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Summary. Glutamate 5-kinase (G5K) makes the highly unstable product glutamyl-5-

phosphate (G5P) in the initial, controlling step of proline/ornithine synthesis, being 

feed-back inhibited by proline or ornithine, and causing, when defective, clinical 

hyperammonaemia. We have determined two crystal structures of G5K from 

Escherichia coli, at 2.9- and 2.5-Å-resolution, complexed with glutamate and sulphate, 

or with G5P, sulphate and the proline analog 5-oxoproline. E. coli G5K presents a novel 

tetrameric (dimer of dimers) architecture. Each subunit contains a 257-residue AAK 

domain, typical of acylphosphate-forming enzymes, with the characteristic 384 

sandwich topology. This domain is responsible for catalysis and proline inhibition and 

has a crater on the  sheet C-edge that hosts the active centre and the bound 5-

oxoproline. Each subunit also contains a 93-residue C-terminal PUA domain, typical of 

RNA-modifying enzymes, which presents the characteristic 54 sandwich fold and 

three  helices. The AAK and PUA domains of one subunit associate non-canonically 

in the dimer with the same domains of the other subunit, leaving a negatively charged 

hole between them that hosts two Mg ions in one crystal, in line with the G5K 

requirement of free Mg. The tetramer, formed by two dimers interacting exclusively 

through their AAK domains, is flat and elongated, and has in each face, pericentrically, 

two exposed active centres in alternate subunits. This would permit the close apposition 

of two active centres of bacterial glutamate-5-phosphate reductase (the next enzyme in 

the proline/ornithine-synthesising route), supporting the postulated channelling of G5P. 

The structures clarify substrate binding and catalysis, justify the high glutamate 

specificity, explain the effects of known point mutations, and support the binding of 

proline near glutamate. Proline binding may trigger the movement of a loop that 

encircles glutamate, and which participates in a hydrogen bond network connecting 

active centres which is possibly involved in the cooperativity for glutamate. 
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INTRODUCTION 

Proline is not only a protein building block, but it also fulfils other important 

functions. It protects cells from osmotic stress, it is a scavenger of free radicals, a 

transient form of nitrogen storage, a source of reducing power, and is involved in pH 

regulation.
1-5

 Microorganisms and plants make proline from glutamate in three steps 

catalysed by glutamate 5-kinase (G5K), glutamyl 5-phosphate reductase (G5PR) and 

pyrroline 5-carboxylate reductase (Figure 1).
6-8

 Mammals also use G5K and G5PR to 

synthesize ornithine (Figure 1).
9-10

 This latter function is crucial for proper ammonia 

detoxification in humans, as highlighted in 
1
-pyrroline 5-carboxylate synthetase 

deficiency (OMIM 138250; http://www.ncbi.nlm.nih.gov), an inborn error in which a 

G5K-inactivating mutation causes clinical hyperammonaemia, with hypoornithininemia 

and hypoprolinemia.
11

 G5K plays a key role in proline or ornithine biosynthesis since it  

catalyses the first step of these biosynthetic routes and since it is the subject of feed-

back inhibition by the final products, these being proline in microorganisms and 

plants,
6,7

 and ornithine in animals.
10

 

In animals and plants G5K is the N-terminal moiety of a bifunctional 

polypeptide called 
1
-pyrroline 5-carboxylate synthetase (P5CS). The C-terminal 

moiety of this polypeptide is the enzyme G5PR.
7,10

 The bifunctionality serves the 

purpose of channelling between G5K and G5PR of the G5K product glutamyl 5-

phosphate (G5P). G5P is highly unstable,
12

 given the rapid intramolecular reaction 

between its amino group and its -acylphosphate group, yielding 5-oxoproline (also 

called pyroglutamate) (Figure 1).
13

 Bacteria have monofunctional G5K and G5PR,
14-16

 

but the channelling of G5P between these two enzymes is also believed to be necessary 

in prokaryotes.
6,13

 However, the possibility of G5P surviving long enough to be used by 

a monofunctional reductase, at least when the reductase is highly abundant, cannot be 
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completely ruled out. This is in view of the fact that the Corynebacterium glutamicum 

and Escherichia coli asd genes, which encode the enzyme aspartate -semialdehyde 

dehydrogenase (an enzyme that catalyses the same reaction as G5PR using aspartyl-4-

phosphate as substrate), when expressed at high levels, suppressed the mutational loss 

of G5PR in E. coli.
17

 Nevertheless, compelling evidence for the association of G5K and 

G5PR is provided by the observation that G5PR has to be included in the assay of 

Escherichia coli G5K (in the absence of the G5PR substrate NADPH) to efficiently 

convert G5P to its hydroxamate.
13

 

G5K contains a domain of ~260-residues in both prokaryotes and eukaryotes 

that exhibits substantial sequence identity over its entire length with carbamate kinase 

(CK) and N-acetyl-L-glutamate kinase (NAGK).
18 

These two enzymes catalyse the 

same type of reaction as G5K, the synthesis of a carboxylic-phosphoric anhydride, 

using ATP as the phosphoryl group donor. Both enzymes belong to the same structural 

family called the amino acid kinase (AAK) family (Pfam: PF00696; 

http://www.sanger.ac.uk/Software/Pfam), a family characterised by a structure 

conforming to an 384 sandwich fold with a typical constant topology.
18

 Similarly to 

plant and animal G5Ks, most bacterial G5Ks including the archetypical E. coli 

enzyme
19

 have an AAK domain linked C-terminally to another domain. In the case of 

the bacterial enzymes, this other domain has only ~110 residues and appears to be a 

PUA domain on the basis of its sequence.
20,21

 PUA domains, named after pseudouridine 

synthases and archaeosine-specific transglycosylases (Pfam: PF01472),
20

 are 80-

residue domains that exhibit a characteristic -sandwich fold and one or two  

helices.
22-23

 They are found in RNA-modifying enzymes. Therefore, their identification 

in bacterial G5Ks was surprising, although it was speculated
20

 that they might be 

involved in the reported regulation of gene expression effected by the proB gene 
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(encoding G5K) of Bacillus subtilis.
23,24 

Although the actual function of the PUA 

domain of bacterial G5Ks is unknown, this domain is not required for substrate binding, 

catalysis or regulation, since neither the natural nor the artificial lack of this domain in 

either Streptococcus thermophilus
15

 G5K or the PUA domain-deleted E. coli G5K,
21

 

respectively, prevents catalysis or proline inhibition in these G5Ks. Furthermore, the 

PUA domain-deleted E. coli enzyme appears on gel filtration to be tetrameric, similarly 

to the wild-type enzyme,
21

 and thus this domain is not essential for tetramer formation. 

