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Zülpicher Strasse 77, 50937 Köln, Germany
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Abstract.
We investigate the quantum cosmological tunneling scenario for inflationary models. Within a path-
integral approach, we derive the corresponding tunneling probability distribution. A sharp peak in
this distribution can be interpreted as the initial condition for inflation and therefore as a quantum
cosmological prediction for its energy scale. This energy scale is also a genuine prediction of any
inflationary model by itself, as the primordial gravitons generated during inflation leave their imprint
in the B-polarization of the cosmic microwave background. In this way, one can derive a consistency
condition for inflationary models that guarantees compatibility with a tunneling origin and can lead
to a testable quantum cosmological prediction. The general method is demonstrated explicitly for the
model of natural inflation.
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1 Introduction

Cosmology without the mechanism of inflation (see e.g. [1]) seems inconceivable. Not only does
inflation solve many conceptual problems of the old hot big-bang theory, it is also in excellent agreement
with experimental data of ever increasing precision [2–5]. In fact, it is hard to devise a mechanism
different from inflation that could solve all cosmological obstacles and, at the same time, does not
contradict any observation.

Despite all its success, however, the nature and the origin of inflation remain unexplained so
far. Most inflationary models are based on a scalar field ϕ —the inflaton. Its identification with a
scalar field in particle-physics models is still debated. For instance, in the model of non-minimal Higgs
inflation, ϕ has been identified with the observed Standard Model Higgs boson [6–14].1 However, even
in scenarios where ϕ is embedded in a realistic theory, the question of why inflation has started in the
first place remains mostly unresolved.

Inflation presupposes an already pre-existing classical background on which tiny primordial quan-
tum fluctuations can propagate [18–23]. During inflation, these quantum fluctuations experience an
effective quantum-to-classical transition; see [24–26] and the references therein.

At the most fundamental level, a classical background does not exist. The reason is that, given the
fundamental quantum character of all matter interactions, it is expected that gravity (and therefore
spacetime) has to be quantized as well. There are many different approaches to quantum gravity
[27–29]. In the traditional canonical approach, when restricting to cosmology, we obtain the Wheeler–
DeWitt equation that governs the quantum dynamics of the universe. This is a differential equation
which has to be accompanied by a proper boundary condition. In the absence of a fully developed
theory of quantum gravity, cosmological considerations offer at least a heuristic guideline for natural
choices of such boundary conditions. The hope is that this will ultimately lead to observable quantum
cosmological effects [30–34]. There also exists a path-integral analogue to the canonical approach,
which will be used here.

Two of the most influential proposals for boundary conditions are the so called no-boundary
[35, 36] and tunneling [37–42] conditions; see, for example, [27] for a review. The underlying picture
behind the tunneling condition is that our universe as a whole was created by a ‘quantum tunneling
from nothing’. (As we shall briefly discuss below, however, this picture can at best be seen as a
metaphor.) The tunneling condition seems to be preferred over the no-boundary condition, in the
sense that it can lead to a successful post-nucleating phase of inflation; see [43] and references therein.

1See also variants of Higgs inflation such as the ‘new Higgs inflation’ model, where a minimally coupled scalar field
with a non-canonical kinetic term coupled to the Einstein tensor was considered [15–17].
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It is, however, not self-evident that an inflationary model and the tunneling process can always
be combined into one consistent scenario. Typically, the tunneling proposal is believed to give rise to
a sustainable inflationary phase because it predicts a conditional probability of the field values peaked
at large values of the potential. This accords with chaotic inflation where, in its simplest incarnation,
the potential is a monomial of ϕ.2

The purpose of this paper is to derive a compatibility condition testing whether the origin of
inflationary models favored by the 2013 Planck release [5, 48, 49] can consistently be explained by a
quantum tunneling of the universe. The requirement of consistency then might lead to restrictions for
the parameters of the underlying inflationary models and therefore to testable quantum cosmological
predictions. For completeness, a separate confrontation with Bicep2 results [50] is also carried out,
regardless of the ongoing debate on their ultimate validity [51].

The paper is structured as follows. In section 2, we introduce the formalism of the Euclidean
instanton and construct the quantum cosmological tunneling distribution. In section 3, we consider the
model of natural inflation and derive a consistency condition for the tunneling scenario. We conclude
in section 4 by summarizing our results and comment on a similar analysis for different models of
inflation as well as on a more ambitious quantum analysis.

