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Abstract 

The never ending debate on energy supply for a cleaner environment, recently associated 

with the worldwide effort to decrease global CO2 emissions, has been revived by the steep 

increase in oil prices and the parallel controversy about the potential of nuclear energy, 

initiated in the mass media on the anniversary of the nuclear disaster of Chernobyl. Thus, 

now seems an appropriate time for the scientific community and energy producers to 

exchange their knowledge in this debate far away from the magic solutions provided by mass 

media prophets, in an attempt to arrive at realistic guidelines that may help society to 

understand the important issues involved in the move towards a cleaner energy system. 

In this essay a description of the potential paths that may make it possible to change from 

the current energy sources to a cleaner energy production system is provided, the main 

focus being placed on how the so called hydrogen economy might eventually be 

implemented. The milestones that the international agencies expect to emerge during the 

transition will be described, taking into account the issues of hydrogen production, 

distribution, storage and use. Additionally, the potential exploitation of the different hydrogen 

sources, both renewable and non-renewable, will be evaluated taking into account their 

availability and the efficiency of the processes used to transform them into hydrogen. 
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1. Four reasons to change 

In 2004 primary worldwide energy consumption was about 11.7 Gtoe, whose distribution 

according to sources, transformation processes and network uses is plotted in Figure 1 (1-5). 

82% of this energy has been transformed into heat, electricity or movement by means of 

fossil fuel combustion processes, which has produced CO2 emissions to the atmosphere 

equivalent to 7 Gton of carbon (6). In a no-change scenario (Base Scenario of the 

International Energy Agency, IEA) CO2 emissions in 2050 can be expected to reach 14 Gton 

of carbon (6). Current CO2 concentration in the atmosphere is 30% above the level of the 

pre-industrial era. The potential environmental effects derived from this continual increase in 

atmospheric CO2 concentration, evaluated in a variable range depending on the predictive 

model used, has finally obliged the international community to act. As a consequence, the 

Kyoto protocol and other international agreements have been signed to secure an 

international commitment to reduce global CO2 emissions. There is now a political 

obligation derived from an environmental need to reduce CO2 emissions, which is the 

first step on the road to change in our energy system. 

Added to this there is clearly a problem of worldwide energy dependence. Oil, which 

nowadays constitutes around 33% of primary world energy (Figure 1), is produced in a small 

number of countries organised around OPEC (Organisation of the Petroleum Exporting 

Countries), characterised by political instability in their international relationships, at least 

from the western point of view. For this reason, the price of petroleum is subject to important 

fluctuations due to economic and political reasons. In the last few months, which have been 

dominated by the consequences of the Iraq war and the instability in Iran-USA relationships, 

the price of petroleum has increased to $75/Brent bbl (1-May-2006), an unprecedented and 

exorbitant price for the developed countries that also restricts the progress of developing 

countries which depend on oil for their energy supply.  

Furthermore, oil is a scarce commodity. Considering the linear extrapolations of the rate of 

growth of oil consumption and the rate of increase of known oil reserves it can be deduced 
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that the end of the petroleum supply will probably take place around 2050 (2). Natural gas 

appears as an alternative in the medium term, although a similar method of calculation 

predicts its total consumption will take place in 70-100 years. Of the fossil fuels used at 

present, only coal may retain its level of availability, considering its increasing rate of 

consumption, for another couple of centuries. 

As a final remark on this energy scenario it is necessary to underline the importance of the 

incorporation of developing countries, many of them with an enormous population which 

is constantly growing, to the group of countries that waste energy. Since these countries 

show a value of consumption per capita far below that of the developed countries, their rate 

of consumption can be expected to be much faster. Additionally it is necessary to remember 

that the highest rate of population growth in the next few decades is going to take place 

precisely in these developing countries. China is typically considered as the most 

representative example of these emerging energy wasting countries, as can be seen from 

the increase in its coal consumption from 22% of the total world consumption in 2000 to 35% 

in 2004 (2). In this country it is expected that the total number of cars in 2010 will be 90 times 

as many as those in 1990. However, we should try to retain a balanced picture; CO2 

emissions per capita in China are below 3 ton CO2 compared to around 20 tons per 

American citizen (7).  

The so-called Hydrogen Economy is a long-term project that can be defined as an effort to 

change the current energy system to one which attempts to combine the cleanliness of 

hydrogen as an energy carrier with the efficiency of fuel cells as devices to transform energy 

into electricity and heat. As an energy carrier, hydrogen must be obtained from other energy 

sources, in processes that, at least in the long term, avoid or minimize CO2 emissions. For 

the future of the worldwide energy supply three goals must be fulfilled: security in the energy 

supply, environmental protection and the utilization of energy sources that promote the 

economic growth of societies.  
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Considering our bleak starting point (Figure 1) and the abundance of economic interests 

involved we can expect the transition to this hydrogen economy to last for decades. In the 

following paragraphs we will discuss the key points that affect the fulfilment of these goals.  

 

2. Why hydrogen? 

The amount of energy produced during hydrogen combustion is higher than that released by 

any other fuel on a mass basis, with a Low Heating Value (LHV) 2.4, 2.8 and 4 times higher 

than that of methane, gasoline and coal, respectively. Currently, the annual production of H2 

is about 0.1 Gton, 98% coming from the reforming of fossil fuels. H2 is mainly employed in oil 

refining and ammonia and methanol production. As a fuel it is only employed in spaceship 

propulsion systems and ground vehicle prototypes for demonstration purposes.  

Hydrogen as energy carrier exhibits both positive and negative aspects. Science and 

technology should try to derive the maximum benefit from all the positive aspects while 

minimizing the negative ones in the long and turbulent transition that can be expected. The 

main advantage of hydrogen as a fuel is the absence of CO2 emissions, as well as other 

pollutant emissions (thermal NOx) if it is employed in low temperature fuel cells. This is 

especially important for the transport sector, which is responsible for ~18% consumption of 

primary energy worldwide (Figure 1). Apart from the economic-political interests involved in 

the substitution of oil-derived fuels, which are scarce and subject to continuous price 

fluctuations, vehicles are highly dispersed CO2 emission sources in which it is difficult and 

expensive to install CO2 capture and storage systems. The two alternatives currently under 

consideration are hydrogen (and its derivative bio-methanol) and bio-fuels (bio-ethanol and 

bio-diesel), whose participation in the future world energy economy will be one of 

coexistence or competition.  

Additionally hydrogen can be expected to allow the integration of some renewable energy 

sources, of an intermittent character, in the current energy system. Thus, we can envisage a 
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photovoltaic solar panel (or a windmill) linked to a reversible fuel cell, which uses a part of 

the electricity to produce H2 during the day (or in windy conditions), and consumes the 

hydrogen during the night (or in the absence of wind) to produce electricity. In spite of the 

undeniable lack in efficiency of this system, it is clear that it would provide an uninterrupted 

supply of electricity. 

However, as mentioned before, hydrogen is not an energy source, but a carrier and 

consequently it will be as clean as the method employed for its production. Moreover, today 

its transport and storage is expensive and difficult due to its low energy density on a volume 

basis (gasoline density is 0.7 kg/l whilst H2 density is 0.03, 0.06 and 0.07 kg/L at 350 atm, 

700 atm and liquefied (20 K), respectively). As it is highly inflammable, H2 is a dangerous gas 

in confined spaces, although it is safe in the open since it diffuses quickly into the 

atmosphere. Hopefully, the search for new storage media and the establishment of codes 

and standards for use will enable some of these negative aspects to be overcome in the 

future.  