Nevertheless, the deletion of this domain increased and decreased the proline and Mg 

requirements for the inhibition and the activity of E. coli G5K, respectively, and also 

abolished proline-triggered aggregation of the enzyme tetramers into higher 

oligomers.
21 

This indicates that the PUA domain might play some role in modulating the 

enzymatic properties of bacterial G5Ks.  

It is essential to determine the structure of a bacterial G5K having a PUA 

domain to confirm that this domain really conforms to the canonical domain fold. The 

enzyme structure should be crucial for understanding substrate binding, catalysis and 

regulation in G5Ks. In addition, it should clarify the respective interactions of the AAK 

and PUA domains in the building of an apparently tetrameric architecture that has no 

precedent within the AAK family. The structure might shed light on the roles and the 

potential of both domains for mediating interactions with G5PR and possibly for 

mediating gene regulation. We herein answer some of these questions, by determining 

two crystal structures for E. coli G5K, at 2.9 and 2.5 Å resolution, one having bound  

glutamate and sulphate, and the other having bound G5P, sulphate and the proline 

analog 5-oxoproline. Our structures reveal a novel architecture within the AAK and 

PUA domain families which appears to be well adapted for G5P channelling. These 

structures largely clarify substrate binding and catalysis, and account for the reported 
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effects of some mutations.
26

 Furthermore, they  provide clues as to the mechanism of 

allosteric regulation by proline, pointing to the binding of the effector near the substrate 

glutamate. 
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RESULTS AND DISCUSSION 

Structure determination  

E. coli G5K posed huge challenges to crystallisation and phasing. Tetragonal 

and monoclinic crystals (Table 1) diffracting at 2.5 Å or 2.9 Å resolution and belonging 

to the space groups P41212 or P21, respectively, either grew after several months and 

could not be reproduced (tetragonal crystals) or grew slowly and their reproducibility 

was poor (monoclinic crystals). Phasing attempts failed using MAD, SAD, MIR SIR 

and selenomethionine or heavy atom derivatives including Br or I derivatives, or using 

molecular replacement with E. coli NAGK
18

 or Pyrococcus furiosus CK
27

 models (23% 

and 19% sequence identity, respectively, with residues 1-257 of E. coli G5K). Phases 

were finally obtained for the tetragonal crystal data by molecular replacement, using as 

a model the structure (deposited in the PDB by a structural genomics consortium as file 

2AKO) of a putative G5K from Campylobacter jejuni which has no PUA domain. This 

protein exhibits 33% sequence identity with residues 1-257 of E. coli G5K. After 

introducing a model of the archetypical PUA domain of the archaeosine tRNA-guanine 

transglycosylase from Pyrococcus horikoshii,
22

 a dimer was obtained in the asymmetric 

unit. Each subunit is composed of one AAK and one PUA domain. These domains 

interact with the same domains of the other subunit to form the dimer. Application of 

the P41212 crystallographic symmetry produced a tetramer, in agreement with the 

results of gel filtration data indicating that the enzyme is tetrameric.
21

 In this tetramer, 

two dimers interact by less extensive interfaces which are provided exclusively by the 

AAK domains. A large mass of non-protein electron density was found at the active 

centre of each subunit. This mass was interpreted as one molecule of each, L-glutamyl-

5-phosphate, 5-oxoproline and sulphate. The model for both subunits lacked 41 or 43 

residues beginning at residue 172, because of the absence of a defined electron density 
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for these residues. However, the model for the complete polypeptide (residues 3-367;  

residues 1-2 were not visible) was obtained at 2.9 Å resolution in two subunits (D and 

E) of the monoclinic crystal. The solution for this monoclinic crystal, obtained by 

molecular replacement using the dimer determined with the tetragonal crystal as a 

model, consisted of two tetrameric molecules (each one exhibiting non-crystallographic 

point group 222 symmetry) formed by subunits A-D and E-H, respectively (Figure 2 (a) 

to (c)). Non-protein densities in this monoclinic crystal corresponded to: glutamate and 

one sulphate in the active centre; two Mg ions in a negatively charged hole found 

between the domains at the dimer interface (Figure 2(d)); one bound glutamate in the 

PUA domain (Figure 2 (e)). The two tetramers in the monoclinic crystal and the 

tetramer generated in the tetragonal crystal, as well as all the enzyme subunits, are 

essentially identical. The root mean square deviation (rmsd) values for the 

superimpositions of the C

 atoms are 0.64-1.74 Å (mean 1.19 Å), when comparing 

complete tetramers, and 0.14-0.57 Å (mean 0.47 Å), when comparing individual 

subunits (residues 172-213, missing in the subunits from the tetragonal crystal, were 

excluded in all the superimpositions). 

 

A novel subunit architecture made up of the canonical AAK and PUA domains.  

The E. coli G5K subunit is composed of an N-terminal catalytic domain (with 

the modelled polypeptide chain spanning from Asp3 to Ala257) and a C-terminal 

domain (residues from Ala275 to Arg367) connected by a hinge that includes the short 

and irregular I helix. The catalytic domain exhibits a typical AAK fold (Figures 3 (a), 

(b) and (c)).
18

 The superimposition of this domain with C. jejuni G5K yields an rmsd 

value of 1.5 Å for 216 equivalent  Cα atoms.
 
