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ABSTRACT 

This work evaluates the behavior of thallium in a 50MW industrial circulating fluidized-

bed combustion plant (CFBC), focusing on the distribution of this element among the 

bottom and fly ashes separated by the solid retention devices in the plant. The results 

show that thallium species are mainly retained in the solid by-products and are not 

emitted to air with flue gases in significant amounts, proving that this technology is a 

more effective means of preventing thallium emissions than pulverized coal combustion 

technology (PCC). The mass balance of the thallium content in the solids shows that 

this element was retained in the ashes separated by the different devices installed in 

the plant. An evaluation of the ash fractions taken from the strippers, the heat recovery 

area, the hoppers in the air heater and the electrostatic precipitator, shows that thallium 

was relatively homogeneously distributed in all the ash samples, independently of their 

composition, but is slightly related to surface area, which in turn is dependent on 

particle size and  unburned carbon content. 

 

Introduction 

Thallium is a toxic element that occurs in two oxidation states; Tl(I) and Tl(III), the latter 

being more toxic. Thallium toxicity could pose a serious health problem because its 

compounds remain in the air, water, and soil for a long time and do not decompose. 

Eventually Tl enters the food chain, accumulating in fish and shellfish [1-3]. The main 

sources of Tl release to the environment are industrial processes, where Tl is present 

as an impurity in the raw materials. The data available at present indicate that power-

generating plants are one of the main sources of Tl emissions to the atmosphere [2, 4]. 

Thallium concentrations in most coals range from 0.5 to 3 µg g-1 and it has been 

calculated that about half of this is emitted into the atmosphere [5]. Emissions of Tl in 

the flue gases of coal-fired power-generating plants can amount to 700 µg m-3. A 



number of studies performed on conventional pulverized coal combustion power plants 

(PCC) have found that Tl volatilizes at the high temperatures of the boiler and 

condenses on the surface of the fly ash particles, which are mainly enriched in particles 

of small size and high surface area [6-7], in the cooler parts of the system. It is thought 

that Tl in ashes is mainly present in the form of sulphates [8]. As a result of the 

evaporation and condensation of the thallium species, Tl could be as much as 2–10 

times more concentrated in the fine fly ash fractions than it was in the coal before 

combustion [9-10]. The concentrations of Tl reported to be emitted on airborne fly ash 

from coal-burning power plants range from 29 to 76 µg g-1. The highest concentrations 

have been found on particles with a size of less than 7 µm in diameter. Such particles 

are the most dangerous; they are able to pass through conventional particle retention 

devices in power-generating plants, after which they remain suspended in the 

atmosphere. They may even end up being deposited in the lower respiratory tract [9]. 

In modern industrial societies ways must be found to obtain energy from coal with 

minimum production of pollutants. The reduction of greenhouse gas emissions from 

energy production using coal must be accomplished with the reduction of other toxic 

pollutants such as thallium. Although the behavior of Tl, and other toxic trace elements, 

has been studied in PCC, less attention has been paid to trace element behavior in 

some of the less commonly used but more efficient and cleaner coal combustion 

technologies. This is the case with fluidized-bed combustion (FBC), which nowadays is 

a highly developed energy-producing technology. The advantages of this technology 

are its ability to co-combust different solid combustibles, including biomass and wastes, 

and its capacity to avoid emissions of NOx and SO2. However, probably the most 

important advantage of FBC nowadays is that this technology is compatible with 

processes for capturing CO2. Previous studies have demonstrated that volatile toxic 

elements can be captured in fly ashes more efficiently in FBC than in PCC, though 

literature on Tl behaviour during coal combustion in FBC is still scarce. The aim of the 



present work is to estimate the distribution of Tl among the solid by-products of a 

CFBC plant to evaluate the likely emissions to the air and to establish the relationships 

between fly ash characteristics, mineral components and thallium retention. 

 

Experimental 

The study was performed using samples taken from a 50 MW industrial circulating 

fluidized-bed combustion (CFBC) plant in La Pereda, Spain. The boiler was fed with a 

blend of 36-40% wt bituminous coal, 51-56% wt coal wastes obtained from disposal 

sites (Villallana and Batán), and around 6% wt limestone. Representative samples of 

each stream were obtained over a period of three days. Sampling was carried out 

continuously for 6 h every day, with around 2 kg of sample being taken every 30 min. 