Some countries are undertaking major commitments to hydrogen. Canada, Japan, the United 

States and Germany have led the way with new hydrogen technologies and are gradually 

increasing their efforts to implement hydrogen niches in their energy systems. Japan, a 

nation with few fossil fuel resources, has a major ongoing program to develop a global 

hydrogen system with new technologies for power plants, cars, buses, planes, ships and 

rockets, all fuelled with renewable hydrogen. The European Union decidedly supported the 

change to a Hydrogen Economy in 2002 when a group of experts drew up the document 

“Hydrogen energy and fuel cells - A vision of our future” (8) which is regarded as the basis of 

future research and development activities. It is evident then that the interest of developed 

countries in the implementation of hydrogen as the future energy carrier is growing and 

hence the need to illuminate the paths leading to a hydrogen society. 
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3. The Goal: The Hydrogen Society  

It is difficult to predict the long-term panorama (for instance beyond 2050) due to the 

uncertainty about the future of the energy system. To reach our goal we first need to 

overcome a number of social obstacles (the development of codes and worldwide standards, 

consumer reticence, lack of public support for scientific research, etc) macroeconomic 

difficulties (developing countries need to be incorporated into the welfare state in a 

sustainable way, with the aid of developed countries and in a CO2 emissions market 

promoted by the Kyoto protocol) and technological challenges (mainly related to the 

development and implementation of clean and efficiency production systems and to the 

decrease of cost of hydrogen storage systems and fuel cells). 

If these difficulties are overcome, beyond 2050, when the world is expected to consume 

more than 25 Gtoe of primary energy (9), the energy supply and transformation will be 

managed as indicated in Figure 2 (10). Oil will not be an energy source any longer, but it will 

still be used for the synthesis of chemical products. A wide range of energy sources will be 

available and the energy mix will be selected in each locality depending on its needs and 

resources. In the following sections the main features of Figure 2 will be described in detail. 

3.1 Centralization  

It is clear that beyond 2050 two energy distribution networks will be operating: the electric 

network(s) and the hydrogen network(s). The structure of both networks goes beyond the 

classical concept of a centralized distribution system. In fact, they will be constituted by a 

multiplicity of interconnected production sources, with a lower capacity but more flexibility 

than the current production sources. These sources will be organized into small sub-

networks that could be connected to the global network depending on the needs of the 

population and geographical location. Thus, the integration of renewable energy sources, 

which are highly delocalized, could be carried out in an optimal way. In this system the 

production points would be closer to the points of final consumption and consequently the 
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losses of electricity during distribution, currently estimated to be around 10% of total 

electricity production (4.2% of primary sources; Figure 1), would decrease. 

3.2 The electricity network 

The traditional electricity network will be partially fed with natural gas and coal as it is 

nowadays, although their contribution will decrease. These fuels will be transformed in 

cogeneration thermal plants to produce H2 and electricity (for instance in IGCC plants; 

integrated gasification in combined cycle) provided with CO2 separation systems (sorbents, 

membranes, etc). CO2 will be safely confined inside underground formations. The concept of 

high-capacity power plants based on coal will be maintained since this fuel is not appropriate 

for energy generation (electricity or hydrogen) at a smaller scale. These power plants will 

also be suitable for the processing of energetic biomass, either alone or in combination with 

coal. This biomass will be mainly made up of the short-rotation crops and organic wastes that 

are not destined to be employed in the reformers or bio-refineries for the production of 

hydrogen and bio-fuels (Figure 2). With appropriate CO2 capture and storage systems (CCS) 

the use of biomass will lead to a reduction in the concentration of CO2 in the atmosphere (net 

CO2 emissions below zero). 

If everything goes according to plan, the renewable energy sources (biomass, hydraulic, 

solar, geothermal, wind, sea tides, etc.) will play a preponderant role in the generation of 

electricity in 2050. The European Union expects that by 2010 these renewable sources will 

contribute 22% to the total amount of electricity generated (Figure 1). The percentage of 

renewable energies in electricity production will probably be high, although the amount will 

vary depending on availability in each geographic location. A model to imitate is that of 

Norway, which currently produces 100% of its electricity by means of hydroelectric power 

plants.  

The role of nuclear energy in the generation of electricity is still unknown. This is going to 

depend on the outcome of social, political and economical discussions that are currently 
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taking place. Nuclear energy permits the centralized generation of large electricity fluxes 

from the uranium mineral available in the earth without the emission of greenhouse gases. 

However, from the values of known and suspected reserves of uranium in the earth, 17 Mton 

(11) it seems likely that current nuclear energy systems would be able to provide the total 

amount of energy consumption worldwide for only a few years, failing to live up to its image 

as a never ending source of energy that is sometimes projected. Consequently, regardless of 

other safety considerations, the massive implantation of nuclear power plants is not very 

likely unless a great advance in the extraction of the huge amount of uranium in the sea 

(4,000 Mton (11)) takes place. This does not seem feasible in the short term considering the 

enormous amount of sea water that would need to be processed for extracting the highly 

diluted uranium. Additionally, the unresolved problem of management of radioactive wastes 

and the possibility of terrorist attacks on the nuclear plants has turned public opinion against 

the massive exploitation of nuclear resources. 

3.3 The hydrogen network 

On the basis of the most optimistic hypotheses, hydrogen and fuel cells will be able to 

provide the global energy demand in transport far beyond 2050. In order to supply hydrogen 

to areas far from the general network it will be necessary to build refuelling stations able to 

generate hydrogen in situ, by means of electrolysers fed by renewable energies (such as 

photovoltaic solar panels or windmills) or biomass reformers. However, most of the supply 

will be provided by a network of refuelling stations in which hydrogen will be supplied by a 

piping system connected to large scale production plants. These H2 production plants will 

use a mix of the primary energy sources most suited to each region. A general scheme of the 

centralized hydrogen production systems is given in Figure 3. In this scheme the IGCC 

plants are designed to cogenerate hydrogen and electricity. The processes shown in this 

figure and which will be analysed in depth below, are those considered best placed in the 

race towards hydrogen. 
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As mentioned above, nuclear energy is an uncertain option. Its contribution to global 

hydrogen production will take place, in any case, by means of thermochemical cycles that 

are more efficient than electrolytic processes.  

There are other options that are currently in an incipient development stage that could 

produce important economic and environmental benefits, if they were successfully developed 

(10). As an example, photo-electrolysis uses semiconductor catalysts in contact with water 

which by solar light activation produce the rupture of water molecules into H2 and O2 (12,13). 

Currently there are no ideal photocatalysts in terms of efficiency and stability so the feasibility 

of this option will depend on the future development of new materials.  

There is also great interest in the production of hydrogen in bio-reactors from photosynthetic 

processes with microscopic algae. For instance, cyanobacteria and green algae can produce 

hydrogen from solar light, water and hydrogenase as enzyme (14). This is a technology 

currently under research and development, with estimated solar to hydrogen conversion 

efficiencies of around 27% under ideal conditions (15,16). More than 400 varieties of plants 

have been identified as candidates for the production of hydrogen.  