 The C-terminal domain exhibits the 

topology of the archetypical PUA domain from the P. horikoshii archaeosine tRNA-
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guanine transglycosylase
22

 with an rmsd value of 1.4 Å for the superimposition of the 

C

 atoms from 71 equivalent residues. The E. coli G5K AAK domain contains a mainly 

parallel eight-stranded -sheet sandwiched by two layers of three and four -helices. 

The 3 helix layer looks towards the other dimer, whereas the 4 layer looks towards 

the C-terminal domain of the same subunit. The AAK domain can be further divided 

into the N-terminal lobe (residues 1-163) and the C-terminal lobe (residues 164-257). 

This domain exhibits two prominent bulges, which are also found in all other AAK 

family enzymes and emerge from the two lobes at the opposite ends of the  sheet C-

edge. G5K differs from most other enzymes of the AAK family
18,27,28

 in the fact that it 

has no lid covering the active centre. The loops that connect helices B and C and strand 

3 and helix D are not long, they do not cover the site for the phosphorylatable substrate 

as in NAGK,
18

 and are oriented away from this site. Thus, the active centre is very wide 

and open and is surrounded by the two bulges, resembling a large crater (Figure 2 (b)).  

The E. coli G5K PUA domain is nucleated by a characteristic  sandwich that is 

its hallmark,
22,23

 and which is composed of mainly antiparallel five-stranded and four-

stranded sheets running at right angles. This domain also has two helices (J and K) 

found in other PUA domains,
22,29

 and one extra helix (L) located at the end of helix K 

and belonging to a short insertion spanning from residue His342 to Tyr354. At the free 

edge of the  sandwich a crevice is formed between helix J, strand 10 and the turn 

leading to 11, where one glutamate molecule was unexpectedly found in subunits A, 

D, E, F and G of the monoclinic crystal, but not in the tetragonal crystal (Figure 2 (e)). 

This glutamate molecule appears to interact with its site almost exclusively through 

hydrophobic interactions, whereas polar atoms remain mostly exposed towards the 

solvent. On the opposite side of the  sandwich edge, helices K and L participate in the 

interactions with the PUA domain of a neighbouring subunit. Therefore, both faces of 
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the  sandwich are exposed, and the PUA domain exhibits its five-stranded sheet on the 

same side of the subunit as the active centre of the AAK domain. 

Finally, helix I belonging to the linker between the AAK and PUA domains is 

embedded in a four-helix bundle with helices G, E and a helical turn preceding helix D. 

The face of helix I that looks towards the PUA domain concentrates most of the 

contacts with the latter domain, in particular with the 16 end from the five-stranded 

sheet (Figure 3 (b)). 

  

The first tetramer within the AAK family.  

Both G5K crystal structures correspond to a molecular tetramer with 222 

symmetry and a shape approaching a flattened ellipsoid of radii 34, 50 and 76 Å (Figure 

2 (b) and (c)). The intersubunit interactions are very extensive (2150 Å
2
 of buried 

surface per subunit, Figure 4(a)) across the twofold axis corresponding to the longest 

radius (the R axis; the three molecular symmetry axes are named, by convention and 

historical reasons, P, Q and R
30

). The interactions are much less extensive across the Q 

axis (430 Å
2
 buried surface per subunit, Figure 4(b)), whereas they are non-existent 

across the P axis, around which there is a central hole of ~58 Å. The G5K tetramer can 

be defined as the dimer across the P or Q axis of the dimer formed across the R axis 

(Figure 2 (b) and (c)). Although there are few interactions across the Q axis, the 

tetramer appears to be highly stable, not dissociating even in dilute solution (shown by 

gel filtration).
21

 In the R dimer, the AAK and the PUA domains interact only with the 

AAK and the PUA domain of the neighbouring subunit, respectively, and the 

narrowings corresponding in each subunit to the interdomain boundary merge into a 

central, negatively charged hole of 8 Å diameter (Figure 2(d)). Two masses of density 

found in the monoclinic crystal within this hole have been interpreted as Mg ions. These 
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ions may play a structural role, since E. coli G5K needs free Mg for activity.
21

 In 

agreement with the involvement of the PUA domain in forming this hole, the deletion of 

the PUA domain altered the Mg requirement. 
21

 The centres of mass of the four domains 

of each dimer are approximately coplanar, but the dimer end corresponding to the AAK 

domains is thicker and wider (100×50×40 Å
3
) than the opposite end (60×25×35 Å

3
), 

which corresponds to the interacting PUA domains. The flat and large surface of 

intersubunit contact within the dimer, is split by the connection between domains into 

large (1663 Å
2
) and small (468 Å

2
) portions contributed, respectively, by the AAK and 

the PUA domains (Figure 4(a)). The large portion corresponds to the surface of 

dimerization of the other AAK family enzymes CK, NAGK and UMP kinase,
18,27,28

 

consisting of the 3 end of the  sandwich of the AAK domain. A cross-grid is 

formed between the elements of this end of the sandwich and the same elements of the 

other subunit (Figure 5). In this cross-grid, the long C helices cross each other with 

different degrees of rotation, depending on the enzyme. The rotation around an axis that 

perpendicularly penetrates the intersubunit interface at this C-helices crossover point is 

of ~110º for NAGK and CK,
18,27

 ~190º for UMP kinase
28

 and ~260º for E. coli G5K. In 

addition, the crossover point is shifted from the third turn of helix C in NAGK and CK 

to the fifth turn in G5K. The orientation of these interacting surfaces largely determines 

the dimer shape. 