2 Quantum origin of the cosmos

2.1 Effective action and de Sitter instanton

The quantum tunneling can be described in terms of instantons —solutions to the Euclidean equations
of motion. The effective action Γ is defined as

e−Γ :=

∫

[Dg] e−Seff [g], (2.1)

with the matter effective action Seff defined by the ‘quantum average’ over matter fields Φ(x)

e−Seff [g] :=

∫

[DΦ] e−S[g,Φ] . (2.2)

In practice, it is usually impossible to calculate the full effective action Γ exactly and one has to resort
to a loop expansion. Here, we have split the functional integrals into two parts, distinguishing between
the geometrical and the matter part. In what follows, we consider the theory described by the action
S as a quantum field theory in curved spacetime and neglect graviton loops, that is, we only consider
(2.2) in a classical background described by the metric gµν .

Following [43], we consider the matter effective action

Seff [g] =

∫

d4x
√
g
M2

P

2
[2Λeff −R(g) + . . . ] . (2.3)

Here, Λeff is the effective cosmological constant, MP = mP/
√
8π ≈ 2.43 × 1018 GeV is the reduced

Planck mass (in units where ~ = c = 1) and R(g) is the Ricci scalar constructed from the Euclidean
metric field gµν(x). The ellipsis stands for higher-order curvature and gradient terms that we do not
take into account.

In the cosmological context of slow-roll inflation driven by a real scalar field ϕ, the vacuum
energy density during inflation is dominated by the nearly constant potential V (ϕ). This leads to the
identification M2

P Λeff ≈ Veff(ϕ) and justifies the omission of gradient terms in (2.3).

2On the other hand, the no-boundary proposal can accommodate inflation after introducing a re-weighting of the
probability [44–47].
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Once we have calculated the effective action (2.3), we can specialize to a fixed closed Friedmann–
Lemâıtre–Robertson–Walker (FLRW) background with line element

ds2 = N2(τ) dτ2 + a2(τ) d2Ω(3). (2.4)

Here, a(τ) and N(τ) are the Euclidean scale factor and lapse function, while d2Ω(3) is the volume
element of the three-dimensional sphere. In the background metric (2.4), the effective action (2.3)
reduces to

Seff [a, N ] = 12π2 M2
P

∫

dτ N

[

− 1

N2

(

da

dτ

)2

a− a+H2
eff a

3

]

, (2.5)

where we have identified the effective cosmological constant Λeff ≡ 3H2
eff with the effective Hubble

parameter Heff . The instanton is a solution of the Euclidean Friedmann equations, which are obtained
by varying (2.5) with respect to N ,

1

N2

(

da

dτ

)2

= 1−H2
eff a

2 . (2.6)

This equation has one turning point a+ := a(τ+) := 1/Heff so that the real solution interpolates
between a− := a(τ−) := a(0) = 0 and a+. Depending on the sign of N , the gauge choice of the
Lagrange multiplier N describes two disjoint equivalence classes of instantons. It is sufficient to
consider the representative values N± := ±1. The explicit solution to the differential equation (2.6)
then reads

a(τ) =
1

Heff
sin (Heff τ) , (2.7)

where we have fixed the integration constant by the condition

d a

dτ

∣

∣

∣

a=0
= 1 , (2.8)

which is provided by the constraint equation (2.6). We have also chosen the geometrical meaningful
positive root of (2.6) to obtain (2.7). The turning point a+, corresponding to the equator of the Eu-
clidean half sphere where a(τ) is maximized, determines the ‘moment of nucleation’ τ+ := π/(2Heff ).
The tunneling process is then described by attaching the Euclidean half sphere to the inflationary
Lorentzian regime at τ+. At the boundary, we analytically continue (2.7) to Lorentzian signature
τ → i t:

aL(t) = a

(

π

2Heff
+ it

)

=
1

Heff
cosh (Heff t) . (2.9)

The instanton is obtained by inserting (2.7) into (2.5) and integrating from τ− to τ = τ+:

Son-shell
eff [a,N±] = ∓8π2 M2

P

H2
eff

. (2.10)

Neglecting graviton loops, we obtain the tunneling instanton Γon-shell for the choice N− = −1 [43],

