 52 

However, the progress in the production of nanofibers from food biopolymers has increased 53 

considerably. With respect to encapsulation for food applications, this technique has only 54 

very recently been applied to encapsulate antioxidants (Li, Lim, & Kakuda, 2009; Lopez-55 

Rubio & Lagaron, 2012; Torres-Giner, Martinez-Abad, Ocio, & Lagaron, 2010) and 56 

probiotic bacteria (Heunis, Botes, & Dicks, 2010; Lopez-Rubio, Sanchez, Sanz, & Lagaron, 57 

2009; Lopez-Rubio, Sanchez, Wilkanowicz, Sanz, & Lagaron, 2012). This is mainly due to 58 

the challenges encountered for electrospinning certain biopolymers, like for instance some 59 

proteins (i.e. egg albumen, soy protein) because of their complex macromolecular and 60 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 
 

three-dimensional structures in conjunction with strong inter- and intramolecular forces. 61 

Some strategies to improve the spinnability of these biopolymers rely on the use of 62 

surfactants (Kriegel, Kit, McClements, & Weiss, 2009), plasticizers (Nie et al., 2008) or 63 

reducing agents (Aceituno-Medina, Lopez-Rubio, Mendoza, & Lagaron, 2013). The 64 

difficulties in generating electrospun fibers from certain biopolymers have also been 65 

overcome through blending with readily spinnable polymers in solution (Wongsasulak, 66 

Patapeejumruswong, Weiss, Supaphol, & Yoovidhya, 2010). In a previous work, the ability 67 

of an amaranth protein isolate (API) to generate electrospun micro- and submicron 68 

structures was demonstrated (Aceituno-Medina et al., 2013). Amaranth (Amaranthus 69 

hypochondriacus) is considered a highly nutritious food in México and other Central 70 

American countries. The grain has high protein content (17%), and its amino acid 71 

composition is close to the optimum amino acid balance required in the human diet 72 

(Schnetzler & Breen, 1994; Teutónico & Knorr, 1985), moreover it is a low cost material, 73 

compared with other proteins. Contrarily to most common grains, the proteins in amaranth 74 

contain very little or no storage prolamin proteins, which are the main storage proteins in 75 

cereals, and also the toxic proteins in celiac disease (Drzewiecki et al., 2003; Gorinstein et 76 

al., 2002).  However, amaranth proteins alone dissolved in food contact permitted solvents 77 

could not form electrospun fibers (Aceituno-Medina et al., 2013) and, thus, the aim of the 78 

present work was to focus on the production of electrospun fibers through blending the 79 

amaranth protein isolate material with a spinnable carbohydrate polymer. Pullulan was the 80 

carbohydrate selected, not only because it has been previously shown to produce ultrathin 81 

electrospun fibers (Karim et al., 2009), but also because it is an edible polymer (Kimoto, 82 

Shibuya, & Shiobara, 1997), capable of forming hydrogen bonds with proteins (Gounga, 83 

Xu, & Wang, 2007), it is resistant to mammalian amylases (which could be an advantage 84 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 
 

for encapsulation applications), provides few calories and it is considered as dietary fiber in 85 

rats and humans (Yoneyama et al., 1990). For all these reasons, the objective of this study 86 

was to evaluate the feasibility of producing electrospun fibers from different API-pullulan 87 

blends and to evaluate the influence of Tween 80 (non-ionic surfactant) on the morphology 88 

and molecular organization of the electro-deposited material. These ultrathin fibers could 89 

be potentially used for nutraceutical delivery in food applications.90 
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 91 

2. Materials and methods 92 

2.1 Materials 93 

Formic acid of 95% purity, non-ionic surfactant, polyoxyethylene sorbitan monooleate 94 

(Tween 80) and pullulan (Mw~100000) were supplied by Sigma-Aldrich. The commercial 95 

amaranth protein concentrate (Amaranthus hypochondriacus L. Revancha variety) was 96 

supplied by Nutrisol (Hidalgo, Mexico). The Amaranth Protein Isolate (API) was prepared 97 

based on the methodology previously reported by Martínez and Añón (1996) with some 98 

modifications. The protein isolate prepared under these conditions consisted in a mixture of 99 

different proteins with molecular weights ranging from 10-83 kDa (Aceituno-Medina et al., 100 