G5K is the first known structure in which two PUA domains interact. However, 

the surface used for this interaction (the edge of the  sandwich corresponding to helix 

K and the 11-12 connection, Figure 4(a)) is essentially the same utilised in 

archaeosine tRNA-guanine transglycosylase for the interaction of the PUA domain with 

the catalytic domain.
22

 In known structures of PUA domain-RNA complexes
23,29,31

 the 

4-stranded sheet is the face of the  sandwich which contacts the RNA. In G5K, this 
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face is exposed, flat and smooth, presenting the conserved (in microbial G5Ks having a 

PUA domain) positive residues His360 and Arg361 (Figure 6). In the neighbouring 

AAK domain on the same face of the subunit, there is a nearby patch of exposed 

positive residues that are conserved only in PUA domain-containing G5Ks (Arg111, 

Arg118 and, in the interdomain linker, Arg265). These two positive patches might be 

involved in potential interactions with RNA, as in other PUA domain-containing 

enzymes, in which the PUA domain four-stranded face and a neighbouring region in the 

catalytic domain are involved in the RNA interactions
23,29,31

. A model (not shown) for 

such putative complex of G5K, built based on the tRNA complex of archaeosine tRNA-

guanine transglycosylase, has the tRNA 3´-end at the site of the PUA domain-bound 

glutamate. This raises possibilities of control by aminoacyl tRNAs that deserve further 

analysis, particularly in the context of the involvement of proB of B. subtilis in the 

regulation of the expression of other genes.
24,25

 

 The interface between R dimers in the tetramer consists, for each pair of 

interacting subunits, in a 4-helix bundle formed by helices A and C of the 3-helix layer 

of the AAK domain. Contacts are mainly hydrophobic (mediated by Arg25, Ala26, 

Val29, Ile93 and Tyr94) although H bonds (NArg25:OSer92 and NAla26:OIle93) 

and the ion pair Glu30:Arg33 are also involved (Figure 4(b)). In the tetramer, the angle 

formed by the planes of both dimers when viewed along the R axis is only ~20º. Thus, 

the tetramer is elongated and planar, with 140 Å maximum dimension, and has two 

active centres exposed on each face, on alternate subunits, in the central, wider and 

thicker part of the molecule surrounding the central hole and corresponding to the AAK 

domains (Figures 2 (b) and (c)). The leading role of the AAK domains in mediating the 

intersubunit contacts would account for the persistence of the tetramer upon PUA 

domain deletion.
21

 In turn, the abolition by the deletion of the PUA domain
21

 of proline-
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triggered G5K aggregation into higher oligomers is possibly explained by the contacts 

in the P21 crystal. Here the tetramers approximately run parallel and are shifted along 

their longer axis by a full subunit (Figure 2 (a)), interacting by AAK-PUA domain 

contacts that would be lost upon PUA domain deletion. 

 

The active centre 

One sulphate and one glutamate were found in the large crater of the AAK 

domain in all the subunits of the monoclinic crystal (except subunit H, where the 

density for glutamate was poorly defined) (Figure 6(a)). The tetragonal crystal also 

contained the sulphate, but the density corresponding to the glutamate was larger, 

extending towards the sulphate and also, with discontinuity, in the region near the Cα of 

the glutamate (Figure 6 (b) and (c)). This large density is accounted for by a glutamyl 5-

phosphate (G5P) and by a 5-oxoproline. The G5P would have been produced by the 

enzyme from the glutamate present and the 0.2 mM ATP found to contaminate the ADP 

in the crystallization drop. 5-Oxoproline might be generated by spontaneous 

intramolecular cyclisation of G5P. Glutamate and G5P bind in an open pit formed in the 

N-lobe of the AAK domain, between 4, the 2-B junction and the two ends of the 

large 4-E loop. Judging from the ADP complex of C. jejuni G5K (PDB code 2AKO) 

and from the AMPPNP-NAGK complex,
18

 the sulphate approximately occupies the site 

that corresponds to the -phosphate of the nucleotide (Figure 7(a)). It interacts with 

residues that are equivalent to those interacting with the -phosphate in these other 

enzymes (Ser14, Thr169 and Lys217, in E. coli G5K; His11, Ser162 and Lys210 in C. 

jejuni G5K; Gly11, Ser180 and Lys217 in E. coli NAGK).
18

 Lys217 was proposed in 

NAGK to help stabilise the negative charge developing in the -phosphate of the 

nucleotide.
18,32

 According to this proposal, the mutations Lys217Ala and Lys217Arg 
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triggered a >100-fold decrease in the activity of E. coli G5K.
26

 The Thr169Ala 

mutation, but not the Thr169Ser mutation,
26 

caused a ~10- and a ~20-fold increase and 

decrease, respectively, in the apparent Km and Vmax for ATP. This strongly suggests that 

the hydrogen bond between Thr169 and the -phosphate is important for ATP binding 

and catalysis. 

The glutamate found in the monoclinic crystals binds extended, with one of its 

molecular faces being totally exposed (Figure 7(a)). The correspondence of this 

conformation with that of the diequatorial form of L-cis-cycloglutamate, and the lack of 

steric constrains to accommodate the three extra carbons of a cycloglutamate, seem to 

justify the much better Km of G5K for the conformationally more rigid cycloglutamate 

than for glutamate.
13

 The extended conformation and the interactions mediated by the  

and  carboxylates and by the -amino group of the L-glutamate justify the high 

specificity of G5K for this substrate.
13,21

 The  and -carboxylates (Figures 6(a) and 

7(a)) sit near the N-termini of helices B and E, respectively, making hydrogen bonds 

with main chain N-atoms of the first turn of these helices (either Gly51, Ala52 or Ile53, 

depending on the subunit, or, in helix E, Asn149) as does the -carboxylate with the O 

of Ser50. The -amino group forms one salt bridge with the -COO
-
 of Asp137, 

anchoring glutamate to the floor of the binding site. The mutation to glutamate of the 

corresponding aspartate (Asp147) in the G5K from tomato caused a decrease of ~5-fold 

in G5K activity,
33

 which is to be expected if the mutation caused a drastic decrease in 

the affinity for glutamate. The -amino and -carboxylate of glutamate also make 

hydrogen bonds (in some subunits) with the -O and -N groups from Asn134, 

respectively. Asn134 is part of a hydrogen bond chain that links the two catalytic 

centres in the R dimer and which also involves the conserved residues Asn80, Gln100 

and Asn149 (Figure 7(b)). Preliminary mutational studies (Carmona and Cervera, in 
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preparation) support the involvement of this hydrogen bond chain in modulating 

cooperativity between subunits. Asn134 and Asn149 conform most of the floor of the 

glutamate binding pocket, with the Asn149 side chain running antiparallel to the 

glutamate chain.
 