Hydrogen produced in large centralized plants will be distributed to final consumption points 

by means of pipes. Alternatively, hydrogen will be supplied in situ in small plants of 

decentralized production (production and refuelling stations). To store large quantities of 

hydrogen over long periods of time the best option is the subterranean deposit, where 

hydrogen is compressed and injected into aquifers or subterranean caverns. There are three 

types of formations for underground storage: natural gas fields (and associated aquifers), 

caverns or cavities in saline formations, and depleted mines. The storage costs in caverns 

will vary depending on the type of geological formation, but they can be expected to be low. 

In fact this storage method is already being employed in some areas. As an example the 

German city of Kiel has had a subterranean deposit of 32,000 m3 of city gas at 80-100 atm 

with a hydrogen content of 60-65% since 1971 (17). ICI, the company that patented the 

method of methanol synthesis at low pressure has hydrogen deposits in England at 50 atm in 
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subterranean caverns. For smaller scale storage at production points, similar systems to 

those employed in vehicles could be applied (pressure tanks, liquid hydrogen tanks, 

hydrides, etc). 

 

3.4 Hydrogen uses 

In the hydrogen society, the main use of this fuel will be to feed the Polymeric Electrolyte 

Membrane (or Proton Exchange Membrane) Fuel Cells (PEMFC) onboard vehicles (road, 

marine and aerial transport). Under favourable conditions hydrogen will supply 100% of the 

energy demands of transport. To achieve this goal, the price of the vehicles based on fuel 

cells will need to decrease substantially, and so technological improvements in the fuel cell 

and storage system will be required.  

H2 will be supplied to the vehicles via a worldwide grid of refuelling stations. For the success 

of the hydrogen economy secure and cheap H2 storage systems will be needed in vehicles. It 

does not seem likely that the cost of compressing and liquefying hydrogen can be decreased 

to the level of cost required for massive use, so other more predictable solutions include the 

development of solid deposits based on rechargeable hydrides (AlH3, NH4BH4, NaAlH4, etc) 

operating at pressures and temperatures of formation / decomposition between 1-10 atm and 

25-100ºC. An alternative option which will probably coexist with direct hydrogen storage is 

the onboard reforming of bio-methanol to produce the hydrogen that feeds the fuel cell. Bio-

methanol synthesized from biomass (Figure 3) can be easily stored onboard, thus avoiding 

the high cost associated with hydrogen deposits.  

Finally, hydrogen will also be able to supply a fraction of the electricity and heat requirements 

in residential and industrial sectors. By means of solid oxide fuel cells (SOFC) which operate 

at high temperatures with high efficiency, it is possible to cogenerate the electricity and heat 

required for domestic use. Small capacity units of 4-300 kW will be employed to supply 

energy to family residences and apartment blocks. Medium capacity systems (<10 MW) will 
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be able to provide electricity in residential, service and industrial areas. The balance between 

the use of H2 and electricity from the conventional network for satisfying demand will be 

established by the law of supply and demand in the different sectors. Finally, the integration 

of cogeneration fuel cells in the conventional electric network will permit the sale of energy 

excess to the network. Where the system is not integrated in the electricity network (i.e. 

single-family residences) small excesses of electricity generated in situations of low energy 

demand could be stored by lead-acid conventional batteries for use in situations of high 

demand.  

This can be considered a brief description of what is pursued by those who believe in a 

hydrogen-based future. The transition towards this ideal touches on many different issues 

that will be outlined in the following sections. 

 

4. From now to 2015. Hydrogen popularization. Decentralized production units.  

4.1 Public funds and initial market niches. 

Unfortunately the previous picture is far from reflecting the real situation. If expectations are 

to be fulfilled, immediate action is required worldwide on the part of public and private 

organizations. Many public and private initiatives involving the energy organisms of EU, USA 

and Japan have already been taken to make the hydrogen based society a reality. Some of 

these initiatives are listed below: 

Year 1977 – IEA. “Hydrogen Implementing Agreement” (12 countries and the European 

Commission). http://www.ieahia.org/ 

Year 2002 – Japan. “JHFC: Japan Hydrogen & Fuel Cell Demonstration Project” (2010: 

50,000 FC cars; 2020: 5,000,000 FC cars). http://www.jhfc.jp/e/ 

Year 2003 – EEUU. “The International Partnership for a Hydrogen Economy” (1,700 M$ 

investment in 5 years). http://www.hydrogen.energy.gov/ 

http://www.ieahia.org/
http://www.jhfc.jp/e/
http://www.hydrogen.energy.gov/
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Year 2003 – EEUU. “FreedomCAR and Fuel Partnership” (DOE, the United States Council 

for Automotive Research, Ford Motor Company, DaimlerChrysler and General Motors). 

http://www.hydrogen.energy.gov/freedomcar_partnership.html 

Year 2004 – EU. “Hydrogen and Fuel Cells Technology Platform”. ttps://www.hfpeurope.org/ 

Year 2007 – 2013 (7th Framework Program EU). The investment in Energy + Environment + 

Transport: 8,280 M€ (15.5% of the total). http://www.cordis.lu/fp7/ 

Parallel to the efforts being made in research and development and the establishment of 

codes and standards for the production, distribution, storage and use of H2, measures should 

be taken to make hydrogen energy acceptable to potential users. This can be achieved by 

the introduction of early markets, in which the importance of popularizing the product to a 

reluctant public should outweigh that of economic benefit. Of these, the most important 

market is that of mobile devices (phones and laptops) with Hydrogen-fed Polymeric 

Electrolyte Membrane Fuel Cells (PEMFC) or Direct Methanol Fuel Cells (DMFC). Such 

batteries will permit a higher degree of autonomy than that offered by current Li-ion batteries, 

although they still need to be improved in terms of cost, weight and social acceptance.   

 

4.2 Reformers 

In the first stage, hydrogen production will be performed in small decentralized systems, by 

means of electrolysers (which consume water and electricity provided by the network or 

generated by small solar panel modules) and reformers (in which water and natural gas react 

at high temperature to produce H2 and CO2) without a distribution network (as they will be 

distributed in pressurized cylinders by ship and road) and without CO2 capture and storage 

systems (9). 

The reforming of natural gas is a well known technology by means of which it is possible to 

achieve energy conversion efficiencies of between 65-75% (LHV) for small decentralized 

units and up to 85% for large centralized systems. The current H2 price from the reforming of 

http://www.hydrogen.energy.gov/freedomcar_partnership.html
http://www.cordis.lu/fp7/
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natural gas in decentralized systems is around $1.6/Lge (litre of gasoline equivalent; currently 

the price of gasoline before taxes is around $0.2-0.3/L) (10). In the short term (2010) the goal 

is to reduce the price to below $0.5/Lge. For decentralized systems the investment costs 

($1,300/car per day for stations with a capacity of over 300 cars daily) are 3 times higher 

than those of large centralized systems (10). 