2013). Briefly, the commercial amaranth protein concentrate (APC) was defatted with 101 

hexane for 12 h (10% w/v suspension). Then, the amaranth protein concentrate was 102 

suspended in water and its pH was adjusted to 9 with a 2 N NaOH solution. The suspension 103 

was stirred for 30 min at room temperature and, then, centrifuged 20 min at 9000 g. Then, 104 

the supernatant was adjusted to pH 5 with 2 N HCl and centrifuged at 9000 g for 20 min at 105 

4°C. The pellet was resuspended in water, neutralized with 0.1 N NaOH and freeze-dried. 106 

The protein content was determined by the Kjeldahl technique (AOAC, 1996) using a 107 

conversion factor of 5.85.  108 

 109 

2.2 Preparation of polymer solutions for electrospinning 110 

API and pullulan blends were dissolved in 95% formic acid. The polymer content in 111 

solution was kept constant at 20% w/v. The polymers were blended at different proportions 112 

(50:50, 60:40, 70:30 and 80:20 w/w) of API and pullulan, respectively. The solutions were 113 
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prepared with and without addition of Tween 80 (~20 wt. % with respect to the API 114 

content). Each solution was gently stirred to ensure a complete dissolution.  115 

 116 

2.3 Characterization of the polymer solutions 117 

The viscosity of the polymer solutions was determined using a rotational viscosity meter 118 

Visco Basic Plus L from Fungilab S.A. (San Feliu de Llobregat, Spain) using a Low 119 

Viscosity Adapter (LCP). The surface tension of the polymer solutions was measured using 120 

the Wilhemy plate method in a EasyDyne K20 tensiometer (Krüss GmbH, Hamburg, 121 

Germany). The conductivity of the solutions was measured using a conductivity meter XS 122 

Con6 (Labbox, Barcelona, Spain). All measurements were made in triplicate at 25ºC. 123 

 124 

2.4 Electrospinning of the blends 125 

The electrospinning apparatus, a FluidNatek
®
 instrument, trademark of BioInicia S.L. 126 

(Valencia, Spain), equipped with a variable high voltage 0–30 kV power supply was used. 127 

The anode was attached to a stainless-steel needle with internal diameter 0.9 mm that was 128 

connected through a PTFE wire to the biopolymer solutions kept in a 5 ml plastic syringe. 129 

The syringe was disposed horizontally lying on a digitally controlled syringe pump while 130 

the needle was vertically directed towards the collector. The needle was connected to the 131 

emitting electrode of positive polarity of the high voltage power supply. The electrospun 132 

structures were collected on an aluminum foil sheet attached to a copper grid used as 133 

collector. All of the electrospinning experiments were carried out at room temperature in 134 

air. The electrospinning environmental conditions were maintained stable at 24°C and 60% 135 

RH by having the equipment enclosed in a specific chamber with temperature and humidity 136 

control. The target was placed 10 cm from the capillary tip. The syringe pump delivered 137 
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polymer solution at a controlled feed rate of 0.4 ml/h, while the voltage was maintained at 138 

22 and 15 kV, for polymer solutions with and without surfactant, respectively.  139 

 140 

2.5 Scanning Electron Microscopy (SEM) 141 

The morphology of the electrospun fibers was examined using SEM (Hitachi S-4100) after 142 

sputtering the samples with a gold–palladium mixture under vacuum. All SEM experiments 143 

were carried out at an accelerating voltage of 15 kV. Fiber diameters of the electrospun 144 

fibers were measured by means of the Adobe Photoshop 7.0 software from the SEM 145 

micrographs in their original magnification. 146 

 147 

2.6 Attenuated total reflectance infrared spectroscopy (ATR-FTIR) 148 

ATR-FTIR spectra were collected in a controlled chamber at 24°C and 40% RH coupling 149 

the ATR accessory GoldenGate of Specac Ltd. (Orpington, UK) to a Bruker (Rheinstetten, 150 

Germany) FTIR Tensor 37 equipment. All the spectra were collected by averaging 20 scans 151 

at 4 cm
-1

 resolution. Analysis of the spectral data was performed using Grams/AI 7.02 152 

(Galactic Industries, Salem, NH, USA) software. 153 

 154 

2.7 Thermogravimetric Analysis (TGA) 155 

Thermogravimetric analysis (TG) curves were recorded with a TA Instruments model Q500 156 

TGA. The samples (ca. 10 mg) were heated from 50 to 800°C with a heating rate of 157 