Γon-shell(ϕ) := Seff [a,−1] = 24π2 M4
P

Veff(ϕ)
, (2.11)

where we have again used the identification H2
eff ≡ Λeff/3 ≡ Veff/(3M

2
P) in the last step (note that

Veff > 0).
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It should be mentioned that the analogy with the quantum mechanical tunneling is of at most
heuristic value. In fact, the presented derivation of the instanton simply corresponds to a solution
of the Euclidean equations of motion subject to some specially chosen boundary condition. Here,
‘tunneling’ is then simply defined by this choice. In the ordinary quantum mechanical tunneling
problem, say the example of the spontaneous decay of an α-particle, tunneling is described by a wave
function that contains only outgoing modes. But in this case, there is always a fixed reference phase
∝ exp(−iω t) with respect to which one can define outgoing and incoming modes unambiguously
[53, 54]. The sign in front of the frequency ω and the external time parameter t in the exponential is
fixed by the sign of the time derivative in the Schrödinger equation. If the wave function corresponds
to a plane wave ∝ exp(−iωt∓ i k x), a relative minus sign with respect to the sign of t corresponds to
outgoing modes k. In contrast, in the context of the quantum tunneling of the universe as a whole,
there is no such simple notion of ingoing and outgoing modes, as there is no notion of an external
time parameter anymore at the fundamental level [27]. In the absence of any reference phase, the
definition of incoming and outgoing becomes meaningless. The only notion of time one can introduce
at the fundamental level is that of ‘internal time’. In this case, the role of time can be played by one or
more configuration-space degrees of freedom. In the context of cosmological minisuperspace, the scale
factor has a preferred role as internal time parameter, in the sense that its associated kinetic term
comes with a relative minus sign compared to the matter degrees of freedom. This is a consequence of
the indefinite nature of the minisuperspace DeWitt metric. Time as an external parameter can only
be recovered at a semi-classical level [27, 29]. All this does not invalidate the construction presented
here but simply serves to clarify our notion of ‘tunneling’ and emphasizes the difference with respect
to the ordinary quantum mechanical tunneling problem.

2.2 Tunneling distribution function and initial conditions for inflation

The interpretation of the wave function of the universe is largely an open problem [27]. One heuristic
approach is to interpret peaks in the (absolute square of the) wave function as a prediction; see [55].
Recently, this idea was applied to the model of non-minimal Higgs inflation [43, 56] and we will follow
a similar idea in the present paper with the purpose of presenting a general construction that can
serve as a tool to derive predictions from quantum cosmology.

In the semi-classical approximation to quantum cosmology, the no-boundary proposal does usu-
ally not give a wave function which is peaked at a field value high enough for inflation [52]. Such a
peak may arise in models of eternal inflation using the landscape picture [47] but we will not discuss
them here. For this reason, we will only address the tunneling proposal. From it, using (2.11), the
probability distribution in the semi-classical limit is found to be

T (ϕ) := e−Γon-shell(ϕ) = exp

[

−24π2 M4
P

Veff(ϕ)

]

. (2.12)

A peak corresponds to a maximum of (2.12). Finding this peak is equivalent to finding the maxima
of the potential Vmax := Veff(ϕmax). This leads to the simple conditions

dVeff(ϕ)

dϕ

∣

∣

∣

ϕ=ϕmax

= 0,
d2 Veff(ϕ)

dϕ2

∣

∣

∣

ϕ=ϕmax

< 0 . (2.13)

The peak ϕmax in (2.12) corresponds to the value of ϕ that selects the most probable value of Λeff =
Veff(ϕmax)/M

2
P for which the universe starts after tunneling. In this way, the quantum scale of inflation

was obtained in [57–61].

A high value of Vmax is necessary to start an inflationary evolution after tunneling. Therefore,
ϕmax can be interpreted as setting the initial conditions for inflation. In the inflationary slow-roll
regime, ϕ ≈ const and the energy density is completely dominated by Vmax. The peak value ϕmax
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allows one to determine the energy scale of inflation by

EQC
infl := V 1/4

max . (2.14)

One should bear in mind that EQC
infl 6= ϕmax in general, as ϕ is only a coordinate in the field configuration

space and as such does not have any direct physical meaning (although both EQC
infl and ϕmax have the

same physical dimension of an energy). Only the (effective) potential itself can serve as a meaningful
observable.

Classical inflationary models predict an energy scale

Emodel
infl := V

1/4
∗ , (2.15)

where V∗ := V (ϕ∗) and ϕ∗ denotes the field value evaluated at the moment k∗ = H∗ a∗ when the pivot
mode k∗ (to be chosen according to the observational window of the experiment) first crosses the
Hubble scale. Inflationary models allowing for a quantum cosmological origin in the sense discussed
here must therefore satisfy the approximate consistency condition

EQC
infl ≈ Emodel

infl , (2.16)

that is, the energy scale of the inflationary model must be of the same order as the prediction from
quantum cosmology. In principle, this is an exact relation and one could derive a very precise prediction
of quantum cosmology. However, since in most situations only a truncated loop expansion of Γ (and
therefore of T ) is available, one cannot expect this condition to be satisfied exactly at the perturbative
level. It is well known that radiative corrections can change the shape of the effective potential and,
in particular, its extrema which determine the peak position.