Active centre residues change little in the tetragonal crystal, relative to the 

monoclinic crystal. The binding of the sulphate and of the -amino and -carboxyl 

groups of G5P is essentially identical in both crystals, and involves the same residues 

(Figure 6 (c)). In the tetragonal crystal, however, the G5P -COO
-
 interacts with the -

N of Lys145, moving away from the carboxylate of the 5-oxoproline. Therefore, the 

glutamate and the glutamate moiety of G5P appear to be bound in different ways, 

possibly depending on either the presence or the absence of 5-oxoproline (or proline). 

The phosphate of G5P interacts with the -N of the invariant Lys10, similarly to what 

happens with the -phosphate of ATP and Lys8 in E. coli NAGK.
18,32

 Site-directed 

mutagenesis studies in both G5K and NAGK
26,34 

revealed the importance of this lysine 

for catalysis. 5-Oxoproline sits flat on the side chain of Ile53 with its amidic O group 

hydrogen-bonded to the -hydroxyl of Thr13, and with its carboxylate, which occupies 

approximately the same site as the glutamate -carboxylate in the monoclinic crystal, 

bound to both the amino group and the side-chain of Asn134 (Figures 6(b) and (c)). 

 The G5K structure highlights a key role for Asp150 in the organisation of the 

active centre of the enzyme. Although Asp150 does not interact with the ligands, it 

makes bonds with the N atoms of both Lys10 and Lys217, and appears to orient these 

two substrate-binding and catalytic lysine residues (Figures 6 (a) and (b)). In agreement 

with this proposed role, the Asp150Ala or Asp150Asn mutations inactivated the 

enzyme,
26 

similarly to what was observed with the mutation to Glu of the corresponding 
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E. coli NAGK residue, Asp162 (the equivalent residue, that also interacts with both 

catalytic lysines).
34 

 Taking together our data on the complexes containing sulphate and glutamate or 

G5P, and the deposited structure of C. jejuni G5K containing bound ADP, it is clear that 

the G5K active centre (Figure 7(a)) replicates the basic traits of the active centre of 

NAGK, the best studied enzyme of the AAK family.
18,32

 Thus, the nucleotide and the 

phosphoryl acceptor bind on the C- and N-lobes of these enzymes, respectively, over 

the main sheet C-edge, with the polyphosphate chain of the nucleotide looking towards 

the N-domain and the adenine ring looking in the opposite direction. The phosphoryl 

group that is transferred, represented by the phosphoryl group of G5P, sits at the 

junction between both lobes. Catalysis of the transfer involves two invariant lysines 

(Lys10/Lys8 and Lys217/Lys217 in G5K/NAGK) that are connected and mutually 

oriented towards the substrates by a key organising aspartate (Asp150/Asp162 for 

G5K/NAGK). In both enzymes the 1-A and 2-B junctions include small residues 

that provide interactions with the ATP  phosphate (represented here by the sulphate), 

the transferred phosphoryl and the acceptor carboxylate. This carboxylate virtually sits 

identically in the two complexes studied herein and in NAGK. Instead, the other end of 

the glutamate molecule, in the two conformations observed in this study, differs 

importantly from the way of binding to NAGK.
18,32 

While the basic catalytic machinery 

is therefore fixed, the details of the binding of the specific substrate that is to be 

phosphorylated vary, as also observed previously with UMP and aspartate among other 

enzymes of the AAK family.
28,35

 

 

G5K regulation and potential bases for channelling 



 18 

Although we were unable to obtain G5K crystals containing proline, the binding 

in the active centre of the tetragonal crystal, next to the glutamate site, of the proline 

analog 5-oxoproline fits the recent conclusion of kinetic and mutagenesis studies which 

suggests that proline and glutamate bind at overlapping sites.
26

 Since oxoproline is a 

poor inhibitor of bacterial G5K,
36

 the binding of proline must trigger effects that are not 

triggered by oxoproline. The positive charge on the proline imino group that is not 

present in oxoproline may trigger conformational changes mediated by Asp148, a 

residue whose mutation to asparagine triggered a dramatic increase in the I0.5
Pro

,
26

 and 

which belongs to the mobile 4-E loop. The existence of very important 

conformational changes in this loop, including Asp148, is supported by the comparison 

of the E. coli and C. jejuni G5K structures (Figure 8). Many mutations found to hamper 

proline inhibition concentrate in the 4-E loop (or in the equivalent region in other 

G5Ks),
26,33

 which includes two residues involved in the hydrogen bond network 

interlinking the glutamate sites of two subunits, and may be involved in the 

cooperativity for glutamate (Figure 7(b)). In this respect, proline importantly increases 

the cooperativity for glutamate.
26 

The tendency of the enzyme to aggregate in the 

presence of proline
21

 may be the result of a change in the extent to which this external 

loop is exposed, triggered by proline binding. Interestingly, the longer form of 

mammalian G5K produced by alternative splicing, which has two extra residues in the 

region corresponding to the 4-E loop, is not feed-back inhibited by ornithine, 

whereas the shorter form is inhibited by ornithine.
10

 Thus, ornithine and proline 

respective inhibition of the mammalian and the bacterial/plant enzymes may involve in 

both cases changes in the 4-E loop, and thus may take place in both cases in the same 

way. In any case, the vast majority of the reported mutations that abolish proline 

inhibition map in the N-lobe of the AAK domain,
26,33

 around the site for glutamate, 
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again supporting the nearness of the glutamate and inhibitor sites. UMP kinase 

represents another example among the enzymes of the AAK family in which the feed-

back inhibitor binds overlapping with the substrate that is phosphorylated, although 

with this enzyme the overlap is complete.
37

 G5K and UMP kinase would represent one 

way of inhibition diametrally different to the feed-back inhibition of NAGK by 

arginine, since in the latter enzyme arginine binds at a remote site relative to the active 

centre.
38

 None of the traits of the arginine site of NAGK is found in G5K (not 

illustrated) excluding the possibility that G5K would resemble NAGK in this respect.
 