5°C/min under nitrogen atmosphere. Derivative TG curves (DTG) express the weight loss 158 

as a function of temperature. 159 

 160 

 161 
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2.8 Effect of Relative Humidity (RH) and water resistance of the electrospun fibers 162 

To study the relative humidity effects on the stability and morphology of the fibers, 163 

immediately after spinning, the fiber mats API:pullulan 50:50 and 80:20 with Tween80 164 

were stored at 25°C in a glass desiccator at 100% RH. Samples were retrieved from the 165 

desiccators after 30 minutes and analyzed using SEM. Moreover, in order to estimate 166 

pullulan potential losses as a consequence of its hydrophilic character, samples of 1mg 167 

fibers corresponding to the 50:50 and 80:20 blends with Tween80 were immersed in 168 

distilled water for 5, 20, 30 and 60 minutes. Afterwards, they were dried under vacuum at 169 

60ºC, weighed and analyzed using FTIR spectroscopy. 170 

 171 

2.10 Statistical analysis 172 

One-way analysis of the variance (ANOVA) was performed using XLSTAT-Pro (Win) 7.5.3 173 

(Addinsoft, NY) software package. Comparisons between samples were evaluated using the Tukey 174 

test (α= 0.05).175 
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3. Results and discussions 176 

3.1 Optimization of the electrospinning conditions for the API:pullulan blends  177 

Pullulan is a carbohydrate polymer able to produce electrospun fibers from aqueous 178 

solutions and, thus, initially we investigated the spinnability of binary mixtures of pullulan 179 

solutions dissolved in water and API solutions in formic acid with concentrations of 20% 180 

(w/w) and 10% (w/w), respectively. Even though different mass compositions of API to 181 

pullulan solutions were examined, a clear phase separation was detected after only 15-25 182 

minutes of agitation. One of the main challenges of electrospinning biopolymers is to 183 

obtain solutions which are relatively stable with time, in order to have a continuous process 184 

for electrospun fiber production (this is especially important when scaling up the process). 185 

Therefore, the previous blends were discarded. As an alternative, the spinnability of 186 

pullulan in formic acid was studied. The carbohydrate was also soluble in this solvent and 187 

two different concentrations were examined, i.e. 10% and 20% w/v. While pullulan 188 

solutions at 10% (w/v) gave rise to beaded fibers, which could be attributed to the lack of 189 

sufficient polymer chain entanglement at this concentration (Buchko, Chen, Shen, & 190 

Martin, 1999; Wongsasulak et al., 2010), continuous fibers were obtained from the 191 

solutions containing 20% of pullulan (see Figure A.1 in the Appendices).  192 

As a consequence, for blend preparation, both the amaranth protein (API) and the 193 

carbohydrate polymer (pullulan) were dissolved in formic acid. Polymer blend solutions 194 

with API:pullulan contents of 50:50, 60:40, 70:30 and 80:20 (w/w) were prepared and left 195 

to stand at ambient conditions for 72 h in order to detect any potential phase separation. 196 

Results indicated that, in all cases, the solutions were properly mixed and stable with time, 197 

which could be attributed to the formation of protein-polysaccharide soluble complexes 198 

through the formation of hydrogen bonds (C=O----HO, OH----OH, HO----HN), 199 
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hydrophobic interactions and/or ionic bonds (Gounga et al., 2007; McClements, 2006; 200 

Tolstoguzov, 1991). An indirect way to demonstrate the compatibility between API and 201 

pullulan was through comparison of the morphologies obtained using only pullulan with a 202 

concentration of 10% (w/v) in formic acid and blends of API-pullulan at different ratios. 203 

While as previously shown, beaded electrospun fibers were generated from pullulan 204 

solutions at 10% (w/v) (cf. Fig. A.1a in the Appendices), uniform fibers were obtained from 205 

the blend API:pullulan 70:30, which only contained 8% w/v of pullulan. Therefore, it 206 

appears that the addition of API in the blend solutions improved the entanglement through 207 

the interactions between both biopolymers (cf. Figure 1).  208 

 209 

INSERT FIGURE 1 ABOUT HERE 210 

 211 

Figure 1 shows the scanning electron microscopy images of the various API:pullulan 212 

blends. Continuous fibers with diameters of around 300 nm were obtained from mixtures 213 