 

4.3 Electrolysers  

Today the efficiency of conventional electrolysers is around 40-50% (18). Other sources 

suggest a somewhat higher efficiency value that may be explained by differences between 

working and test conditions (10). There are two main groups of electrolysers depending on 

production capacity: those that obtain H2 from electrical energy from the network, that are 

able to produce fuel to feed 1-2 cars (house systems); and electrolysers that are able to feed 

more than 100 vehicles (refuelling stations). With these systems, the cost of H2 production, 

including investment, electricity and compression costs is quite high ($2.7/Lge in house 

systems and $0.9/Lge for refuelling stations) although these prices can be expected to 

decrease to $0.9/Lge and $0.6/Lge, respectively, by 2030 (10). An important aspect in the 

development of this kind of system is the expected reduction in the price of PEMFC, since an 

electrolyser is just a fuel cell operating in reverse mode (19). Thus the price of electrolysers 

can be expected to vary from the current $5,800 per car and per day to around $725 for a 

refuelling station able to feed more than 100 cars/day (10). It can also be assumed that the 

increase in capacity of reformers and electrolysers will lead to a further decrease in their cost 

and an increase in their efficiency to values close to the theoretical ones.  

 

4.4 Refuelling stations 

There are currently 227 H2 refuelling stations operating around the world (may 2006). These 

are generally based on reformers or electrolysers that are employed to fuel fleets of urban 
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buses with internal combustion engines based on H2 (ICE-H2) or fuel cells. As an example, in 

Spain there are two stations in operation, one in Madrid where H2 is produced by a methane 

reforming system, and the other in Barcelona, where solar panels produce clean electricity to 

feed the electrolyser. These stations which fuel six DaimlerChrysler Citaro buses equipped 

with fuel cells were built within the framework of international projects such as the CUTE 

European project, the aim of which is to analyse the operation of different technologies in 

real operating conditions. Updated information about H2 refuelling stations can be found in 

http://www.h2stations.org/  

 

4.5 Storage 

Storage is another key issue for the popularization of H2 in transport. Currently there are 

pressurized tanks at 350 and 700 atm that permit the storage of H2 up to weight percentages 

(H2+tank) of 5.5 and 11 wt% [DOE objective: 6 wt% (20)] for a 400 km autonomy. These 

tanks which are built of carbon fibre are used in the bus fleet mentioned above and in some 

car prototypes such as Ford Focus C-Max with ICE-H2. Compression energy is around 10% 

of the LHV of H2, which is an acceptable value. However the fabrication cost is around 

$3,000/kg H2 while the DOE objective for 2015 for the storage of H2 in vehicles is $67/kg H2 

(20). Considering that the high cost is essentially related to the tank material (carbon fibre) it 

is not foreseeable that any future reduction in cost will comply with the requirements 

established. An alternative to these pressurized tanks is cryogenic storage (20K) in a double 

insulating chamber tank. These tanks are less voluminous and are able to store a higher 

amount of hydrogen (equivalent to compression at 845 atm) but they are heavier and 

consequently the H2 weight percentage is similar to the percentage obtained after 

pressurizing at 350 atm (~5 wt%). In addition, the fabrication costs are high and the 

liquefaction energy is equivalent to 30% LHV. It is clear then that any future solution must 

involve an alternative type of storage, at least for private vehicles.  

http://www.h2stations.org/
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4.6 Hydrogen vehicles. 

H2 PEMFC may become the engine of the future due to its obvious advantages over the 

internal combustion engine (ICE) i.e. its efficiency (~50% average over the whole range with 

the possibility of achieving 60% vs. ~20-38% in the case of ICEs), the absence of pollutant 

emissions and its silent operation. However its high cost (~$1,800/kW in the case of the FC 

of ~100 kW (10)) demands for the mid/short-term a more available though less efficient 

system, with the objective to speed up the introduction of hydrogen as an alternative motor 

vehicle fuel. This system is the hydrogen internal combustion engine (ICE-H2) which is very 

similar to the classic four-cylinder petrol engine except for some adjustments to the air 

mixture and other mechanical features. In the initial Hydrogen popularization step, ICE-H2 will 

permit the creation of a network of H2 refuelling stations and become a bridge to fuel cell 

vehicles, the mass marketing of which is not expected before 2030. During this transition to 

FC vehicles some hybrid concepts will be put on the market to optimize the energetic 

efficiency of the vehicle. The IEA forecast is that the hybrid vehicle will be the ICE-H2/electric 

engine (10). In this hybrid vehicle a Li-ion battery will be used to activate the electric engine. 

A computer will decide which motor should be activated in a given situation. When the ICE-

H2 is employed, it works with the maximum degree of efficiency. If the engine generates 

more energy than is needed, the excess is used to charge the battery, and the electric 

engine acts as a generator. Otherwise only the electric engine works, this being fed by the 

energy of the battery. The energetic efficiency of the vehicle is increased by the addition of a 

system to recover the heat from the brakes which is also employed to charge the battery.  

 

4.7 Domestic Energy 

During this period we will see the beginning of the popularization of the cogeneration 

systems to provide electricity and heat to houses as a substitute for diesel generators or 

conventional fossil fuel and electricity networks. At the present time the most appropriate fuel 
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cells for this use are the Solid Oxide Fuel Cells (SOFC) which are fitted with non-porous 

ceramic electrolytes. As they operate at high temperatures (800-1,000ºC) it is not necessary 

to use expensive catalysts or pre-reforming processes. In fact, they are able to operate on 

different fuels ranging from methane to H2 including CO/H2 mixtures, which makes them an 

ideal system for the transition from methane to H2. Additionally the high temperatures needed 

for their operation gives rise to residual heat which can be used in heating systems 

(combined heat and power system) so they become integrated systems for the supply of 

heat and electricity to houses. Initially small power systems (~4 kWe) will be produced for 

supplying single houses, whereas medium power systems (~200 kWe) will supply energy to 

apartment blocks and small industries. These systems will be fed by natural gas (“non-clean” 

energy) until the transition to hydrogen takes place. Such systems have a greater efficiency 

than the traditional systems; 45% in electricity, which can be expected to reach 60-70%, 

compared with the 38% efficiency in conventional CHP systems (10). However, the main 

obstacle for the massive implantation of these systems is their price (€5,000/kW compared to 

€1,000/kW for the conventional systems), although a reduction in cost to €1,000/kW can be 

expected by the year 2030, with an increase in electric efficiency of up to 55%. The 

expectations for 2007 in USA are 130 MWe, approximately 33,000 houses (21). 

 

5. Beyond 2015. The slow path to decarbonization and renewable energies 

By 2015 there will be decentralized units for H2 production (essentially refuelling stations for 

small fleets of urban buses) from methane and electricity (with CO2 emissions) and a small 

percentage of industries and houses with a slightly cleaner but also somewhat more 

expensive supply of heat and electricity (SOFC fed with methane). However this panorama 

could only arise in the economically advanced societies (USA, Canada, Europe, Japan and 

maybe China). In the subsequent decades we should be moving towards the Hydrogen 

Economy, on a path signalled by the following developments. 
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5.1 Mid-term production of electricity 

From 2015 onwards systems for CO2 capture and storage (CCS) must be installed in power 

plants, especially in new plants that will permit the co-processing of biomass and fossil fuels 

(coal and natural gas) and the co-generation of electricity and hydrogen as in IGCC (Figure 

2). Today the worldwide capacity of coal gasifiers in operation is 46 GW (10) (currently the 

total electricity capacity worldwide is around 4,000 GW, the final electricity production being 

equivalent to the uninterrupted use of around 2,000 GW). Moreover, renewable energies 

(biomass, hydraulic, wind power, etc) will start to be preponderant in the electricity market, 

with a share of over 25% in EU by 2015. These renewable energy sources will be integrated 

into the electricity and hydrogen networks taking into account environmental benefits, 

regional availability and energy efficiency.  