If the amplitude of the tensor power spectrum at the Hubble-scale crossing, At ∗, is known, one
can introduce a third scale, the energy scale of inflation inferred from this amplitude. Using, e.g.,
the relations (152) and (216) from [62], one gets the following expression for the inferred “observed”
energy scale of inflation:

Eobs
infl = MP

(

3

2
π2 At ∗

)1/4

≈ MP

(

3

2
π2 As ∗ r∗

)1/4

. (2.17)

In the first step, we have used the well-known expression for tensor modes At ∝ H2 ∝ E4
infl at horizon

crossing. To first order in the slow-roll approximation, the scale Eobs
infl can thus be expressed in terms of

the tensor-to-scalar ratio r := At/As and the amplitude of the scalar perturbations As, which is fixed
by the measured temperature anisotropies of the cosmic microwave background. For the pivot scale
k∗ = 0.002 Mpc−1, the best fit of the Planck+WP data by the ΛCDM model yields the following 1σ
experimental bound on As ∗ [5]:

ln
(

1010 As ∗

)

= 3.089+0.024
−0.027 . (2.18)

Until recently, observations gave only an upper bound on r. If, however, the recent announcement
by the Bicep2 experiment of the discovery of primordial gravitational waves [50] is confirmed, this
will yield a model-independent determination of the energy scale of inflation. Assuming that this is
the case, one has r = 0.20+0.07

−0.05 for the primordial graviton contribution, or r = 0.16+0.06
−0.05 if currently

best available dust models are taken into account. Taking the central values As ∗ = 2.2 × 10−9 and
r = 0.16, this leads to an energy scale

Eobs
infl ≈ 2.06 × 1016 GeV , (2.19)
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which can be roughly taken as upper bound for the inflationary energy if the Bicep2 constraint is
ignored. We can thus make contact with experiments via the extended consistency condition

EQC
infl ≈ Emodel

infl ≈ Eobs
infl . (2.20)

Since probabilistic arguments in the context of cosmology involve difficult conceptual questions,
we shortly summarize the underlying assumptions allowing for a consistent application and interpre-
tation of the tunneling scenario presented here.

1. A classical background must have emerged. In the underlying full quantum theory, there is not yet
any notion of ‘background’ or ‘classical’, but only that of a pure quantum state, corresponding
to the wave function of the universe. To understand the semi-classical limit, two steps must
be performed [27]. First, one must employ a Born–Oppenheimer type of approximation scheme
to find wave functions with a semi-classical behavior. Second, one must invoke the process
of decoherence [63] to understand the degree of classical behavior. The semi-classical wave
function can be understood as one branch of the full wave function in the Everett interpretation
of quantum mechanics. It is this semi-classical branch of the full wave function which is used to
construct the probability distribution (2.12). The emergence of a quasi-classical background via
decoherence is induced by the division of the configuration space into system and environment;
in concrete models, the system consists of global degrees of freedom such as the scale factor and
the inflaton, and the environment consists of small density fluctuations and small gravitational
waves [64–66]. The inevitable interaction with the environment then leads to the entanglement
of the system with the environment. The process of decoherence describes the effective influence
of the environment on the system by integrating out the overwhelmingly many inaccessible
environmental degrees of freedom and leads to a suppression of quantum correlations in the
reduced density matrix for the system. The exponential suppression of the non-diagonal elements
of the reduced density matrix then corresponds to an effective classicalization of the system. Once
the classical behavior of the ‘background’ is understood, one can address the quantum-to-classical
transition of inhomogeneous degrees of freedom [25, 26].

2. The universe ‘nucleates’ into a homogeneous and isotropic universe. The concordance model of
cosmology is based on the cosmological principle which implies homogeneity and isotropy around
any point in space, when averaged over scales larger than around 100 Mpc. This assumption
is supported a posteriori by empirical evidence from observations of the large-scale structure
within the observable patch of our universe.

3. Right after the tunneling process, the universe starts a phase of accelerated expansion (inflation).
This assumption is also supported by observational evidence and a posteriori justifies the use of
the de Sitter instanton.