50:50 and 60:40 (Fig. 1A and C). The blend containing 70% of API gave rise to uniform 214 

electrospun fibers with similar size and few bead defects (Fig. 1E), while greater amounts 215 

of API in the blends (i.e. 80%), resulted in less stable electrospinning, generating 216 

electrospun fibers with numerous bead defects (cf. Fig. 1G).  217 

 218 

3.2 Effect of surfactant addition on the morphology of electrospun API:pullulan 219 

structures 220 

In order to improve the spinnability of the blends and to obtain more homogeneous fiber 221 

structures improving the degree of entanglement between the protein and carbohydrate 222 

polymers, a food-grade non-ionic surfactant (Tween 80) was added at 20% (w/w), as this 223 
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percentage was previously seen to greatly improve the electrospinning process of amaranth 224 

protein isolate solutions (Aceituno et al., 2013).  225 

Addition of Tween 80 significantly improved the fiber morphology for the blends with 226 

greater protein content, resulting in defect-free smooth electrospun fibers for the 70:30 and 227 

80:20 API:pullulan compositions (cf. Fig. 1F and 1H, respectively) and more homogeneous 228 

fiber diameters were obtained for all the studied compositions (cf. Table 1). The use of 229 

surfactants for improving electrospun fiber morphology has been previously reported (Peng 230 

et al., 2008; Jung, Kim, Lee, & Park, 2005). Addition of Tween 80 may facilitate the 231 

dispersion of API molecules throughout the solutions, consequently leading to changes in 232 

the flow behavior of the mixed solutions and, thus, improving the productivity of the 233 

electrospinning process (Kriegel et al., 2009).  234 

Both the more homogeneous fiber diameters obtained and the development of defect-free 235 

electrospun fibers when incorporating the surfactant could be explained by the binding of 236 

surfactant monomers to the protein backbone either through hydrophobic interactions or 237 

hydrogen bonding, forming a complex which retained its overall charge but affecting 238 

intramolecular interactions and conformation of the protein. As previously hypothesized, 239 

interaction between surfactant and protein may result in a more open molecular structure 240 

which may help to establish interactions with the carbohydrate polymer pullulan, thus, 241 

decreasing the critical entanglement concentration and, thereby, facilitating electrospinning 242 

(Kriegel et al., 2009). 243 

 244 

3.3 Correlation between physical properties of blend solutions and morphology of 245 

electrospun fibers 246 
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As it has been noted by several authors, the physicochemical properties of polymer 247 

solutions such as viscosity, surface tension and conductivity play a key role in the 248 

formation of continuous fibers (Kriegel et al., 2009; Wongsasulak, Kit, McClements, 249 

Yoovidhya, & Weiss, 2007). The solution properties together with the mean fiber diameter 250 

for the various protein/carbohydrate compositions are compiled in Table 1. 251 

 252 

INSERT TABLE 1 ABOUT HERE 253 

 254 

In general, it can be observed that increasing the amount of the carbohydrate polymer in the 255 

blend solutions led to an increase in the apparent viscosity (thus confirming that pullulan 256 

addition enhanced chain entanglement needed for fiber formation) and decreased the 257 

conductivity, suggesting that there might be interactions between both biopolymers leading 258 

to a decrease in the polyelectrolyte character of the protein. Surface tension remained 259 

almost constant for the different protein/carbohydrate ratios. Regarding fiber diameter, no 260 

significant changes were observed across the compositions, except for the blend with 261 

greater protein content, which contained many bigger bead defects along the fibers. 262 

Although, the development of continuous fibers using ratios of 50:50 and 60:40 can be 263 

partially associated to the effect of pullulan addition on solution properties (specifically 264 

viscosity and conductivity) the main contribution of pullulan to the electrospinning process 265 

is to act as a plasticizer facilitating orientation and flow of API by uncoiling and wrapping 266 

around API chains (Kriegel et al., 2009). Consequently, as the polyelectrolyte properties of 267 

the protein decreased upon interaction with the carbohydrate, the number of entanglements 268 

increased, facilitating the formation of defect-free fibers. However, the plasticizing effect of 269 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 
 

pullulan was insufficient for formation of homogeneous fibers for the formulation 270 

containing the greatest protein content (i.e. 80:20).  271 

Although not statistically significant, a general trend of increased average fiber diameter 272 

was observed upon addition of Tween80, which might be related to the slight increase in 273 

apparent viscosity and lower conductivity observed for the solutions containing the 274 

surfactant (cf. Table 1). This increase in the apparent viscosity of the solutions again seems 275 

to highlight the enhancement of chain entanglements or improved interactions between the 276 

protein and the carbohydrate biopolymers.  277 

 278 

3.4 Changes in molecular order of the electrospun ultrathin fibers from API:pullulan 279 

blend solutions by ATR-FTIR. 280 

Figure 2 shows the infrared spectra of electrospun structures obtained from mixtures of 281 