 

5.2 Selection of energy sources and transformation processes 

On the path towards widescale hydrogen production we should be careful to choose the 

appropriate energy sources and transformation processes on the basis of availability, 

cleanliness, energy efficiency and cost. Taking into account the forecasted need for 25 Gtoe 

of primary energy in 2050 (9), of which 18% will be used in transport (current ratio), in 

addition to an expected improvement in the efficiency of hydrogen engines, the consumption 

of H2 when this fuel has totally replaced diesel and petrol will be ~1 Gton. In this estimation, a 

conservative difference in efficiency between ICE (30%) and fuel cells (50%) is assumed. 

Using similar criteria the worldwide electricity consumption for 2050 can be expected to be 

approximately 38,000 TWh, while heating consumption will be around ~10 Gtoe. The total 

amount of electricity needed worldwide could be obtained by means of 2.3 Gton of H2 in 

SOFC which would also generate around 2.5 Gtoe of heat. 
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5.2.1 The role of decarbonized renewable energies. 

Tables 1 and 2  contain a list of the available energy sources worldwide, the total amount of 

each one consumed during 2004, estimations of the reserves or annual maximum production 

capacities and the consumption needed to obtain 1 Gton of H2 by the different processes 

associated with each energy source (H2AT2050: H2 needed to supply all transport needs in 

2050). The processes considered suitable for converting primary energy to hydrogen are 

indicated in Figure 3 with the exception of IGCC whose place has been taken by coal or oil 

reforming (the latter included for the sake of comparison). The production of bio-fuels (bio-

ethanol and bio-diesel) from biomass, for direct use in internal combustion engines, and bio-

methanol for on-board reforming has also been included. 

Using only electrolysis to produce all the hydrogen needed for transport in 2050 would 

require an amount of electricity that would be almost double the quantity consumed that year 

by the rest of the sectors (67,000 vs. 38,000 TWh). As indicated in Table 3, such a huge 

amount could not be covered independently by on-shore wind energy (125% of the total 

estimated capacity would be needed). Only solar photovoltaic and nuclear energies would 

have enough potential capacity (the latter only for a limited period of time between 3 and 13 

years). For example, in order to meet the production target mentioned above with only one 

energy source, either the installed nuclear energy would need to be increased by a factor of 

25, wind energy by a factor of 900 (as indicated the actual demand would be higher than the 

estimated total capacity) or photovoltaic solar energy by a factor of 21,000. 

It is obvious that a mix of energy sources, including hydroelectricity and geothermal energy 

could supply electricity to electrolysers to obtain 1 Gton of H2, even without the need for 

nuclear energy, by an appropriate increase in the power already installed. However, the high 

installation costs of these systems, which would affect the final cost of H2 production 

(Figure 4) as well as the low global efficiency of H2 produced from electrolysis compared to 

the other processes (last column in Tables 1 and 2) seems to favour the use of electrolysers 

only in cases where other cheaper and equally clean processes are not available (for 
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instance in isolated areas without biomass, such as desert areas). Thus, the use of 

decarbonized renewable energy sources, which excludes biomass, should be reserved for 

the production of electricity for direct consumption and not for the widescale production of H2. 

5.2.2 Fossil Fuels 

As already pointed out, fossil fuels will continue to form an important part of the worldwide 

energy economy in the transition towards hydrogen. Hydrogen and electricity could be 

cogenerated in large coal gasifiers equipped with CO2 capture and storage systems. 

Currently the cost of production of hydrogen in centralized coal gasifier systems (without 

CCS) is more expensive than the cost of H2 from centralized natural gas reforming systems 

($0.22/Lge vs. $0.13/Lge) (10). If CCS systems are added the cost will increase up to 

~$0.3/Lge. Moreover, in coal gasification plants of the future with cogeneration systems and 

global efficiencies around 50%, the price of H2 can be expected to fall to ~$0.22/Lge 

(Figure 4). In Figure 4 the equivalence in litres of gasoline is considered in terms of absolute 

energy content without taking into account the higher efficiency of the systems in which H2 

would be used (fuel cells). Thus when comparing the prices of H2 and gasoline per kilometre 

we should multiply the former by an approximate factor of 3/5.  

Added to the small natural gas reformers installed in the previous stage (before 2015) CO2 

capture and storage (CCS) systems will allow the installation of natural gas reforming plants 

to reach capacities of over 50,000 cars per day, since the CO2 produced will be appropriately 

confined. These large plants will be then integrated in a centralized hydrogen network.  

Although clearly the best solution to the negative effects of energy consumption is to 

continue to decrease the use of fossil fuels, their use on a large scale for electricity 

generation and H2 production is guaranteed at least for several decades. For instance H2 

production for transport by coal reforming, if we consider the rate of consumption expected in 

2050 (1 Gton H2/year) will be guaranteed for 70 years if electricity and heat are produced 

from other energy sources (Table 3). With the projected cogeneration plants based on coal, 

equipped with CO2 separation membranes and CCS (30), considering the rate of 
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consumption for 2050 we should be able to produce electricity for 40 years and H2 for 60 

years (a period of time that would be considerably lower if the H2 so formed were employed 

to generate synthetic fuels instead of being directly used in vehicles). The utilization of 

natural gas could duplicate these values, although we would have to reduce them again if we 

take into account the parallel supply of heat. In any case we are talking about a limited period 

of time – a few decades – when biomass should be increasingly replacing fossil fuels, 

allowing us to continue using thermal power plants to generate electricity and hydrogen in a 

clean way. 

5.2.3 Biomass 

Biomass is a clean and available future energy source since it contributes to net CO2 

emissions only in the small amount of fossil fuels used in the transformation processes to H2 

or bio-fuels. Biomass comes from energy crops, such as corn and sugar cane (bio-ethanol 

precursors), sunflower and rapeseed (bio-diesel precursors) and sawmill residues (sawdust 

that produces bio-alcohols and Fischer-Tropsch diesel), agricultural residues (straw, animal 

wastes and manure to produce bio-alcohol and bio-gas) and the organic fraction of domestic 

and industrial wastes (to produce bio-gas and bio-methanol). However, if we take a look at 

the 1,200-1,500 Mtoe of biomass consumed in 2004 (4) almost half was wood burnt in the 

tropical developing countries (in Africa almost 90% of the primary energy consumed was 

provided by wood). In the transition to a hydrogen economy, biomass can be employed as a 

clean form of energy mainly through the three conversion processes (Table 2) described 

below: 

Process 1. Transformation to bio-fuels (bio-ethanol and bio-diesel) that are directly burnt in 

the internal combustion engine. Today the main producers of bio-ethanol are the USA (from 

corn) and Brazil (from sugar cane). Brazil is far ahead of the other producers since biomass 

constitutes around 13% of its energy demand (31). Spain is the leader in bio-ethanol 

production in EU, while Germany and France are the biggest European producers of bio-

diesel. 
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Process 2. Transformation to bio-methanol through syngas (CO+H2) produced in the 

biomass gasification process. Liquid bio-methanol is stored in vehicles provided with a 

reformer in which the fuel reacts with water to produce H2 that is fed to the fuel cell engine 

(32). This option largely increases energetic efficiency compared with bio-fuels. Thus, an 

ideal autothermal process would produce hydrogen with a 104% of the energy existing in the 

reacted methanol.  