A novel feature of G5K is its tetrameric organisation, which differs widely from 

the dimeric or hexameric architectures described for other AAK enzymes,
18,27,28,35,38

 

This organisation appears to be highly stable despite the modest surface of interaction 

between the two dimers forming the tetramer, and may be an adaptation to allow G5P 

channelling. The structure of the monoclinic G5K crystal containing bound G5P reveals 

that this product can remain intact in the active centre of G5K. It should be possible to 

transfer G5P to G5PR without cyclisation if the active centres of G5K and G5PR are 

apposed intimately and the thiol group of the active centre cysteine of G5PR reacts with 

G5K-bound G5P. This appears to be feasible in the bienzymatic complex modelled in 

Figure 9. A mechanism of half of the sites reactivity would appear possible in this 

complex of both bacterial enzymes in which each enzyme would interact with the other 

by alternatively using one of its molecular faces. This proposed model agrees with the 

fact that G5K and G5PR belong to a single polypeptide (P5CS) in higher eukaryotes. 

Thus, a model of the bienzymatic P5CS can be generated from the above proposed 

bacterial complex. This P5CS model assumes a tetrameric organisation nucleated by the 

four AAK domains organised as found here in E. coli G5K. A pair of G5PR domains 

mutually related as in the recently determined structure of the human G5PR domain 
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dimer of P5CS (PDB file 2H5G) would be oriented to each of the sides of the tetramer 

of G5K domains. In the human enzyme, an Arg84Gln mutation was reported to cause 

pyrroline-5-carboxylate synthetase deficiency.
11

 Although this residue is not constant in 

all G5Ks (Gly18 is the corresponding residue in E. coli G5K), the residue belongs to the 

1-A junction which is centrally located at the site of phosphoryl group transfer. Thus, 

it is conceivable that structural changes triggered by mutations at this position may 

inactivate the enzyme. In any case, it would be important to determine the crystal 

structure of human P5CS to experimentally document the deleterious effect of this 

mutation, and to experimentally determine the architecture of the G5K-G5PR complex. 

Efforts in this direction are presently under way in our laboratory. 
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MATERIALS AND METHODS 

Enzyme crystallization and data collection.  

E. coli (DH5 strain, from Clontech) proB cloning into pET-22b to yield pGKE, and 

the overexpression and purification of G5K have been reported.
39

 The sequence of the 

enzyme presents a single amino acid change of a conservative nature (I129V), relative 

to the deposited sequence for E. coli G5K (file P0A7B5, Swissprot Database; 

http://www.expasy.org/uniprot). Bipyramidal-shaped crystals of approximately 0.3 mm 

maximal dimension were grown as reported,
39 

in about four to five months, at 294 K, 

using the vapour-diffusion approach, in hanging drops prepared by mixing 1.5 l of  

reservoir solution (1.6 M MgSO4, 0.1 M KCl, 0.1 M MES pH 6.5) and 1.5 l of enzyme 

solution (10 mg ml
-1

 G5K in 50 mM Tris-HCl pH 7.2, 20 mM KCl, and 1 mM 

dithiothreitol) containing 160 mM Na L-glutamate, 30 mM MgCl2, and 6 mM ADP. In 

addition to these crystals, small plates of 0.1 mm maximal dimension were prepared in 

the same way, using a reservoir solution containing 1.45 M MgSO4, 20 mM CaCl2, 0.1 

M MES pH 6.5. Cryoprotection of the crystals was accomplished by immersion in 10 % 

(v/v) glycerol-supplemented crystallisation solution. Complete X-ray diffraction 

datasets were collected at 100 K from single crystals at the European Synchrotron 

Radiation Facility (ESRF), Grenoble, France (Table 1), attaining 2.5 Å and 2.9 Å 

resolution with the bipyramidal crystals and the plates, respectively.  Data were 

processed with MOSFLM, SCALA and TRUNCATE.
40

 Space group for the 

bipyramidal crystals was P41212 with unit cell parameters a= b= 101.1 Å, c= 178.6 Å. 

The space group for the plates was P21 with unit cell parameters a= 96.3 Å, b= 124.1 Å, 

c= 144.9 Å, = = 90º, = 94.0º. Packing density calculations for the observed cell sizes 

and for a mass of 38.9 kDa for the G5K polypeptide, agree with the presence of two and 
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eight molecules of the enzyme polypeptide in the asymmetric unit of the P41212 and P21 

crystals, respectively, for corresponding solvent contents of 58% and 55 %. 

 

Structure determination and refinement. 

Statistics for data collection and refinement are summarised in Table 1. Phasing was 

successful by molecular replacement with MOLREP
41

 with diffraction data between 50 

and 4 Å resolution for the P41212 crystal, using a polyalanine search model derived 

from the structure of the C. jejuni putative G5K dimer (PDB file 2AKO), a protein that 

exhibits 33 % sequence identity with the N-terminal 257 amino acids of the 367-residue 

polypeptide chain of E. coli G5K. The solution corresponded to two subunits in the 

asymmetric unit forming one molecular dimer. Rigid body refinement and simulated 

annealing with program CNS
42

 were applied to the initial model, followed by several 

rounds of model building with COOT
43

 and O,
44

 alternating with positional refinement 

with REFMAC5.
45 

All the diffraction data (50-2.5 Å) were used throughout the 

refinement process, except the 5 % randomly selected data for calculating Rfree. After 

several rounds of model building and refinement some of the elements of the PUA 

domain were incorporated into the model and these guided the fitting of the entire PUA 

domain, taken from the structure of archaeosine tRNA transglycosylase (PDB entry 

1IQ8)
22

, using MOLREP.
41

 TLS refinement was performed assuming one rigid body per 

subunit. Water molecules were assigned with REFMAC5,
45

 and were visually 

confirmed. One molecule of glutamyl phosphate and one of 5-oxoproline were included 

in each one of the subunits, and were refined using libraries generated with REFMAC5. 