API:pullulan. For clarity purposes, only the spectra from the blends API:pullulan 50:50 and 282 

80:20 with and without surfactant have been included in this figure. The spectra of the 283 

electrospun structures from the pure components (i.e. API and pullulan) are also included 284 

for comparison purposes. The spectra of the blends obtained through electrospinning 285 

clearly indicated that the ultrathin fibers were composed of both API and pullulan. 286 

Moreover, a more detailed analysis of band position and shape revealed that there was 287 

some chemical interaction between both biopolymers, as many characteristic bands from 288 

both the protein and the carbohydrate polymer were significantly displaced as further 289 

commented below. 290 

 291 

INSERT FIGURE 2 ABOUT HERE 292 

 293 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

15 
 

In the FTIR range of the OH and NH stretching vibrations (i.e. from 3000 to 3700 cm
-1

) 294 

it was observed that the maximum of this band in the blends was between the maximum of 295 

the band for pullulan (3360 cm
-1

) and the maximum for the amaranth protein structures 296 

(3280 cm
-1

, cf. dashed line in Figure 2), but closer to the maximum of the NH stretching 297 

band from API. Moreover, in all the blends a broadening of the band was observed with a 298 

marked increase in intensity in the range 3340-3600 cm
-1

, which could be ascribed to a 299 

greater number of intermolecular hydrogen bonds probably due to the interactions between 300 

the OH groups from pullulan and the NH groups from API.  301 

In the spectra from the blends, characteristic peaks for the amaranth protein isolate (API) 302 

were identified at ~1637 cm
-1

 and ~1525 cm
-1

, which correspond to the amide I and II 303 

regions, respectively. The amide I region arises from the peptide backbone C=O stretching 304 

mode and has been widely used to study protein folding, unfolding and aggregation with 305 

infrared spectroscopy due to its sensitivity to secondary structure of proteins (Barth, 2007), 306 

while the amide II region mainly corresponds to stretching vibrations of C-N and bending 307 

of N-H bonds and it is conformationally sensitive. On the other hand, vibrational bands in 308 

the region from 800 to 1200 cm
-1

 are characteristic from carbohydrates. Absorption bands 309 

at 775, 850 and 932 cm
-1

 are characteristic of -(1,4) glycosidic bonds, -glucopyranoside 310 

units and -(1,6) glycosidic bonds, respectively (Prasad, Guru, Shivakumar, & Sheshappa 311 

Rai, 2012). The region between 950 and 1250 cm
-1

 corresponds to highly coupled modes 312 

mainly arising from C-C, C-O, C-H stretching and COH bending modes (Lopez-Rubio, 313 

Flanagan, Shrestha, Gidley, & Gilbert, 2008). In order to qualitatively estimate the fiber 314 

compositions, the ratio between the bands corresponding to the amide II from API (at 315 

1539 cm
-1

) and the band from the -glucopyranoside units from pullulan (at 850 cm
-1

) 316 
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was calculated and the results can be seen in Figure A.2 in the Appendices, which showed 317 

that both the protein and the carbohydrate were effectively incorporated into the 318 

electrospun fibers, following the ratio of these two bands a linear relationship with the 319 

protein content of the blends.  320 

As mentioned before, amide I and II bands from the protein can also provide very useful 321 

information about the conformation of the polymeric chains which, at the same time, would 322 

help explaining the morphology of the electrospun structures. Figure 3 shows the FTIR 323 

spectra in the range of the amide I and II bands.  324 

 325 

INSERT FIGURE 3 ABOUT HERE 326 

 327 

From this Figure, it can be clearly seen that for most of the blends, the maximum of amide I 328 

band for pure API, placed around 1639 cm
-1

and which corresponds to the absorption of 329 

intramolecular β-sheet structures, was displaced towards higher wavenumbers being 330 

centered around 1650 cm
-1

, assigned to α-helical structures. Only the blends with greater 331 

API content were not displaced at all (this was the case for the API:pullulan 80:20 blend), 332 

or the absorption band was broader (in the case of the API:pullulan 70:30 blend) indicating, 333 

in this latter case, the coexistence of  α-helical and β-sheet structures. These spectral 334 

features coincide with the fact that these two compositions were mostly capsular 335 

morphologies or beaded fibers, respectively. When the surfactant Tween80 was added to 336 

these blends, the amide I bands from the structures obtained thereof were centered around 337 