Each sample was homogenized to form a single sample representative of the sampling 

point. Figure 1 presents a schematic diagram of the CFBC facility and the sampling 

points of the coal blends (CM), bottom ashes (BA), and fly ashes (FA). Of the total 

quantity of ash collected, 56% was bed ash and 44% was fly ash. A total of 15% of the 

fly ash had amassed in the hoppers of the heat recovery area of the plant, 20% had 

accumulated in the hoppers of the air heater, and 65% in the electrostatic precipitator 

(ESP). Inside the ESP unit, the bulk of the fly ash had accumulated in the precipitator 

fields in the following proportions: 40% in the first field; 22% in the second field; 2% in 

the third field, and 1% in the fourth field. The temperatures of the ashes sampled over 

the three sampling days are presented in Table 1.  

Analysis of Tl was carried out by ICP-MS on the solution obtained after elimination of 

the carbon material. The ashes for the analysis were obtained by burning this carbon 

material in a furnace at 300 ºC for 1 hour. After that, the temperature was increased to 

500ºC and this temperature was maintained for 2 hours. 50 mg of the ashes obtained 

were then digested in a microwave oven using 1 mL of HNO3 plus 2 mL of HF. The 

solution was  diluted to 50 mL with ultrapure water and analyzed in the ICP equipment. 



The thallium enrichment values for the fly ashes were calculated using equation (1) by 

well tried calculation methods [3, 11]  

RE =  (Tl concentration in ash /Tl concentration in coal) (percentage of ash in coal/100)                 (1) 

Ash yield and loss on ignition (LOI) were determined by combustion in air at 815 ºC. 

The Brunauer-Emmett-Teller (BET) surface area was determined by volumetric 

adsorption of nitrogen at 77 K. The ash composition for all of the samples taken from 

the power plant was analyzed by X-ray fluorescence (XRF) of the fused ashes. Particle 

size and morphology were estimated by scanning electron microscopy (SEM).  

 

3. Results and Discussion 

The data for ash yield, LOI, surface area and Tl concentration of all the samples 

studied are presented in Table 2. All data refer to the sample air-dried. The limestone 

additive does not contain significant concentrations of Tl and all the input of this 

element to the CFBC plant originates from the combustible materials. The thallium 

contents and ash yield of the combustible blends (CMA-CMD) can be considered 

statistically the same with an average Tl concentration of 0.76 µg g-1, which represents 

1.16 µg g-1 if it is referred to the ashes. Worthy of note is that the total ash yield of the 

combustible material has values as high as 65% because of the nature of the 

combustible blend which is a mixture of coal with a high proportion of coal waste. The 

characteristics of the plant made it possible to burn wastes from old disposal sites and 

recover the combustible material present in those wastes.  

According to the data in Table 2, the Tl content of the ashes is of same order of 

magnitude in all the cases. It can be seen that the Tl concentrations in all the solid by-

products sampled from the strippers, the cyclone and the electrostatic precipitator are 

between 0.93 and 1.70 µg g-1. The average value is 1.20 µg g-1 and the standard 

deviation when all the samples are compared is 0.20 µg g-1. Although broadly speaking 

this can be considered a relatively homogeneous distribution of Tl among the solid by-



products, it might be worth while to study the data more deeply to see if the small 

differences observed i.e. 0.93-1.70, are related to different characteristics and 

variations in major element composition of the ashes. Although the results under 

discussion point to the indiscriminate distribution of Tl, the mineral composition of the 

ashes and its relationship with the Tl content was evaluated more closely using the 

analysis of major elements that constitute the mineral matter. The ash composition of 

the whole samples taken from the power plant was analyzed for content in Si, Al, Ca, 

Mg, Fe, Na. K, Ti and P, and the results are reported as oxides in the raw sample 

(Table 2). These analyses are relatively uniform, but nevertheless some differences 

stand out. The most remarkable of these differences are related to calcium content. 

Limestone was added to the fuel blend to assist in S capture and this is the origin of the 

relatively high CaO in the ashes. Proportionally more CaO has been carried over into 

the fly ashes than to the bottom ashes, although the difference is not great. This can be 

attributed to physical fractionation in the gas stream.  

Most of the remaining major elements are derived from clay minerals which are present 

in the coals and the associated mudrocks. The high percentages of ash in the coal 

blends is a consequence of the importance of the clay minerals in this fuel. The ratio of 

alumina to silica in the ash samples is not constant, but again the differences are small. 