4. The probability distribution should possess a sharp peak. Without such a peak, there would be
no clear selection mechanism for the most probable value of ϕ. If no peak is present and no
other criterion is found, one must refer to the anthropic principle as the only selection principle.

5. We have to assume some kind of ‘principle of mediocrity’ [67] in order to attribute predictive
power to the result for EQC

inf . This simply means that in order to interpret a deviation from
the peak of T in a probabilistic sense, we have to assume that in the multiverse context our
universe is not very special. Otherwise, a deviation of the measured Eobs

inf from the calculated

EQC
inf , determined by the peak of the tunneling distribution, would have no predictive power at

all, for it might perfectly be that we simply live in a very improbable branch of the universe
located at the far end of the tail of the probability distribution, without any contradiction and
without being able to draw any conclusion from it. In contrast, if we assume instead that our
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semi-classical branch of the universe is indeed for some reason mediocre with respect to all other
branches, a strong discrepancy between the measured Eobs

inf and the calculated EQC
inf could indicate

a falsification of the underlying inflationary model used to calculate EQC
inf . This assumption is

rather speculative and, of course, tightly related to the inevitable problem of having only one
sample universe.

3 Natural inflation

In what follows, we will focus on a tree-level analysis for the model of natural inflation [68]. There are
several other models favored by Planck data. Among them, we mention Starobinsky’s R+R2 model
[69], inflation with a strong non-minimal coupling [70–74] (including non-minimal Higgs-inflation [6–
13]) and effective string-inspired models (see, e.g., [75, 76] and related work). These models predict a
tiny tensor-to-scalar ratio which would be in agreement with the upper bound on r derived by Planck,
but in the light of the Bicep2 data they are under some pressure. In contrast, the natural-inflation
scenario fits the Bicep2 data easily [77].

Moreover, while natural inflation already admits a quantum cosmological analysis at the tree
level, the same is not true for the remaining models listed above. Although the procedure of our
tunneling analysis is applicable in general also for these models, they all share the common feature
that their tree-level potentials become nearly flat for high energies and thus do not feature a strict
maximum. Hence, there is no sharp peak in (2.12). Note, however, that radiative corrections will
in general change the structure of the effective potential such that a tunneling analysis may become
possible. This was, for example, the case in [43] where the renormalization-group flow of the Higgs
potential due to loop contributions of heavy Standard Model particles leads to the formation of an
additional minimum for high energies, thereby creating a maximum in between the two minima. We
will comment on different models and radiative corrections in section 4.

The potential for natural inflation reads [68]

V = Λ4 [1 + cos (ϕ/f)] . (3.1)

Here, ϕ is interpreted as a pseudo Nambu–Goldstone boson taking values on a circle with radius f and
angle ϕ/f ∈ [0, 2π). the constants Λ and f have dimension of mass and determine the height and the
slope of the potential; in the model of natural inflation, one expects f = O(MP) and Λ ≈ MGUT ∼ 1016

GeV, the grand-unification scale.

3.1 Tunneling analysis

The extrema of (3.1) are obtained by the condition

dV

dϕ

∣

∣

∣

ϕ=ϕext

= −Λ4

f
sin (ϕext/f) = 0 , (3.2)

leading to ϕext = nπ f, n ∈ Z. If ϕext is a maximum,

d2V

dϕ2

∣

∣

∣

ϕ=ϕext

= −Λ4

f2
cos (nπ) < 0 ; (3.3)

peak values correspond to even n, i.e., due to periodicity,

ϕmax := 2πnf . (3.4)

The potential at ϕmax has the value

Vmax = 2Λ4 . (3.5)
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The predictability of the tunneling distribution T (ϕ) defined in (2.12) is determined by the sharpness
of the peak ϕmax. The sharpness is here defined as

S :=
(∆ϕ)2
(

EQC
infl

)2 ≡ (∆ϕ)2√
Vmax

. (3.6)

Here, the variance (∆ϕ)2 measures the width of the peak, and EQC
infl defines the height of the peak.