1650 cm
-1

, confirming the hypothesis that the surfactant contributed to uncoil the protein 338 

chains, attaining an extended conformation and, thus, giving rise to defect-free fibers. 339 
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Regarding the amide II band, it also presented a shift in position and band shape for the 340 

blends in comparison with the structures obtained from pure API. While in the latter case a 341 

broad band with two maximums at 1519 and 1529 cm
-1

 were observed, in the blends 342 

API:pullulan 50:50 and 60:40 a narrower band centered around 1540 cm
-1

 was apparent. 343 

The other two blends with greater protein content, showed wider bands with the maximum 344 

located between the pure API structures and the low protein content blends. In a similar 345 

way as the observations made for the amide I band, upon surfactant addition, the amide II 346 

band position shifted towards 1540 cm
-1

 and got narrower. This shift of the amide II band 347 

towards higher wavenumbers might be indicating, as observed by other authors (Wu, 348 

Zhong, Li, Shoemaker, & Xia., 2013), that a strong interaction between the amino groups 349 

from the protein and the hydroxyl groups from the carbohydrate took place, fact that could 350 

also had favored electrospun fiber formation. 351 

  352 

3.5 Thermal stability of electrospun nanofibers. 353 

The thermal stability of electrospun API/pullulan ultrathin fibers was evaluated through 354 

TGA. Figure 4 shows the DTG curves of pure API, pullulan, the surfactant Tween80 and, 355 

as an example, the DTG curves of the blends 50:50 and 80:20 with and without surfactant.  356 

 357 

INSERT FIGURE 4 ABOUT HERE 358 

 359 

From this figure, it can be observed that the hybrid fibers presented a degradation profile 360 

intermediate between that of pure API and pullulan and, of course, dependent on the 361 

specific blend composition. In general, as observed in Table 2, the thermal stability of the 362 
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hybrid fibers was better than that of the pure protein, and the peak onset increased with 363 

surfactant addition, which in accordance to FTIR data, seems to indicate improved 364 

interactions between the protein and carbohydrate fractions, leading to enhanced thermal 365 

stability. In the electrospun fibers containing Tween80, a second degradation peak was 366 

apparent, which corresponded to the degradation of the surfactant. 367 

 368 

INSERT TABLE 2 ABOUT HERE 369 

 370 

3.6 Effect of Relative Humidity (RH) and water resistance of the electrospun fibers 371 

The effect of relative humidity on the integrity of the electrospun fibers is important from a 372 

practical application viewpoint and, also, will influence the controlled release of potential 373 

encapsulated substances. Both the effect of relative humidity and water resistance was 374 

evaluated on two different fiber compositions, i.e. 50:50 and 80:20 with Tween80. Not 375 

surprisingly, it was seen that the fibers with greater carbohydrate content (API:pullulan 376 

50:50) were less stable when exposed at 100% RH.. The fibers with greater pullulan 377 

content were somehow collapsed and thicker (probably due to swelling) while those with 378 

greater protein content maintained their integrity (see Figure A.3 in the Appendices). 379 

Table 3 compiles the weight loss of the 2 fiber compositions after water immersion during 380 

5, 20, 30 and 60 minutes.  381 

 382 

INSERT TABLE 3 ABOUT HERE 383 

 384 

The carbohydrate polymer pullulan, and the surfactant Tween80 were the compounds of the 385 

fiber blends with greater water solubility. Therefore, considering 1 mg of electrospun 386 
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fibers, the theoretical pullulan+Tween80 content for the 50:50T and 80:20T compositions 387 

were of 0.55 mg and 0.31 mg, respectively. This amount is similar to the weight loss of the 388 

fibers after 60 minutes, which seems to indicate that the most hydrophilic fractions were 389 

lost upon water immersion. In fact, a considerable decrease in the characteristic bands from 390 

both pullulan and Tween80 was observed through FTIR spectroscopy as it can be observed 391 

in Figure 5 (cf. arrows). 392 

 393 

INSERT FIGURE 5 ABOUT HERE 394 

 395 

The ratio between the intensity of bands from the amide II (belonging to the API protein) 396 