Process 3. Direct transformation of biomass to H2. This option is employed in centralized 

reforming systems or in H2-electricity cogeneration systems (i.e. IGCC). The gasification or 

reforming process produces a mixture of H2, CO and CO2. CO is further reacted with water to 

produce CO2 and more H2 (water gas shift reaction). The environmental benefit of this 

procedure is that it allows carbon capture and storage and consequently the net CO2 

emissions are below zero. 

The future of the first option (bio-fuels) as a substitute for petrol in transport (22) is uncertain 

for several reasons. Apart from the production costs and the use of a small amount of fossil 

fuels in bio-fuel production (thus detracting from the real concept of “bio”) there is 

controversy about the use of crops such as corn or sugar beet for energy production rather 

than for alimentary purposes. The controversy centres around the limited availability of 

cultivable land so the production of biomass for one application will have a negative impact 

on the other. Biomass to generate bio-fuels will receive a better response when the massive 

implantation of short-rotation crops of lignocellulosic varieties occurs. Lignocellulosic crops 

do not compete with alimentary crops since they can be implanted in any land (including 

forests). Moreover their own lignin can be used as fuel in the cellulose-to-bio-fuel 

transformation process, thus eliminating the use of fossil fuels. To achieve this, however, it 

will be necessary to optimize and reduce the cost of the cellulose-to-bio-ethanol process.  

For the optimal situation, from an analysis of Tables 1, 2 and 3 it is evident that the total 

energy demand of transport can hardly be covered by bio-fuels alone (process 1) since the 

entire worldwide biomass capacity would have to be employed. This is due to the low 
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energetic yield of this biomass conversion option (~20%) compared to the other two options 

(direct transformation into hydrogen or methanol; ~60-70%). However, the first process is the 

best alternative to allow a gradual decrease in the consumption of gasoline in the short-term, 

since bio-fuels can be mixed with standard gasoline or used alone with only minor 

modifications to the current combustion engines.  

Processes 2 and 3 which employ gasification to obtain bio-methanol or hydrogen are more 

favourable from an energetic point of view and consume less biomass (they only require 37% 

and 28% respectively of the annual maximum capacity of biomass production to be able to 

meet the needs of transport; Table 3). Thus in the medium and long-term they must be 

considered the more reasonable alternatives. The state of the technology of H2 storage will 

be determinant in selecting one of these two options. The use of hydrogen as fuel is slightly 

more efficient (Table 2) if the storage cost is not included, and would allow the combination 

of the large reforming plants with CO2 capture and storage systems, which would lead to 

negative net CO2 emissions (or the removal of a part of CO2 from the atmosphere). However, 

the bio-methanol option has the advantage of not requiring the storage of H2, and would 

allow the use of the existing liquid fuel distribution network. These advantages make bio-

methanol an option to be considered in the future Hydrogen Economy, although to our 

surprise the IEA considers that it is an expensive option and a technological challenge (10). 

However, in our opinion the benefits of bio-methanol should be stressed: (i) biomass 

availability for bio-methanol production is guaranteed (Tables 2 and 3),  (ii) hydrogen storage 

options are likely to be more expensive and currently suffer from a lower state of 

development than onboard reforming, (iii) a deposit with 33 kg of methanol and 14 kg of 

water (54 L) is sufficient to produce 5 kg of H2 (reformer efficiency: 87%) which is enough to 

drive the FC car 400 km, (iv) world methanol production needs to be multiplied by a factor of 

just ~200 from current production, which by the year 2050 would imply one standard bio-

methanol plant (1 Mton/year) per 1,300,000 habitants and (v) bio-methanol is considered to 

be among the cheapest sources of hydrogen (Figure 4).    
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The use of biomass on a large scale for centralized energy production will lead to the 

creation of a transport and distribution network in order to guarantee the supply of biomass to 

regions with a deficit in production by means of an import/export market. Of course this will 

increase the price of biomass but will contribute to the incorporation of the developing 

countries to the club of developed countries, given that their economic biomass potential is 

considerably higher than those of developed countries which will exchange money and 

conversion technology for raw materials (22) in a market that will be fairer and more 

reasonable than the current oil market. 

5.2.4 Thermochemical cycles 

The high energy consumption of electrolysers makes it necessary to find sources other than 

electricity for the production of hydrogen, such as nuclear or solar thermal power. The direct 

thermal splitting of water is technically challenging, since it occurs at a very high temperature 

(~2,500ºC). However, the use of two parallel thermal cycles in which H2 and O2 are produced 

separately, allows H2 to be obtained at a considerably lower temperature (<1,000ºC). The 

use of heat generated directly by solar or nuclear energy sources makes for a more globally 

efficient conversion process than that obtained by an electrolyser (almost two times, see 

Tables 1 and 2). Many cycles are currently under study, the most popular being the S-I cycle 

(sulphur-iodine) which is based on the following reactions: 

Sulphur cycle: 

I2 + SO2 + 2H2O → H2SO4 + 2HI (common reaction at 120°C. Afterwards the two products 

are separated)  

H2SO4 → SO2 + H2O + 1/2O2 (at 850°C; the O2 is separated and the SO2 is recycled) 

Iodine cycle: 

I2 + SO2 + 2H2O → H2SO4 + 2HI (120°C) 

2HI → I2 + H2 (at 450°C; the H2 is separated and the I2 is recycled) 
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As Table 3 shows, to produce by this process all the hydrogen needed to satisfy our 

transport needs in 2050 (H2AT2050) we will have to increase the capacity of currently 

installed thermal solar collectors by 400 times or our nuclear capacity by 9 times (in the latter 

case new designs such as the “very high temperature reactor” (10) will be needed since 

conventional designs cannot achieve the required temperature of ~950ºC). If nuclear energy 

were used to produce all the hydrogen necessary for transport in 2050 (H2AT2050) uranium 

would be exhausted within ~40 years (Table 3). 

Although these processes are technologically feasible they are still under development and 

there are not as yet any viable commercial solutions. Before they can be applied, it will be 

necessary to overcome some technological and social barriers. The technological barriers 

include the cost, the development of economic and appropriate materials for the 

experimental conditions (separation membranes and heat exchangers) and an increase in 

thermal efficiency of over 50%. The main social obstacle to be overcome is again negative 

public opinion towards nuclear energy. In any case this option could not be applied before 

2030 (10).  

 

5.3 Hydrogen distribution network 

Centralized hydrogen production in thermal cogeneration power plants equipped with CCS 

and scaled up reformers and electrolysers will lead to the creation of a hydrogen distribution 

grid for transferring hydrogen from the production points to the consumption points (refuelling 

stations and residential CHP systems). Today there are ~16,000 km of H2 pipelines around 

the world that supply H2 to refineries and chemical plants. These pipes have a diameter of 

25-30 cm and operate at 10-20 atm, although they could operate at pressures of up to 100 

atm. Considering that H2 pipes must be produced with non-porous materials such as steel, 

their cost for a given diameter is around twice that of pipes used for conducting natural gas. 