In view of (3.1), the distribution (2.12) is clearly symmetric around ϕmax. In order to get a rough
estimate for the width ∆ϕ, we can fit T to a normal distribution around the peak ϕmax. Therefore,
we take ϕmax as the mean and expand Γon-shell from (2.11) around ϕmax to second order:

Γon-shell(ϕ) = Γon-shell(ϕmax) +
1

2
Γon-shell′′(ϕmax)(ϕ− ϕmax)

2

≡ Γon-shell(ϕmax) +
1

2

(ϕ− ϕmax)
2

(∆ϕ)2
. (3.7)

This leads to the identification

(∆ϕ)2 :=
1

Γon-shell′′

∣

∣

∣

∣

ϕ=ϕmax

=
1

6π2

f2Λ4

M4
P

, (3.8)

where primes denote derivatives with respect to ϕ. The sharpness of the peak S is then estimated as

S =
(∆ϕ)2
(

EQC
infl

)2 ≈ 1

6π2

f2Λ2

M4
P

∼ Λ2

M2
P

∼ 10−4 , (3.9)

where we have used f ∼ MP and, using (2.14) and (3.5), EQC
inf ∼ Λ.

3.2 Slow-roll analysis

The cosmological parameters in the inflationary slow-roll analysis are completely determined by the
potential and its derivatives. The first two slow-roll parameters are given by

ǫv :=
M2

P

2

(

V ′

V

)2

=
M2

P

2 f2
tan2 [ϕ/(2 f)] , ηv := M2

P

(

V ′′

V

)

= − M2
P cos(ϕ/f)

f2 [1 + cos(ϕ/f)]
, (3.10)

with ǫv ≪ 1 and |ηv| ≪ 1 during inflation. The scalar spectral index and the tensor-to-scalar ratio
read

ns = 1 + 2 ηv − 6 ǫv = −M2
P

f2

3− cos(ϕ/f)

1 + cos(ϕ/f)
, (3.11)

r = 16 ǫv =
8M2

P

f2
tan2 [ϕ/(2 f)] . (3.12)

All cosmological observables have to be evaluated at ϕ∗, the field value that corresponds to the moment
where the pivot mode k∗ first crosses the Hubble scale. The number of e-folds N∗, which is a measure
of how long inflation lasted, connects the end of inflation ϕend with the value ϕ∗:

N∗ =

∫ ϕend

ϕ∗

dϕ

M2
P

V

V ′
=

2 f2

M2
P

ln





sin
(

ϕend

2 f

)

sin
(

ϕ∗

2 f

)



 . (3.13)
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The value ϕend that determines the upper integration bound in (3.13) is defined by the breakdown of
the slow-roll approximation at ǫv(ϕend) := 1,

ϕend = 2 f arctan(
√
2 f/MP) . (3.14)

Inserting (3.14) in (3.13), solving for ϕ∗ and parametrizing f in units of MP, we find

ϕ∗ = 2MP α arcsin

(

αe−N∗/2α2

√

1/2 + α2

)

, (3.15)

where α := f/MP. Evaluating the potential (3.1) at ϕ∗ yields

V (ϕ∗) = 2Λ4 [1− δV (α,N∗)] , (3.16)

where we have defined

δV (N∗, α) :=
2 e−N∗/α2

α2

1 + 2α2
. (3.17)

The consistency condition (2.16) implies Vmax = V (ϕ∗), or δV = 0. Since N∗ should be in the range
50 . N∗ . 60, this requires α = 0 for (2.16) to be satisfied exactly.

However, by inspection of (3.1), α = 0 is not allowed. Moreover, forN∗ = 60, Planck constraints
on (ns, r) [4, 5] imply the following bound on α [48]:

α > 4.6 (95% CL) . (3.18)

For fixedN∗, the function δV (N∗, α) varies between zero and one. As can be seen in figure 1, δV (N∗, α)
first grows rapidly from zero at α = 0 to 0.9 at around α = 20 and then slowly asymptotes to 1 for
α → ∞.

0 10 20 30 40 50
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0.6

0.8
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Α

∆
V
HN
*
,Α
L

4 5 6 7 8 9
0.0

0.1

0.2

0.3

0.4

0.5

Figure 1. The function δV (N∗, α) as a function of α for values of N∗ ∈ [50, 60]. The upper line corresponds to
N∗ = 50, the lower line to N∗ = 60. The inset shows the region with α in the 68% CL range 5.1 < α < 7.9 (see
(3.20)).