and the band from the -glucopyranoside units from pullulan (at 850 cm
-1

) was 4.27 and 397 

4.18 for the 50:50T and 80:20T blends, respectively, i.e. more or less coincident with the 398 

ratio from the pure API (cf. Figure A.2 in the Appendices), thus confirming that the other 399 

two compounds were fully solubilized in water. These results, as commented before, may 400 

be interesting for controlled release applications of these structures, as it is anticipated that 401 

hydrophilic encapsulated compounds will be faster released from the 50:50T structures 402 

through the spaces left by the carbohydrate and surfactant compounds. 403 

 404 

4. Conclusions 405 

Ultrathin electrospun fibers from API-pullulan composite dispersions in formic acid have 406 

been developed for the first time using electrospinning. The study illustrated that 407 

electrospun fibers from edible biopolymers could be fabricated through addition of 408 

surfactant to modulate the solution properties. This study has also demonstrated that the 409 
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ability to generate encapsulation structures from API depends, not only on the protein 410 

conformation, but also on the solution properties (conductivity, surface tension and 411 

viscosity). The addition of pullulan was key for fiber development, but in the case of the 412 

blends with greater protein contents, a certain amount of surfactant was required to obtain 413 

defect-free fibers, fact that was related to α-helical conformation of the protein chains, as 414 

deduced from FTIR. The thermal stability was slightly increased in the hybrid fibers in 415 

comparison with the pure API structures, while the sensibility to water was highly 416 

dependent on the fiber composition. 417 

 418 
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Appendices 549 

a) 550 

 551 
 552 

b) 553 

 554 

Figure A.1. SEM images of a) 10% (w/v) pullulan and b) 20% (w/v) pullulan, in 95% 555 

formic acid. Scale bar: 10 µm. 556 

557 
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 558 

 559 

 560 

Figure A.2. Ratio of the spectral bands at 1539 cm
-1

 (from API) and at 850 cm
-1

 (from 561 

pullulan) for the various electrospun fibers with and without surfactant. 562 

563 
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a) 564 

 565 

 566 

b) 567 

 568 

Figure A.3. SEM images of API:pullulan fibers with Tween 80 after 30 minutes of 569 

exposure to 100% RH: a) 50:50, b) 80:20. Scale bar: 5 µm. 570 

 571 

 572 
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Figure captions.  

 

Figure 1. SEM images of electrospun API:pullulan blend structures at the following ratios: 

A) 50:50; B) 50:50 with Tween80; C) 60:40; D) 60:40 with Tween80; E) 70:30; F) 70:30 

with Tween80; G) 80:20; H) 80:20 with Tween80. Scale bar: 5 µm. 

Figure 2. Infrared absorbance spectra of different electrospun structures: A) API; B) 

Pullulan; C) API:pullulan 50:50; D) API:pullulan 50:50 with Tween80; E) API:pullulan 

80:20; F) API:pullulan 80:20 with Tween80. Dashed line indicates the maximum of the NH 

stretching band for API and arrows point out the bands that were used to qualitatively 

estimate the composition of the fibers. Spectra have been offset for clarity. 

Figure 3. FTIR spectra in the range of the amide I and II bands for pure API fibers (thicker 

solid line), and API:pullulan blends: 50:50, 50:50 with Tween80, 60:40, 60:40 with 

Tween80 (solid lines), 70:30 (grey line), 70:30 with Tween80 (dotted line), 80:20 (dashed 

line) and 80:20 with Tween80 (dash-dot-dot line). Spectra have been normalized to the 

amide I band for better comparison. 

Figure 4. DTG curves of pure API, pullulan, Tween80 and of the hybrid API:pullulan 

fibers: 50:50, 50:50 with Tween80, 80:20 and 80:20 with Tween80. 

Figure 5. Infrared absorbance spectra of API:pullulan blend structures: A) 50:50 with 

Tween80; B) 50:50 with Tween80 after 60 minutes in water; C) 80:20 with Tween80; D) 

80:20 with Tween80 after 60 minutes in water. Arrows point out the decrease of 

characteristic bands from pullulan and Tween80. Spectra have been offset for clarity. 

 

Figure Captions
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Figure Captions (Appendices) 

Figure A.1. SEM images of a) 10% (w/v) pullulan and b) 20% (w/v) pullulan, in 95% 

formic acid. Scale bar: 10 µm. 