The Al2O3/SiO2 ratio is higher in the ash samples from the electrostatic precipitator, in 

particular in samples FA 10, FA11, FA14 and FA15. In view of the clay mineralogy of 

the coals and mudrocks in this coalfield [12] the higher ratio probably reflects a 

marginally higher kaolinite contribution to those ash samples. This is supported by the 

lower value of the K2O/Al2O3 ratio consistent with a decrease in the proportion of illite in 

the same samples. Illite and kaolinite are intimately associated in the mudrocks and to 

some extent in the coals, but small amounts of disseminated kaolinite occur in the 

coals independently of the illite. It is therefore possible to interpret the changes in the 

two ratios, not only in terms of clay proportions, but more importantly in terms of where 



the clays originated from and how the combustion products were fractionated, 

presumably as a function of grain size. The ash derived from the clays formed within 

the coal can be expected to be more fine grained, at least initially, because of the 

disseminated nature of the clay within the coal. A higher ratio in the final ash might 

therefore indicate a greater contribution from the coal itself.  

The relationship between the Tl concentration in each solid phase and different key 

properties such as carbon content and surface area was also investigated. The loss on 

ignition (LOI) values (Table 2), serve to provide an estimate of the unburned carbon 

content of the ash samples. The unburned carbon content is the carbonaceous matter 

on to which adsorption phenomena may occur, although it is important to bear in mind 

that adsorption is also related to surface area. Figure 2 shows the thallium content as a 

function of surface area of the ashes, which in turn depends on the carbon content 

(Figure 3). There is a clear relationship between LOI and surface area. Although not 

studied in this work, this indicates that the variation in surface area for these ashes is 

due to the different carbonaceous contents. The relationship between surface area and 

Tl content can be inferred from Figure 2. The correlation is significant at the 95% level, 

although it is lower than for other volatile elements such as Hg previously studied in the 

same power plant [13]. The particle size and particle morphology observed by SEM 

differ considerably at different sampling points.  following the same tendency as the 

surface area of the samples. The particle size of the ashes decreases from the first to 

the last hoppers, while the homogeneity in shape increases. To illustrate these 

changes, Figure 4 shows SEM images of a representative selection of ashes (FA1, 

FA8, F17, and FA 15). Sample FA1 is one of the ashes taken from the heat recovery 

area FA8 was taken from the hoppers of the air heater; F17 from one of the first 4 

hoppers in the electrostatic precipitator and FA 15 from one of the last 4 hoppers in the 

electrostatic precipitator (Figure 1). It was observed that the particle size decreased 

from the ashes from the heat recovery area to the ashes from the air heater and the 



lowest values were presented by the ashes from the electrostatic precipitators. It was 

found that particles in the fly ashes from the heat recovery area and the air heater were 

about 100 μm, while particles from the first two hoppers of the electrostatic precipitators 

were smaller than 50 μm. In the last two hoppers the size of the particles was smaller, 

and aggregates of less than 20 μm were observed. 

For purposes of comparison of these by-products with the ashes from  PCC plants  

which have been studied in greater depth, the relative enrichment factor (RE) values 

for all the ashes analyzed are shown in Figure 5. The RE factor (Equation 1) is a 

method of comparison that facilitates understanding of the behavior of trace elements 

in a combustion process. In this case, it can be observed that the RE values are similar 

and are all > 1. This confirms a similar distribution of Tl among the ashes in this power 

plant and also shows that the ashes act as a sink for Tl. The increase in carbon content 

and surface area may not be the only characteristic of fly ashes that usually influences 

distribution of trace elements among the combustion by products, especially when 

evaluating ash fractions of different characteristics as in this case. Temperature, 

contact time and other variables related to the design of the electrostatic precipitator 

also may play a role. 

The results of a mass balance performed over the three days of sampling with respect 

to the input and output of thallium in all the solid by-products, are presented in Table 3. 

It can be seen that the input and output of thalium was similar. It should be pointed out 

that due to the limitations of sampling in a power plant the calculated output of thallium 

is higher than the input. However, the difference is within the order of uncertainly for 

this kind of balance, the possible error being of the order of 5% which is a very 

satisfactory result for an industrial study. 