As already mentioned in the introduction, the consistency condition will lead in general to an exact
constraint. But since we only have considered the tree-level approximation to obtain EQC

inf and also
made the slow-roll approximation to obtain Emodel

inf , this relation cannot be expected to hold exactly.
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Nevertheless, the quantum cosmological analysis leads to an approximate consistency requirement
that excludes certain values of α for a given N∗. Since δV enters as the difference 1 − δV in V (ϕ∗),
it will only lead to significant changes in Emodel

inf when δV ≈ 1. For example, a δV ≈ 0.9999 will lead
to V (ϕ∗) = 2Λ4 (1− δV ) = 2Λ4 10−4 and will affect the energy scale of inflation by one order of
magnitude, Emodel

inf = V 1/4(ϕ∗) = 21/4 × 10−1 Λ. Then, even the approximate consistency condition

EQC
inf ≈ Emodel

inf would no longer hold. This case would correspond to a value of α ≈ 710 for N∗ = 50
and α ≈ 780 for N∗ = 60 and is depicted in figure 2. In order for the consistency condition to hold at
least approximately, we have to impose in this model the constraint

α ≪ 700. (3.19)

This is, of course, compatible with the Planck constraint (3.18).

650 700 750 800 850
0.00000

0.00005

0.00010

0.00015

0.00020

Α

V
HN
*
,Α
L�

2
L

4

Figure 2. A zoomed-in region of the function V (N∗, α)/(2 Λ
4) = 1 − δV as a function of α for values of

N∗ ∈ [50, 60]. The upper purple line corresponds to N∗ = 60, the lower purple line to N∗ = 50. The
lower area, colored in light red (in black-and-white printing: light gray), corresponds to the region where

Emodel
inf < 10−1EQC

inf .

Although a quantum cosmological bound on α derived in this way is rather arbitrary and clearly
depends on the aimed precision for the approximate quantum cosmological consistency condition to
hold, it is obvious that this bound is not as restrictive as the constraints on α coming from the
comparison of the inflationary model itself with observational data, which require α ∼ O(10). As
described in section 2.2, the observed value Eobs

inf is very close to the quantum cosmological predicted

value of EQC
inf ≈ 21/4 Λ with Λ ≈ 1016 GeV around the GUT scale. However, the observational

constraints on the spectral index and the tensor-to-scalar ratio by Planck yield a much sharper
condition on α than the restrictions from quantum cosmology. For N∗ = 60, Planck data [4, 5]
constrain α to lie in the interval [48]

5.1 < α < 7.9 (68%CL) . (3.20)

As shown in figure 1, in this range δV ≈ 0.1 ÷ 0.5 is small enough to respect the condition (2.20), at
least within the order of magnitude of the envisaged accuracy.

For the ‘classical’ natural inflation model, a quick estimate for the constraint analogous to (3.20)
can be obtained by looking at the intersection points in the (ns ∗, α) and (r∗, α) planes between the
experimental 68 % CL and 95 % CL bounds on ns ∗ and r∗ and the corresponding model-dependent
analytic expressions for ns ∗ and r∗. The expressions for ns and r given in (3.11)–(3.12) and evaluated
at ϕ∗ take a particularly simple form when expressed in terms of δV and α:

ns ∗ = 1 +
1

α2

δV (N∗, α) + 1

δV (N∗, α) − 1
, r∗ =

8

α2

δV (N∗, α)

1− δV (N∗, α)
. (3.21)
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Figure 3. The tensor-to-scalar ratio r∗ as a function of α for values of N∗ ∈ [50, 60]. The 68 % CL and 95
% CL shaded regions experimentally excluded by Bicep2 are bounded from above by, respectively, the orange
(upper) and red (lower) horizonal line. The upper bounds on r∗ are not shown, as they do not constrain α. The
upper curve corresponds to N∗ = 50, the lower one to N∗ = 60. For N∗ & 52, r∗ falls in the forbidden 68 % CL
region for all values of α. The inset shows the intersection of the N∗ ∈ [50, 60] band with the 95 % CL bound.

Here we show the results of this procedure by confronting the analytically obtained r∗ with the
estimated bounds on r∗ from the combined Planck+WP+highL+Bicep2 1σ and 2σ contours of the
tensor-to-scalar ratio for fixed central value ns ∗ = 0.96 [50]. The 1σ contour leads to the bounds
r∗ = 0.20+0.07

−0.05 for the tensor-to-scalar ratio. Comparison with figure 3 leads to the lower bound
α & 22 for N∗ = 50. The 2σ contour of r∗ for the central value ns ∗ = 0.96 roughly yields the bounds
r∗ = 0.20+0.1

−0.1 [50], constraining α & 8 for N∗ = 50 and α & 11 for N∗ = 60, as can be seen in the inset
of figure 3. A more elaborate likelihood analysis refines these rough estimates [77]: at the 1σ level,
α & 9 for N∗ = 50, while at the 2σ level α & 7÷ 8 for N∗ = 50 and α & 9 for N∗ = 60.