Moreover, as the volumetric density of hydrogen is a fourth that of natural gas the cost of a 

H2 pipe is about six times higher than that of a natural gas pipe. Estimations by IEA consider 
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the investment cost for new pipes would be $1.4/Lge (10). This is equivalent to a worldwide 

investment of about 5,000 billion dollars per 1 Gton of H2. We also need to include ~300 

billion dollars to cover the cost of the refuelling stations in a centralized network. The cost 

would be considerably reduced if the natural gas infrastructure could be adapted to H2. A 

decentralized network of refuelling stations would cost more than twice this estimate (10). 

Although the cost of distribution would be avoided, the global production cost of H2 would be 

much higher. If we assume that the creation of a centralized network could take as long as 

60 years, the annual cost would be ~80 billion dollars. This is only about 8% of worldwide 

armament expenditure in 2004 (33). 

  

5.4 Storage in vehicles and fuel cells 

As mentioned above a key step on the road to a hydrogen society must be to reduce the cost 

of H2 storage systems and fuel cells in motorised vehicles. Due to the uncertainty about 

whether pressurized and liquid hydrogen tanks can be made at a lower cost the future seems 

to lie in storage in solid materials. These systems require less energy to store H2 in similar 

amounts to gaseous or liquid systems, at a lower volume and at lower pressures. However 

their weight is considerably higher (50 L/ 200 kg for solid systems vs. 100 L/50 kg for H2 

compressed and liquid). Porous carbon was at one time considered an interesting material 

for hydrogen adsorption. However, the failed expectations of carbon nanotubes, whose initial 

results of 30-60 wt% of stored hydrogen are now considered to have been an experimental 

error, has to some extent undermined research on these materials (34,35). Other porous 

materials such as zeolites or MOF (metal organic frameworks), with really high values of 

surface area are still in need of further development. They are capable of storing 

considerable amounts of hydrogen at cryogenic temperature but their adsorption capacities 

at ambient temperature are still quite low. Rechargeable metallic hydrides, including their 

alloys, seem to be in a better starting position for winning the storage race, with an estimated 

value of 8 wt% (DOE objective: 6 wt%) at 10-60 atm.  
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The current cost of fuel cell vehicles is about $2,000/kW (a standard car will need a fuel cell 

stack of ~100 kW). Future previsions indicate that this cost could be reduced to $100/kW, 

although a further reduction to ~$50/kW will be needed to make them completely competitive 

(10). Such a reduction cannot be achieved with the current technology so new fuel cell 

concepts are required. Currently PEMFC use conducting Nafion membranes as electrolytes, 

which operate at low temperature (80ºC). As a consequence, the amount of Pt needed as 

catalysts in the electrodes for the electrochemical conversion of H2 and O2 into water needs 

to be very high (1.4 g/kW). Two ways to reduce the amount of Pt would be either to increase 

the reaction temperature over 100ºC, which would imply the development of new 

membranes, or to resort to more active catalysts, such as platinum alloys with cobalt or 

chromium (36) supported on electrodes with a higher surface area. The high temperature FC 

would additionally allow the bio-methanol reforming system to be integrated more easily in 

the vehicle if the development of this technology is finally achieved.  

Beyond 2015 an exponential increase in the use of H2 can be expected for transport in 

market niches where the engine and storage tank price is not critical (i.e. buses, trucks and 

planes). The design and operation of SOFCs for the cogeneration of electricity and heating in 

homes must be improved (at present the start-up is too slow due to the high operation 

temperature) but they will gradually become an integral part of society over the next few 

decades.  

 

6. Future expectations 

Two simultaneous conditions must be met for a society based on a Hydrogen economy. First 

international organisations must be strong enough to guarantee the fulfilment of the 

international agreements on global reductions in CO2 emissions. This problem can be 

expressed in numbers via the worldwide CO2 emission market, in which an estimated cost of 

$50/ton would seem to be enough to force the energy companies along the path of 

implementing carbon-free energy sources. If this condition is not met, fossil fuels will 
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continue to form the base of the energy scenario for decades. In this situation, when the oil is 

used up, synthetic fuels produced from coal and natural gas by Fischer-Tropsch synthesis 

(SASOL process) will be employed in transport, with drastic consequences for climate 

change and with society left wondering why its predecessors were so selfish and 

unconscientious in their attitude to the energy crisis. However, this is not the only condition 

that needs to be accomplished for the success of a hydrogen-based society. Technological 

development must bring about a reduction in the costs of H2 production, distribution, storage 

and utilisation (fuel cells). Even in the case of failure, provided the first condition is met, the 

energy system might also be a clean one if society uses renewable energy as electricity 

source and employs hybrid systems based on conventional lithium batteries and bio-fuels to 

power its cars.  

IEA has analysed several scenarios of political and technological evolution that have been 

named ESTEC (10) from the dimensions employed to quantify the different hypotheses 

(Environment, Security supply, Technological progress, Economic conditions and Competing 

options). In the most favourable situation for the development of a Hydrogen Economy 

(ESTEC D) in 2050 30% of the cars will be powered by hydrogen feed fuel cells and there 

will be a capacity of 200-300 GW in installed fuel cells to cogenerate heat and electricity in 

the residential sector. By then the collective impact of hydrogen and other clean technologies 

(CCS, electricity from renewable energies, etc) will help to stabilise CO2 emissions to the 

atmosphere and create a diversified network of energy sources, thereby reducing our 

dependency on oil. But videre est credere. 

 

Abbreviations  

CCS  CO2 capture and storage 

CHP  Combined heat and power 

DMFC  Direct methanol fuel cell 

DOE   Department of Energy (USA) 

FC  Fuel cell 

ICE  Internal combustion engine  
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IEA  International Energy Agency 

IGCC   Integrated gasification combined cycle 

Lge  Litre of gasoline equivalent 

LCH  Low calorific heat 

OPEC  Organisation of the petroleum exporting countries 

PEMFC Proton exchange (polymer electrolyte) membrane fuel cell 

SOFC  Solid oxide fuel cell 
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Captions to figures 

 

Figure 1. Current energy scenario (1-5). In the figure the distribution of the current 

energy sources consumption is indicated (basis 100%), including the transformation 

process and the final uses of the primary energy worldwide (38.1% electricity, 44.3% 

heat and industry consumption, 17.6 % transport (excluding electricity vehicles). 4.2% 

of the primary energy sources is lost during electricity distribution (~10% of the 

electricity generated). Worldwide primary energy in 2004: 11.7 Gtoe = 125,000 TWh 

=496 Quad  : Includes agriculture, commerce, services and others not specified 

Figure 2. Expectative for the Hydrogen society in the distant future. Renewable 

energies are intensified and fuel cells-hydrogen binomial is employed to achieve higher 

efficiencies.  

Figure 3. Energy sources mix and H2 production processes in a hydrogen society 

Figure 4. Cost estimations in the future production of H2 (  Ref. 10, § Ref. 37) 
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Table 1. Primary Energy consumption, reserves and maximum capacities estimated from the non-renewable energy sources. 

The last column shows an estimation of the amount of primary energy needed to generate 1 Gton of H2, an amount that is 

enough to supply all transport by 2050, if the implantation of fuel cell vehicles is 100% (H2AT2050=H2 for all transport in 2050). 