After several rounds of refinement with REFMAC5 alternating with model building 

with O,
44

 Rfactor/Rfree converged to final values of 19.3/24.3. The final model for the two 

subunits, obtained at a resolution of 2.5 Å, encompassed residues 3 to 367. However, 
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residues 172-213 and 172-211 in subunits A and B, respectively, could not be traced 

because of the lack of electron density. The model presented satisfactory 

stereochemistry (checked with Procheck).
46

  

 To determine the phases for the P21 crystal, a partially refined model of the 

complete G5K dimer found in the P41212 crystal was used for molecular replacement. 

The correct solution yielded four dimers in the asymmetric unit, organised as two 

tetramers, one of them composed of subunits A to D and the other of subunits E to H. 

Model building and refinement was performed essentially as described for the P41212 

crystal, applying non-crystallographic symmetry restraints that were progressively 

relaxed, mainly for amino acid side-chains, in the final rounds of refinement. Rfactor/Rfree 

converged to final values of 19.7/24.7. The final model, at 2.9 Å resolution, for the eight 

subunits in the asymmetric unit, encompassed the entire polypeptide chain from residue 

3 in subunits E and D, but lacked the following residues in the other subunits: 202-211 

(subunit A); 202-213 and 367 (B); 203-211 (G and C); 176-185 and 196-213 (H); 203-

213 (F). One glutamate and one sulphate were found in each active centre, except in 

subunit H where the glutamate was missing. A density corresponding to a glutamate 

molecule was found associated to the PUA domain in five subunits,.  

 

Other methods 

Buried surface areas were calculated with NACCESS 

(http://wolf.bms.umist.ac.uk/naccess) using a probe of radius 1.4 Å. Superposition of 

structures was carried out with program LSQKAB.
47 

The complex between G5K and 

G5PR was modelled by superimposing the P axis of the G5K tetramer with one of the 

2-fold symmetry axes of the G5PR tetramer of Thermotoga maritima (PDB 1O20), 

approaching the active centres whereas steric clashes were minimized. A virtually 
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identical model was obtained for the complex using the E. coli G5PR structure, 

modelled
48

 from the T. maritima structure on the basis of the sequence alignment of 

both enzymes, exhibiting 46% sequence identity. The closed conformation of the G5PR 

subunit was generated by superposing the two domains of the T. maritima G5PR 

subunit on the corresponding domains of the NAD-complexed subunit of class 3 

aldehyde dehydrogenase (from rat, PDB 1AD3), which is homologous to G5PR. ATP 

was determined luminometrically with luciferase
49

 using a commercial kit (ATP 

Bioluminiscence CLS kit, from Roche Diagnostics).  Figures were generated using 

MOLSCRIPT,
50

 BOBSCRIPT,
51

 RASTER3D,
52

 PYMOL (DeLano, 

http://www.pymol.org), MSMS
53

 and DINO (Phillippsen, 

http://cobra.mih.unibas.ch/dino).  

 

Protein Data Bank accession codes 

Coordinates and structure factors are deposited in the Protein Data Bank (PDB) 

with accession codes 2J5T and 2J5V. 
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FIGURE LEGENDS 

Figure 1. Pathway of proline synthesis in microorganisms and plants and of ornithine 

synthesis in mammals. Enzymes are enclosed in grey boxes. Feed-back inhibition of 

microbial and plant G5Ks by proline and of animal G5Ks by ornithine is indicated with 

broken arrows. The dotted arrow indicates the spontaneous cyclisation of G5P to 5-

oxoproline that is an abortive side-reaction.  

 

Figure 2. The structure of E. coli glutamate 5-kinase. (a) Backbone representation of 

two views of the asymmetric unit of the P21 crystal, formed by two tetramers coloured 

blue and red. The unit cell is shown as a black lined box. (b) and (c) Surface 

representation of two perpendicular views of the glutamate 5-kinase tetramer, with the 

substrates in space-filling representation. Different colours are used for each subunit 

with different intensities for the amino acid kinase (AAK, darker) and PUA (lighter) 

domains. The molecular P, Q and R axes are identified, and are represented with broken 

lines. (d) Magnesium binding site represented with the electrostatic potential of the 

solvent accessible surface. Positively and negatively charged regions are coloured blue 

and red, respectively, with the intensity of the colour being proportional to the local 

potential. The 2Fobs-Fcalc omit electron density map contoured at the 1  level, is also 

shown (in green) with the bound magnesium ions as the purple spheres. (e) 

Semitransparent surface representation of the PUA domain showing the bound 

glutamate (ball and stick representation) and its corresponding 2Fobs-Fcal omit electron 

density map contoured at the 1  level.  

 

Figure 3. Structure of the E. coli G5K subunit (a) Stereo view of the superposition of 

the C

 traces of G5K from E. coli (green) and C. jejuni (pink). The absence of the PUA 
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domain is evident in the C. jejuni enzyme. (b) The E. coli G5K subunit structure with 

the catalytic AAK (green) and the PUA (orange) domains. Secondary elements and the 

link between domains (purple) are also indicated. Two molecules of glutamate, a 

sulphate ion and a magnesium ion bound to the G5K subunit are represented with balls 

and sticks. (c) Correspondence between the amino acid sequence (single-letter code) 

and the secondary structure. Superposed cylinders denote α-helices, and arrows denote 

β-strands. T colour code is as in (b). Residues having decreased accessibility upon the 

binding of glutamyl 5-phosphate, sulphate, 5-oxoproline or glutamate in the amino acid 

kinase domain, are indicated with cyan, violet, brown or blue triangles respectively. 