Thus, by comparing the classical inflationary predictions with observational data we have ob-
tained a constraint on α of the order of magnitude α ∼ O(10) far below the threshold α ≈ 700 at
which a conflict with the quantum cosmological compatibility constraint would arise. We can therefore
conclude that, to a good approximation, the consistency condition is satisfied for all experimentally
allowed values of α according to both Planck and Bicep2 data.

4 Conclusions

The purpose of our paper is to present a general method to discussing quantum cosmological consis-
tency conditions for inflation and to present a concrete example in detail. We have focused on the
tunneling condition for the wave function of the universe because it allows one to implement these
consistency conditions in a straightforward manner. In principle, however, the method can also be
used to study other conditions such as the no-boundary condition, although this condition does not
lead to the prediction of inflation in the usual situations. A central concept in our analysis is the use
of the effective action. Because this action can in general not be evaluated exactly, it is necessary to
perform a loop expansion. The example we have discussed in detail here is natural inflation. There,
the restriction to the tree-level approximation seems sufficient because at tree level the potential (3.1)
features a strict maximum necessary for the tunneling analysis, while this is not the case for the in-
flationary models mentioned at the beginning of section 3. For these models, therefore, one has to go
at least to the one-loop level. This will be the topic of future investigations.
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All inflationary single-field models favored by recent Planck data can be collectively covered by
the class of scalar-tensor theories with the action

S =

∫

d4x
√

|g|
[

U(ϕ)R − G(ϕ)

2
(∇ϕ)2 − V (ϕ)

]

, (4.1)

where U(ϕ), G(ϕ) and V (ϕ) are arbitrary functions of the inflaton field ϕ. Quantum corrections
usually modify the shape of the effective potential and the location of its extrema. Thus, even for
the inflationary models where a tunneling analysis was not applicable at the tree level, already at the
one-loop level the changing structure of the effective potential may lead to a strict maximum such
that a tunneling analysis becomes possible.

The one-loop divergences for the action (4.1), necessary for the renormalization of (4.1), can
be extracted from [78] where a more general action with a O(N)-symmetric scalar multiplet was
considered.3 However, two important points have to be taken into account for such a quantum
analysis. First, if the inflaton field is coupled to additional matter, matter loop contributions usually
lead to a significant modification of the effective potential. This fact was crucial in the renormalization-
group improved investigation of the tunneling scenario for non-minimal Higgs inflation [43]. Second,
the analysis of f(R) theories and models with a non-minimal coupling to gravity requires extra care.
The tunneling formalism presented here has been developed for a minimally coupled scalar field. By
a conformal transformation of the metric field and a subsequent redefinition of the scalar field, the
action (4.1) can be brought to the so-called Einstein-frame parametrization, which, in the absence
of matter, formally resembles the situation of a scalar field minimally coupled to gravity. It is well
known that f(R) theories with f,RR 6= 0 also admit an on-shell reformulation as scalar-tensor theories
of the type (4.1) with G(ϕ) = 0. Therefore, they can ultimately be cast as well in the Einstein-
frame parametrization. While field reparametrizations lead to equivalent descriptions at the tree
level, quantum divergences induce a frame dependence of the off-shell effective action [80]. In [81],
the origin of this parametrization dependence was traced back to the non-covariant definition of the
off-shell effective action on configuration space and in [80, 82] this idea was applied to the cosmological
context. In particular, when applied to the debate ‘Jordan frame vs. Einstein frame’, it was pointed out
that within a non-covariant formalism quantum corrections will naturally induce a frame dependence
when the conformal transformation of the metric field as well as the transformation of the scalar field
are viewed as field reparametrizations in configuration space. The tunneling consistency condition
may thus serve not only as a tool to distinguish between competing models of inflation, but also to
select a preferred parametrization in the absence of a covariant formulation.

In our tree-level analysis of natural inflation, we have derived a consistency condition which
restricted the parameter α = f/MP for a given number of e-folds N∗. Our result ensures consistency
with the quantum cosmological tunneling origin. For the tree-level analysis of the natural inflation
model, the restriction of α from the quantum cosmological consistency condition is much weaker
than the observational constraints on the inflationary parameters itself. We have found that natural
inflation with a quantum tunneling origin is consistent with the 2013 Planck release as well as with
a large tensor-to-scalar ratio as found by Bicep2. Making use of the general formalism presented here
for the natural inflation model, the analysis can easily be extended to all kind of inflationary models,
including their modification by quantum corrections. Such investigations will shed further light on
the relation between a fundamental theory of quantum cosmology and cosmological observations.
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