Figure A.2. Ratio of the spectral bands at 1539 cm
-1

 (from API) and at 850 cm
-1

 (from 

pullulan) for the various electrospun fibers with and without surfactant. 

Figure A.3. SEM images of API:pullulan fibers with Tween 80 after 30 minutes of 

exposure to 100% RH: a) 50:50, b) 80:20. Scale bar: 5 µm. 
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Table 1. Apparent viscosity, conductivity and surface tension of the various API:pullulan solutions and diameter of the electrospun fibers 

obtained thereof. 

 

 

 

 

 

 

a-d different superscripts within the same column indicate significant differences among samples (p<0.05). 

“T” refers to the solutions containing Tween80 

API: Pullulan 
Apparent viscosity 

(cP) 

Conductivity 

(mS/cm) 

Surface tension 

(mN/m) 
Morphology Diameter (nm) 

50:50 560,5 ± 15,2
a 

5,8 ± 0,3
ab 

32,1 ± 0,4
a 

Fibers 266,6 ± 80,1
a 

50:50T 587,6 ± 18,1
a 

5,4 ± 0,2
a 

31,0 ± 0,9
a 

Fibers 352,5 ± 60,7
a 

60:40 478,4 ± 10,3
b 

6,1 ± 0,1
abc 

30,9 ± 0,1
a 

Fibers 226,9 ± 140,2
ab 

60:40T 496,6 ± 3,3
b 

5,9 ± 0,3
ab 

32,0 ± 0,3
a 

Fibers 339,9 ± 82,2
a 

70:30 356,8 ± 5,9
c 

6,5 ± 0,4
bc 

31,5 ± 0,6
a 

Beaded fibers 261,6 ± 292,5
b 

70:30T 366,1 ± 6,6
c 

6,3 ± 0,3
bc 

32,1 ± 0,3
a 

Fibers 299,9 ± 60,5
a 

80:20 312,7 ± 2,2
d 

6,8 ± 0,2
c 

32,4 ± 0,8
a 

Beaded fibers 1708,3 ± 1831,2
c 

80:20T 362,5 ± 3,9
c 

6,7 ± 0,1
c 

31,9 ± 0,7
a 

Fibers 305,1 ± 71,1
a 

Table 1
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Table 2. TGA maximum of the weight loss first derivate (TD) and the corresponding 

peak onset values and the residue at 600 °C for pure API, pullulan, Tween80 and the 

hybrid electrospun structures 

Samples Onset T (ºC) TD (ºC) 
Residue at 600ºC 

(%) 

API 242,9 308,5 23,6 

Pullulan 290,6 317,5 8,3 

Tween80 376,2 407,4 17,6 

API:Pullulan 50:50 267,9 308,3 17,1 

API:Pullulan 50:50T 273,3 306,9 17,3 

  401,1  

API:Pullulan 60:40 264,2 307,9 17,6 

API:Pullulan 60:40T 269,6 303,1 17,9 

  400,3  

API:Pullulan 70:30 254,7 307,6 17,3 

API:Pullulan 70:30T 263,7 306,7 15,5 

  402,8  

API:Pullulan 80:20 243,5 306,7 21,1 

API:Pullulan 80:20T 263,5 310,9 19,1 

    407,3   

 

 

 

 

 

Table 2
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Table 3. Fiber weight loss after immersion in water for 5, 20, 30 and 60 min. 

 

 

 

 

 

 

 

 “T” refers to the structures containing Tween80 

API: Pullulan 
Immersion time 

(minutes) 
Initial weight (mg) Final weight (mg) Weight loss (mg) 

50:50T 

 

5
 

1,0
 

0,93 ± 0,01
 

0,07 ± 0,01
 

20
 

1,0
 

0,84 ± 0,01
 

0,16 ± 0,01
 

30
 

1,0
 

0,60 ± 0,02
 

0,40 ± 0,02
 

60
 

1,0
 

0,47 ± 0,01
 

0,53 ± 0,01
 

80:20T 

5
 

1,0
 

0,97 ± 0,01
 

0,03 ± 0,01
 

20
 

1,0
 

0,89 ± 0,02
 

0,11 ± 0,02
 

30
 

1,0
 

0,79 ± 0,01
 

0,19 ± 0,01
 

60
 

1,0
 

0,72 ± 0,02
 

0,28 ± 0,02
 

Table 3
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