From the results presented above it can be inferred that the Tl present in coal can be 

captured efficiently in the ashes of a FBC power plant. Although broadly speaking Tl is 

homogeneously distributed among the ashes, segregation in ashes with a high surface 



area could take place, although this segregation would not be as great as in the case of 

other volatile toxic elements such as mercury [13] 
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Figure 1.-Schematic diagram of the sampling points in the CFBC plant facility 
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Table 1.  Average temperatures of ashes at the sampling points 

  Tª ºC 

BA1-BA2 Strippers 330 

FA1-FA3 Heat recovery area 320 

FA4-FA9 Air heater hoppers 133 

FA10-FA17 Electrostatic precipitator 145 

 

 



Table 2.- Thallium content (µg g-1), ash yield and LOI of coal and ashes (%wt), surface area (s.a) and major elemental composition (expresed 
as oxides) of the ashes of each product.  
 
 µg g-1 % wt % wt m2 g-1 % wt 
Sample Tl ash LOI s.a   Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 Fe2O3 
CMA1 0.75 64.7   0,82 1,42 25,8 50,4 0,11 3,88 5,64 0,91 5,95 
CMB1 0.74 65.0   0,83 1,40 26,6 52,6 0,11 4,11 6,71 0,91 6,40 
CMC1 0.77 65.5   0,81 1,48 28,6 54,8 0,14 4,35 7,07 0,96 6,49 
CMD1 0.78 65.3   0,84 1,47 26,9 51,9 0,12 4,06 5,79 0,92 6,25 
BA1 1.20    0.80 1.39 25.8 52.0 0.12 4.08 6.54 0.89 5.85 
BA2 0.93    0.80 1.29 25.8 49.0 0.11 3.82 8.24 0.84 5.38 
FA1 0.95  1.30 3.28 0.78 1.30 24.9 46.5 0.11 3.68 10.7 0.80 5.41 
FA2 0.93  1.39 2.71 0.83 1.30 24.8 45.9 0.11 3.67 10.8 0.78 5.24 
FA3 1.20  1.47 3.55 0.88 1.30 24.9 47.1 0.12 3.95 10.6 0.82 5.57 
FA4 1.30  1.35 3.73 0.86 1.30 26.0 48.7 0.12 4.00 8.33 0.85 5.63 
FA5 0.99  1.38 2.84 0.76 1.29 25.2 45.0 0.11 3.54 10.7 0.77 5.15 
FA6 1.10  1.33 3.21 0.80 1.29 25.8 46.7 0.12 3.86 10.4 0.82 5.42 
FA7 1.20  1.27 3.56 0.84 1.29 25.2 46.6 0.11 3.75 10.4 0.80 5.41 
FA8 1.00  0.99 2.81 0.80 1.29 24.8 46.3 0.11 3.77 11.3 0.79 5.33 
FA9 0.99  1.40 4.06 0.85 1.24 25.4 47.0 0.11 3.89 9.99 0.83 5.35 
FA10 1.30  5.68 9.51 0.85 1.41 26.0 43.8 0.13 3.14 9.68 1.08 7.84 
FA11 1.20  5.81 8.95 0.78 1.39 25.6 43.2 0.12 3.15 9.54 0.99 7.04 
FA12 1.70  3.97 7.35 0.79 1.32 24.8 44.9 0.11 3.59 9.93 0.88 6.29 
FA13 1.20  2.70 5.47 0.79 1.29 24.7 46.1 0.12 3.81 10.1 0.87 6.06 
FA14 1.30  5.30 10.0 0.79 1.43 25.6 43.5 0.13 3.17 9.51 1.07 8.02 
FA15 1.30  5.78 9.79 0.87 1.40 25.8 45.2 0.13 3.34 9.58 1.03 7.26 
FA16 1.30  4.44 7.37 0.80 1.33 24.6 45.7 0.11 3.70 10.8 0.86 6.05 
FA17 1.40  2.45 5.04 0.78 1.30 25.4 45.4 0.11 3.64 9.53 0.83 5.84 

1. Composition of the ashes of these coals. 

 



 
 
 

0

2

4

6

8

10

12

0,7 0,9 1,1 1,3 1,5 1,7 1,9

s.
a 

m
2g

-1

Tl µg g -1

 
Figure 2.- Relationship between thallium and the surface area for all the ashes.  
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Figure 3.- Relationship between thallium and LOI for all the ashes 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.-SEM Images of some representative ashes using the same power of 

magnification 
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Figure 5.-Enrichment factors of thallium in the fly ashes obtained from the hoppers of 

the electrostatic precipitators 
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Table 3.-Estimated balance of thallium in the solids of the plant  

input output 

% wt % wt 

CM BA FA FA   
  stripper cyclone ESP ∑output 

Tlout/Tlin 

48.3 14.8 11.5 2.9 21.3 50.5 1.05 

 

 

 

 

 

 

 

 