Residues having decreased accessibility upon the binding of glutamate in the PUA 

domain are indicated with yellow triangles. Residues that form the negatively charged 

hole where magnesium binds are shown with red triangles. Open and closed circles 

indicate residues that exhibit decreased accessibility upon homodimer and tetramer 

formation, respectively.  

 

Figure 4. Oligomerisation surfaces of one subunit across the (a) R and (b) Q dimers 

(see in the text). Contacting non-polar (reddish) and polar (light green) atoms are 

indicated together with the corresponding structural elements. 

 

Figure 5. Comparison between the dimers of E. coli NAGK, P. furiosus UMP kinase 

(UMPK) and E. coli G5K. Left panel, ribbon representation of the homodimers of 

NAGK, UMPK and G5K, to highlight the drastically different dimer architectures. 

Subunits on the left (lighter) have the same orientation, in the three enzymes.  Right 

panel, elements of the two subunits involved in dimer formation, to show their different 

relative orientations in the three enzymes. 
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Figure 6. Substrate binding. (a) Stereoview of the glutamate 5-kinase (G5K) active 

centre, in the monoclinic crystal. The bound glutamate and sulphate are shown in ball 

and stick representation. Amino acid side chains are shown in thinner trace. The (2Fobs-

Fcal ) omit electron density map, contoured at the 1  around the bound substrates is also 

shown (green). Hydrogen bonds and ion pairs are shown as broken black lines. (b) 

Similarly for the tetragonal crystal, with the corresponding bound molecules of 

glutamyl 5-phosphate, 5-oxoproline and sulphate (c) Stereo view of the superimposition 

of the substrate binding region and of the bound ligands in the monoclinic (colored) and 

tetragonal crystals of E. coli G5K. The only significant differences are observed 

between the glutamate and glutamylphosphate. Oxoproline is present only in the 

tetragonal crystal. 

 

Figure 7. The active centre. (a) Semitransparent surface representation of a detailed 

view of the G5K binding site, showing bound glutamate in stick representation as well 

as an ADP molecule modelled from the structure of C. jejuni G5K in the presence of 

this nucleotide. Important side chains are represented in bonds and identified. (b) Stereo 

view showing the hydrogen bond network between the glutamate binding sites of the 

two subunits of the R dimer. Each subunit is shown in a different colour. 

 

Figure 8. Movement of the 4-E loop. Stereo view of the superposition of the E. coli 

(green) and C. jejuni (violet) loops and neighboring elements including (in stick 

representation) bound 5-oxoproline. The side chain of the important residue for proline 

binding, Asp148 (Asp141 of C. jejuni G5K), is also represented, to illustrate its radical 

change of orientation from looking outwards to looking inwardly to the site. 
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Figure 9. Possible interaction between the glutamate 5-kinase (G5K) and the glutamyl 

5-phoshate reductase (G5PR). Semitransparent surface representation of two 

perpendicular views of the G5K tetramer, with the substrates in space-filling 

representation. A dimer of the G5PR from T. maritima is shown (ribbon representation) 

with one subunit (orange) presenting the open conformation as observed in the crystal 

structure of this enzyme in the absence of substrates (PDB 1O20), and with the other 

subunit (yellow) presenting a closed conformation modelled from class 3 aldehyde 

dehydrogenase complexed to NAD (PDB 1AD3). The catalytic and NADPH binding 

domains of G5PR are identified. 



  

Table 1. Data collection and refinement statistics 

 Tetragonal crystals Monoclinic crystals 

A. Data collection  

ESRF Beamline/Wavelenght (Å) BM16/0.979 ID14.4/0.979 

Space group P41212 P21 

Unit cell (Å or º) a = b = 101.1, c = 178.6 a = 96.30, b = 124.11, c = 144.93; γ = 94.0 

Resolution range (Å) 48.8-2.5 (2.64-2.50) 50-2.9 (3.06-2.90) 

Reflections, total/unique 367,219/ 61,566 (29,004/ 8,941) 339,415/ 74,908 (49,569/ 10,882) 

Completeness (%) 99.5 (99.5) 99.3 (99.6) 

I/ 6.8 (1.7) 9.7 (2.9) 

Rsym
 
(%)

a
 6.8 (41.6) 16.5 (49.4) 

B. Refinement statistics 

Resolution range (Å) 49 - 2.5 50 - 2.9 

R-factor/ Rfree (%) 19.3/24.3 19.7/24.7 

Molecules and atoms refined Polypeptide chains: 2 

Protein atoms: 4,872 

Glutamyl-5-phosphate molecules: 2 

5-Oxoproline molecules:2 

Sulphate ions: 2 

Magnesium ions: 1 

Water molecules: 166 

Polypeptide chains : 8 

Protein atoms: 21,344 

Glutamate molecules : 12 

Sulphate ions: 8 

Magnesium ions: 8 

Chloride ions: 20 

Water molecules: 103
c
 



  

Rmsd from ideal 

        Bond lengths (Å) 

        Bond angles (º) 

 

0.011 

1.35 

 

0.009 

1.16 

Average B-factor (Å
2
) 

   Protein  

 

36.9 

 

19.0 

   Water  35.9 5.7
b
 

   Glutamate  28.4 

   Glutamyl 5-phosphate 42.0  

   5-Oxoproline 38.6  

   Sulphate 55.7 54.4 

   Magnesium 19.2 39.9 

   Chloride  29.2 

Ramachandran plot
 
(%)

c
   

    Most favoured  94.1 90.3 

    Additionally allowed  5.9 9.4 

    Generously allowed  0 0.3 

    Disallowed 0 0 

 

Values in parentheses are data for the highest resolution shell 

a 
Rsym = I <I>/I, where I is the observed intensity and <I> is the average intensity of multiple observations of 

symmetry-related reflections. 

b 
These waters correspond to well-defined densities. However, at the 2.9-Å resolution of this structure some of the 

waters may actually correspond to ions, as suggested by the low B-factors.  

c 
Calculated using PROCHECK
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