Electric energy consumed in 2004: 17,350 TWh. Estimation of electric energy needed in 2050 (excluding transport): 38,000 

TWh. Heat consumption estimation: 10 Gtoe. Efficiency of the FC: 50%. Efficiency of the ICE: 30% 

Primary 
Energy Source 

Availability 

H2  production 
(efficiency%) (‡) 

Needs for H2AT2050 

Primary Energy 
2004  

(Mtoe/y) 

( ,¥,&, ) 

Proven 
Reserves 

2004 
(Mtoe) (¥) 

Electricity 
production 2004 

(TWh/y) ( ,¥) 

From Primary Energy  
(Mtoe/y)  (global 
efficiency%, §) 

Nuclear 624.3 
45,000 – 

195,000 ( ) 
2,752.2 

Electrolysis  
(>50%) 

15,100 (18%) 

Termochemical 
cycles 
(>40%) 

6,750 (40%) 

Coal 2,778.2 448,000.5 6,939.4 Reforming (44%) (†) 6,250 (44%) 

Natural Gas 2,420.4 161,000.6 3,350.0 Reforming (83%) (†) 3,250 (83%) 

Oil 3,767.1 162,000.1 1,148.6 Reforming (70%) (†) 3,900 (70%) 

 

( )  Ref. 21  
(‡)  Ref. 23  
(§)  Global efficiency: 100×Primary E (Mtoe) / [1,000 Mton H2 × 2.7 Mtoe/Mton H2] 
(¥)  Ref. 2 
(&)  Ref. 3  

( )  Ref.  4   

( )  These amounts are equivalent to 3.9 Mton (conventional reserves) and 17.1 Mton (conventional + speculative reserves) of 
natural uranium [1 kg uranium= 50 MWh, 36%efficiency].  (Ref. 11) 

(†)  Ref. 27 
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Table 2. Primary Energy consumption, reserves and maximum capacities estimated from the renewable energy sources. The last 

column shows an estimation of the amount of primary energy needed to generate 1 Gton of H2, an amount that is enough to 

supply all transport by 2050, if the implantation of fuel cell vehicles is 100% (H2AT2050=H2 for all transport in 2050). Electric 

energy consumed in 2004: 17,350 TWh. Estimation of electric energy needed in 2050 (excluding transport): 38,000 TWh. Heat 

consumption estimation: 10 Gtoe. Efficiency of the FC: 50%. Efficiency of the ICE: 30% 

Primary 
Energy 
Source 

Availability 

H2  production 
(efficiency%) 

(‡) 

Needs for 
H2AT2050 

Primary 
Energy 2004  

(Mtoe/y) 

( ,¥,&, ) 

Maximum 
estimated Energy 

production (Mtoe/y) 

Electricity 
production 

2004 
(TWh/y) 

( ,¥) 

Maximum estimated 
electricity production 

(TWh/y) 

From Primary Energy 
(Mtoe/y) 

(global efficiency%, 
§) 

Hydraulic 634.4  2,853.8 10,000 (‡) 

Electrolysis  
(>50%) 

15,000 (18%) 

Wind on 
shore 

29.8 - 81.5 
50,000 (+) 

Spain: 70-100 (‡) or 
2,285 (#) 

25,000 (11%) 

Geothermal 6.3 - 54.7 2,000-11,000 ( ) 7,400 (36%) 

Solar 
(photoV) 

2.0 - 3.2 
Spain: 100,000 km

2
 

direct insolation 
26,000 (‡) 

42,000 (6.4%) 

Solar 
(thermoch.) 

49.4 
Spain: 100,000km

2
 

direct insolation 
5,000  (‡) 

  

Thermo-
chemical 

cycles  
(>40%) 

22,000 (12%) 

Biomass 1,350.0 12,700-9,400 (*)  164.2 18,000 - 13,500 (*) 

Bio-ethanol 
Bio-diesel 

(35%)  (¶,∞) 

12,900 (21%) 
(Motor ICE) 

Bio-methanol 
from syngas 
(65%)   (†) 

4,600 (59%) 
(on-board 

autothermal 
reforming: 87%) (♪) 

Reforming 
(73%)  (†) 

3,750 (73%) 

(*)  Maximum estimated for 2050 (4,100-12,700 Mtoe) and 2100 (3,000-9,400 Mtoe) respectively (Ref. 20) 

( )  Ref.21  

( )  Identified sources – non identified sources rank (Ref.  22) 
(‡)  Ref.23  
(§)  Global efficiency: 100×Primary E (Mtoe) / [1,000 Mton H2 × 2.7 Mtoe/Mton H2]---- 
(¥)  Ref.  2   
(#)  Ref.24  
(+)  Ref 25 
(&)  Ref. 3  

( )  Ref.4   
(¶)  Biofuels production efficiency from biomass (Ref. 22) 
(∞)  A production of 75% bio-ethanol and 25% bio-diesel (~70% LHV of petrol) is assumed 
(†)  Ref. 26   
(♪) Ref. 27 
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Table 3. Utilization values of energy sources to produce enough H2 to supply transport needs based totally on fuel 

cell vehicles in 2050 (1 Gton H2) by means of the processes listed in Tables 1 and 2. To consider total energy 

consumption 38,000 TWh/y should be added for electricity consumption and 10 Gtoe for heat consumption. 

Energy source (H2 production 
method)

a
 

Multiplying factor in 
2050 compared to 

2004  

Consumption in 
2050 (percentage 

of maximum 
capacity) 

Years to 
extinction at 

the 
consumption 
rate of 2050 

Solar photovoltaic (e)
b 

21,000 - - 

Geothermal (e) 1,250 3,000-600
c
  - 

On-shore wind (e) 900 125 - 

Solar thermal (tcc)
b 

500 - - 

Hydraulic (e) 25 625 - 

Nuclear (e) 25 34-8
c 

3-13
c 

Nuclear (tcc) 11 16-4
c 

6-30
c 

Biomass (bio-ethanol / diesel -ICE) 7.0 104 - 

Biomass (bio-methanol / on board 
reforming Fuel Cell engine) 

2.5 37 - 

Biomass (r)
b 

2.1 28 - 

Coal  (r) 2.3 1.4 72 

Natural gas (r) 1.4 2.0 50 

Oil (petrol-ICE) 1.3 2.8 36 

Oil (r) 1.0 2.4 42 

 

a
For biomass and oil the consumption needed to produce bio-fuels and petrol is also given 

b
e: electrolyser; tcc: thermochemical cycle; r: reformer 

c
Identified sources – (identified + non-identified sources). Sea uranium is excluded 
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Figure 1 
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Figure 4 
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Corrigendum to “Towards the hydrogen economy?” [Int. J. Hyd. Energy, 32(12) (2007) 1625-1637] 

G. Marbán, T. Valdés-Solís 
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“There are some errors in references given in Tables 1 and 2 

Table 1, page 1632:  

Footnote “a” Ref. [21] should be read Ref. [23] 

Footnote “e” Ref. [23] should be read Ref. [25] 

Footnote “h” Ref. [27] should be read Ref. [29] 

 

Table 2, page 1633: 

Footnote “a” Ref. [21] should be read Ref. [23] 

Footnote “e” Ref. [23] should be read Ref. [25] 

Footnote “i" Ref. [22] should be read Ref. [24] 

Footnote “j” Ref. [20] should be read Ref. [22] 

Footnote “k” Ref. [22] should be read Ref. [24] 

Footnote “m” Ref. [26] should be read Ref. [28] 

Footnote “n” Ref. [27] should be read Ref. [29]” 

 

mailto:greca@incar.csic.es

